До питання про самоорганізацію динамічних структур у нерівноважних системах

  • O. I. Gichan Інститут хімії поверхні ім. О.О. Чуйка Національної академії наук України
  • L. G. Grechko Інститут хімії поверхні ім. О.О. Чуйка Національної академії наук України

Анотація

Проведено огляд сучасних літературних даних, присвячених теоретичному та експериментальному дослідженню процесів спонтанного утворення динамічних поверх­невих структур в нерівноважних системах та їх ролі у нанотехнологіях.

Посилання

Yamaguchi T., Epstein I.R., Shimomura M. Introduction: Engineering of self-organized nanoparticles // Chaos. – 2005. – V. 15. – P. 047501.

Yamaguchi T., Suematsu N., Mahara H. Self-organization of hierarchy: Dissipative-structure assisted self-assembly of metal nanoparticles in polymer matrices // ACS Symp. Ser. – 2004. – V. 869. – P.16.

Сугаков В.Й. Основи синергетики. – К.: Обереги, 2001. – 287 с.

Lehn J.-M. Toward complex matter: Supramolecular chemistry and selforganization // Proc. Natl. Acad. Sci. U.S.A. – 2002. – V. 99. – P. 4763.

Ishikawa M. Precise fabrication of nanomaterials: A nonlinear dynamics approach // Chaos. – 2005. – V. 15. – P. 047503.

Naito K. Ultrahigh-density storage media prepared by artificially assisted self-assembling methods // Chaos . – 2005. – V. 15. – P. 047507.

Epstein I.R., Vanag V.K. Complex patterns in reactive microemulsions: Self-organized nanostructures? // Chaos. – 2005. – V. 15. – P. 047510.

Vanag V.K., Epstein I.R. Localized patterns in reaction-diffusion systems // Сhaos. – 2007. – V. 17, № 3. – Art. No. 037110.

Ginn B.T. and Steinbock O. Quantized spiral tip motion in excitable systems with periodic heterogeneities // Phys. Rev. Lett. – 2004. – V. 93, № 15. – P. 158301.

Sakurai T., Mihaliuk E., Chirila F. Desing and control of wave propagation patterns in excitable media // Science. – 2002. – V. 296. – P. 2009 – 2012.

Ванаг К.В. Волны и динамические структуры в реакционно-диффузионных сис­темах. Реакция Белоусова-Жаботинского в обращенной микроэмульсии. // УФН. – 2004. – Т. 174, № 9. – С. 991 – 1010.

Castets V., Dulos E., Boissonade J. Experimental evidence of a sustained standing Turing-type nonequilibrium chemical pattern // Phys. Rev. Lett. – 1990.– V. 64. – P. 2953 – 2956.

Sagués F., Epstein I.R. Nonlinear chemical dynamics // Dalton Trans. – 2003. – V. 1. – P. 1201 – 1217.

Experimental studies and quantitative modeling of Turing patterns in the chlorine dioxide, iodine, malonic acid reaction/ B. Rudovics, E. Barillot, P.W. Davies, E. Dulos, J. Boissonade, D.P. Kepper // J. Phys. Chem. – 1999. – V. 103, № 12. – P. 1790 – 1800.

Ertl G., Kim M., Bertram M., Pollmann M. et. all. Controlling chemical turbulence by global delayed feedback: Pattern formation in catalytic CO oxidation on Pt(110) // Science. – 2001. – V. 292. – P. 1357 – 1360.

Janssen N.M.H., Schaak A., Nieuwenhuys B.E. Unusual behavior of chemical waves in the NO + H2 reaction on Rh(111): long range diffusion and formation of patches with reduced work function// Surf. Sci.- 1996. - V. 364. - P L555 – L562.

Study of spatial pattern formation during the NO+H2/Rh(111) reaction by means of mathematical modeling / A.G. Makeev, N.M.H. Janssen, P.D. Cobden, M.M. Slinko, B.E. Nieuwenhuys // J. Chem. Phys. – 1997. – V. 107, № 3. – P. 965 – 978.

Graham M.D., Lane S.L., Luss D. Spatiotemporal temperature patterns during hydrogen oxidation on a nickel disk // J. Phys. Chem. - 1993. - V. 97. – P. 7564.

Philippou G., Schultz F., Luss D. Spatiotemporal temperature patterns on an electrically heated catalytic ribbon // J. Phys. Chem. - 1991. - V. 95. – P. 3224.

Qin F., Wolf E.E. Spatially resolvedlR study of CO coverage on surfaces// Chem. Eng. Sci. - 1995. - V. 50. – P. 117.

Luss D., Sheintuch M. Spatiotemporal patterns in catalytic systems // Catalysis Today. – 2005. – V. 105. – P. 254 – 274.

Yakhnin V., Menzinger M. Stationary and traveling hot spots in the catalytic combustion of hydrogen in monoliths // Chem. Engin. Sci. – 2002. – V. 57. – P. 4559 – 4567.

Rotermund H.H., Engel W., Kordesch M. Imaging of spatio-temporal pattern evolution during carbon monoxide oxidation on platinum // Nature. – 1990. – V. 343. – P. 355 – 357.

Kim M., Bertram M., Pollmann M. at. all. Controlling chemical turbulence by global delayed feedback: Pattern formation in catalytic CO oxidation on Pt(110).// Science. – 2001. – V. 292. – P. 1357 – 1360.

Atomic and Macroscopic Reaction Rates of a Surface-Catalyzed Reaction / J. Wintterlin, S. Volkening, T.V.W. Janssens, T. Zambelli, G. Ertl // Science. – 1997. – V. 278. – P. 1931.

Hildebrand M. Self-organized nanostructures in surface chemical reactions: mechanisms and mesoscopic modeling // Chaos. – 2002. – V. 12. – P. 144 – 156.

Ertl G. Oscillatory kinetics and spatio-temporal selforganization in reactions at solid surfaces // Science. – 1991. – V. 254. – P. 1750.

Christoph J., Eiswirth M. Theory of electrochemical formation // Chaos. – 2002. – V. 12, № 1. – P. 215 – 230.

Foca E., Carstensen J., Föll H. Modelling electrochemical current and potential oscillations at the Si electrode // J. Electroanal. Chem. - 2007. – V. 603. – P. 175 – 202.

Eskhult J., Ulrich C., Björefors F.. Current oscillation during chronoamperometric and cyclic voltammetric measurements in alkaline Cu(II)-citrate solutions // Electrochimica Acta. – 2008. – V. 53. – P. 2188 – 2197.

Krischer K. Spontaneous formation of spatiotemporal patterns at the electrode | electrolyte interface // J. Electroanal. Chem. - 2001. - V. 501. - P 1 – 21.

НАЗВА/ W. Wolf, M. Lubke, M.T.M. Koper, K. Krischer, M. Eiswirth, G. Ertl // J. Electroanal. Chem. – 1995. – V. 399. – P. 185.

Thouvenel-Romans S., Agladze K.I., Steinbock O. Traveling fronts of copper deposition // J. Am. Chem. Soc. – 2002. – V. 124, № 35. – P.10292 – 10293.

Hudson J.L., Tsotsis T.T. Electrochemical Reaction Dynamics - a Review// Chem. Eng. Sci. – 1994. – V. 49. – P. 1493.

Berthier F., Diard J.-P, Montella C. Hopf bifurcation and sign of the transfer resistance // Electrochimica Acta. – 1999. – V. 44. – P.2397 – 2404.

Krischer K., Mazouz N., Grauel P. Fronts, waves, and stationary patterns in electrochemical systems // Angew. Chem. Int. Ed. Engl. – 2001. – V. 40. – P. 850 – 869.

Krastev I., Koper M.T.M. Pattern formation during the electrodeposition of a silver-antimony alloy // Physica A. - 1995. - V. 213. - P. 199 – 208.

Mazouz N., Krischer K. A theoretical study on turing patterns in electrochemical systems // J. Phys. Chem. B. – 2000. – V. 104, № 25. – P. 6081.

Krischer K., Mazouz N., Flatgen G. Pattern formation in globally coupled electrochemical systems with an S-shaped current-potential curve // J. Phys. Chem. B. – 2000. – V. 104. – P. 7545 – 7553.

Li Y.J., Oslonovitch J., Mazouz N., Plenge F., Turing-type patters on electrode surfaces // Science. – 2001. – V 291. – P 2395 – 2398.

Krischer K. in: Alkire R.C. Kolb D. M. (Eds) Advances in Electrochemical Science and Engineering. 2003. – V. 8. – Wiley, London, 2003, Chapter 2. – P. 8.

Koper M.T.M. Stability study and categorization of electrochemical oscillations by impedance spectroscopy // J. Electroanal. Chem. – 1996.– V. 409, № 1 – 2. – P. 175 – 182.

Naito M., Tanaka N., Okamoto H. General relation between complex impedance and linear stability in electrochemical systems // J. Chem. Phys. – 1999. – V. 111. – P. 9908.

Булавін Л.А., Гічан О.І., Гречко Л.Г. Нові типи динамічних структур у системі ФітцХ’ю-Нагумо // Доп. НАН України. - 2006. - № 10. - С. 69 – 74.

Гічан О.І., Гречко Л.Г. Змішані режими моделі ФітцХ’ю-Нагумо: взаємодія та конкуренція біфуркацій Хопфа та Тюрінга // Вісн. Київськ. ун-ту. Серія фіз.-мат. науки. - 2007. - № 4. - С. 311 – 315.

Опубліковано
2018-08-02
Як цитувати
Gichan, O. I., & Grechko, L. G. (2018). До питання про самоорганізацію динамічних структур у нерівноважних системах. Поверхня, (15), 15-24. вилучено із http://surfacezbir.com.ua/index.php/surface/article/view/323
Розділ
Теорія хімічної будови і реакційної здатності поверхні.