Сонячні елементи на основі органічних і органо-неорганічних матеріалів

  • В. В. Лобанов Інститут хімії поверхні ім. О.О. Чуйка Національної академії наук України
  • М. І. Теребінська Інститут хімії поверхні ім. О.О. Чуйка Національної академії наук України
  • О. В. Філоненко Інститут хімії поверхні ім. О.О. Чуйка Національної академії наук України
  • О. І. Ткачук Інститут хімії поверхні ім. О.О. Чуйка Національної академії наук України
Ключові слова: сонячні елементи, сонячна фотовольтаїка, межа Шоклі-Квейссера, флексоелектричний ефект, флексо-фотовольтаїчний ефект, синглетний поділ, провідні полімери, екситон, носії струму, донорні матеріали, акцепторні матеріали, органічні метали, ступінь окиснення, механізм провідності, полярони, біполярони, імітатор соняч¬ного випромінювання, полі(3,4-етилендиоксітіофен, полістирол-сульфонова кислота, міжмолекулярний комплекс PEDOT:PSS

Анотація

Виснаження як наявних, так і розвіданих запасів мінерального і органічного палива стимулює розвиток сонячної енергетики (сонячної фотовольтаїки, СФ), не пов'язаної із забрудненням навколишнього середовища і порушенням теплового балансу планети.  Розвиток СФ йшов і йде в напрямку збільшення коефіцієнта корисної дії ККД сонячних елементів (СЕ) при дотриманні вимог зниження їхньої вартості, збільшення строку служби і стабільності роботи при зовнішніх умовах, а саме, вологості, хмарності, перепадів температури, тиску і т.д.

В огляді подано класифікацію СЕ по поколінням появи, принципом дії і іншими показниками, зокрема, інтенсивності збирання світла, складу поглинаючого матеріалу, його товщині і т.д. Наведено конкретні варіанти СЕ різних типів. Належна увага приділена способам подолання фундаментальної межі Шоклі-Квейссера, а саме, флексоелектричного, флексо-фотовольтаїчного ефектів, а також процесу синглетного поділу – найбільш перспективному методу підвищення ККД СЕ

Розглянуто основні спеціальні параметри і характеристики СЕ, експериментальні методи їхнього визначення, а також калібрування штучних імітаторів сонячного випромінювання.

            Велика увага в огляді приділена використанню провідних полімерів і органо-неорганічних матеріалів в СФ, дана їхня класифікація з акцентом на переваги і недоліки в порівнянні з кремнієвими СЕ. Здійснено короткий екскурс в історію появи і розвитку провідних полімерів (органічних металів) з освітленням методів їх відновлення або окиснення для збільшення електропровідності.

            Детально викладені властивості полі(3,4-етилендіокситіофену) (PEDOT) як в ізольованому стані, так і в комплексі з полістиролсульфоновою кислотою (PSS). Описано, визначені з квантовохімічних розрахунків, мікро- і макроскопічні властивості міжмоле­кулярного комплекса PEDOT:PSS – найбільш вивченого провідного полімера, який відіграє важливу роль в СФ.

            Досить повно проаналізовано властивості органо-неорганічних матеріалів, які, за цілком обгрунтованими прогнозами, дозволять найближчим часом досягти економічних показників ефективності СЕ, властивих першому поколінню. Уточнена схема фотогене­рації носіїв заряду з донорного і акцепторного матеріалів. Представлені основні властивості СЕ на основі перовскіту, сенсибілізованих барвниками, і способи їхньої модифікації, спрямовані на підвищення ККД сонячних елементів.

            Огляд завершується коротким розглядом механізму провідності в органічних металах з акцентуванням уваги на зв'язку між ступенем їх окиснення і формуванням поляронів і біполяронів у полімерному ланцюзі спряження.

Посилання

Sims R.E.H. Renewable energy: a response to climate change. Solar Energy. 2004. 76(1-3): 9. https://doi.org/10.1016/S0038-092X(03)00101-4

Sen Z. Solar energy in progress and future research trends. Progress in Energy & Combustion Science. 2004. 30(4): 367. https://doi.org/10.1016/j.pecs.2004.02.004

Gremenok V.F., Tivanov M.S., Zalessky V.B. The solar cells based on semiconductor materials. (Minsk: Publishing Center of BSU, 2007). [in Russian].

Gremenok V.F. Thin film solar cells based on Cu(In, Ga)Se2. In: Proceedings of the VI International Youth Environmental Forum "ECOBALTICA'2006". (June 27-29, 2006, Saint-Petersburg, Russia). P. 24.

McNelis B. The Photovoltaic Businees: Manufactures and Markets. Series on Photoconversion of Solar Energy. 2001. 1: 713. https://doi.org/10.1142/9781848161504_0016

Chapin D.M., Fuller C.S., Pearson G.L. A New Silicon p-n junction photocell for converting solar radiation into electrical power. J. Appl. Phys. 1954. 25(5): 676. https://doi.org/10.1063/1.1721711

Ginley D.S., Cahen D. (Eds) Fundamentals of Materials for Energy and Environmental Sustainability. (Cambridge: Cambridge Univ. Press, 2012). https://doi.org/10.1017/CBO9780511718786

Green M.A. Third generation photovoltaics. (Berlin: Springer, 2003).

Marti A., Leque A. (Eds) Next generation photovoltaics. (Bristol: Institute of Physics Publ., 2004). https://doi.org/10.1201/9781420033861

McCann M.J., Catchpole K.R., Weber K.J., Blakers A.W. A review of thin-film crystalline silicon for solar cell applications. Part 1: Native substrates. Sol. Energy Mater. Sol. Cells. 2001. 68(2): 135. https://doi.org/10.1016/S0927-0248(00)00242-7

Aleshin A.N. Solar cells based on polymer and composite (organic-inorganic) materials. Innovation. 2012. 7(165): 96. [in Russian].

Chopra K.L., Das S.R. Thin film solar cells. (New York: Plenum Press, 1983). https://doi.org/10.1007/978-1-4899-0418-8

Reinhard P., Buecheler S., Tiwari A.N. Technological status of Cu(In, Ga)(Se,S)2-based photovoltaics. Sol. Energy Mater. Sol. Cells. 2013. 119: 287. https://doi.org/10.1016/j.solmat.2013.08.030

Chirilă A., Buecheler S., Pianezzi F., Bloesch P., Gretener C., Uhl A.R., Fella C., Kranz L., Perrenoud J., Seyrling S., Verma R., Nishiwaki S., Romanyuk Y.E., Bilger G., Tiwari A.N. Highly efficient Cu(In, Ga)Se2 solar cells grown on flexible polymer films. Nature Mater. 2011. 10(11): 857. https://doi.org/10.1038/nmat3122

Polizzotti A., Repins I.L., Noufi R., Wei S.-H., Mitzi D.B. The state and future prospects of kesterite photovoltaics. Energy Environ. Sci. 2013. 6(11): 3171. https://doi.org/10.1039/c3ee41781f

Dimroth F., Grave M., Beutel P., Fiedeler U., Karcher C., Tibbits T.N.D., Oliva E., Siefer G., Schachtner M., Wekkeli A., Bett A.W., Krause R., Piccin M., Blanc N., Drazek C., Guiot E., Ghyselen B., Salvetat T., Tauzin A., Signamarcheix T., Dobrich A., Hannappel T., Schwarzburg K. Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency. Prog. Photovolt. Res. Appl. 2014. 22(3): 277. https://doi.org/10.1002/pip.2475

Fahrenbruch A.L., Bube R.H. Fundamentals of solar cells: Photovoltaic solar energy conversion. (New York: Academic Press, 1983). https://doi.org/10.1016/B978-0-12-247680-8.50013-X

Andreev V.M., Grilikhes V.A., Rumyantsev V.D. Photovoltaic conversion of concentrated sunlight. (Chichester: John Wiley, 1997).

Shockley W., Queisse, H.J. Detailed balance limit of efficiency of p‐n junction solar cells. J. Appl. Phys. 1961. 32(3): 510. https://doi.org/10.1063/1.1736034

Yang M.M., Kim D.J., Alexe M. Flexo-photovoltaic effect. Science. 2018. 60(6391): 904. https://doi.org/10.1126/science.aan3256

Johnson R.C., Merrifield R.E. Effects of magnetic fields on the mutual annihilation of triplet excitons in anthracene crystals. Phys. Rev. B. 1970. 1(2): 896. https://doi.org/10.1103/PhysRevB.1.896

Lee J, Jadhav P., Reusswig P.D., Yost S.R., Thompson N.J., Congreve D.N., Hontz E., Van Voorhis T., Baldo M.A. Singlet exciton fission photovoltaics. Acc. Chem. Res. 2013. 46 (6): 1300. https://doi.org/10.1021/ar300288e

Wilson M.W.B., Rao A., Clark J., R.S.S. Kumar, D. Brida, G. Cerullo, R.H. Friend. Ultrafast dynamics of exciton fission in polycrystalline pentacene. J. American Chem. Soc. 2011. 133(31): 11830. https://doi.org/10.1021/ja201688h

Smith M.B., Michl J. Singlet Fission. Chem. Rev. 2010. 110(11): 6891. https://doi.org/10.1021/cr1002613

Alferov Zh.I., Andreev V.M., Rumyantsev V.D. Trends and prospects for the development of solar photovoltaics. Physics and technology of semiconductors. 2004. 38 (8): 937. [in Russian]. https://doi.org/10.1134/1.1787110

Ryvkin S.M. Photoelectric phenomena in semiconductors. (Moscow: Fizmatgiz, 1963).

Dzhafarov T.D. Photostimulated Atomic Processes in Semiconductors. (Moscow: Energoatomizdat, 1984).

Bauer T. Thermophotovoltaics: Basic Principles and Critical Aspects of System Design. (Berlin: Springer-Verlag, 2011). https://doi.org/10.1007/978-3-642-19965-3

Milichko V.A., Shalin A.S., Mukhin I.S., Kovrov A.E., Krasilin A.A., Vinogradov A.V., Belov P.A., Simovskiy K.R. Solnechnaya fotovol'taika: sovremennoye sostoyaniye i tendentsii razvitiya. Uspekhi fiz. Nauk. 2016. 186(8): 801. [in Russian]. https://doi.org/10.3367/UFNr.2016.02.037703

Yu G., Gao J., Hummelen J.C., Wudl F., Heeger A.J. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science. 1995. 270(5243): 1789. https://doi.org/10.1126/science.270.5243.1789

Deibel C., Dyakonov V. Polymer-fullerene bulk heterojunction solar cells. Rep. Prog. Phys. 2010. 73(9): 096401. https://doi.org/10.1088/0034-4885/73/9/096401

Wu C., Neuner III B., John J., Milder A., Zollars B., Savoy S., Shvets G. Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems. J. Opt. 2012. 14(2): 024005. https://doi.org/10.1088/2040-8978/14/2/024005

Lenert A., Bierman D.M., Nam Y., Chan W.R., Celanović I., Soljačić M., Wang E.N. A nanophotonic solar thermophotovoltaic device. Nature Nanotechnology. 2014. 9(2): 126. https://doi.org/10.1038/nnano.2013.286

Goetzberger A., Hebling C., Schock H.-W. Photovoltaic materials, history, status and outlook. Mater. Sci. Eng., R. 2003. 40(1): 1. https://doi.org/10.1016/S0927-796X(02)00092-X

Green M.A. Photovoltaics: technology overview. Energy Policy. 2000. 28(14): 989. https://doi.org/10.1016/S0301-4215(00)00086-0

Roedem B. Thin-film PV module review: Changing contribution of PV module technologies for meeting volume and product needs. Refo-cus. 2006. 7(4): 34. https://doi.org/10.1016/S1471-0846(06)70620-5

Kazmerski L.L. Photovoltaics: A review of cell and module technologies. Renewable and Sustainable Energy Reviews. 1997. 1(1,2): 71. https://doi.org/10.1016/S1364-0321(97)00002-6

Fonash C. Sovremennyye problemy poluprovodnikovoy fotoenergetiki. (Moskva: Mir, 1988). [In Russian].

Schock H.W. Thin film photovoltaics. Appl. Surf. Sci. 1996. 92: 606. https://doi.org/10.1016/0169-4332(95)00303-7

Koltun M.M. Optika i metrologiya solnechnykh elementov. (Moskva: Nauka,1984). [In Russian].

Zi S. Fizika poluprovodnikovykh priborov. 2 T. (Moskva: Mir, 1984). [In Russian].

Brandhorst H.M. Terrestrial solar cell calibration and measurement procedures. In: Proceedings of the Inter. Photovoltaic Solar Energy Conf. (26-29 May, 1977, Luxemburg). P. 745. https://doi.org/10.1007/978-94-009-9840-7_72

Gueymard C.A., Myers D., Emery K. Proposed reference irradiance spectra for solar energy systems testing. Solar Energy. 2002. 73(6): 443. https://doi.org/10.1016/S0038-092X(03)00005-7

Terrestrial Photovoltaic Measurement Procedures, Technical Memorandum 73702, NASA, Cleveland, Ohio, 1977.

Farenbrukh A., B'yub R. Solnechnyye elementy: teoriya i eksperiment. (Moskva: Energoatomizdat, 1987).

Gilot J., Wienk M.M., Janssen R.A.J. On the efficiency of polymer solar cells. Nat. Mater. 2007. 6(10): 704. https://doi.org/10.1038/nmat2017a

Li G., Shrotriya V., Huang J., Yao Y., Moriarty T., Emery K., Yang Y. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat. Mater. 2005. 4(11): 864. https://doi.org/10.1038/nmat1500

Kroon J. M., Wienk M. M., Verhees W. J. H., Hummelen J. C. Accurate efficiency determination and stability studies of conjugated polymer/fullerene solar cells. Thin Sol. Films. 2002. 403-404: 223. https://doi.org/10.1016/S0040-6090(01)01589-9

Shrotriya V., Li G., Yao Y., Moriarty T., Emery K., Yang Y. Accurate measurement and characterization of organic solar cells. Adv. Funct. Mater. 2006. 16(15): 2016. https://doi.org/10.1002/adfm.200600489

Cravino A., Schilinsky P., Brabec C.J. Characterization of organic solar cells: the importance of device layout. Adv. Funct. Mater. 2007. 17(18): 3906. https://doi.org/10.1002/adfm.200700295

Chiang C.K., Fincher C.R., Park Y.W., Heeger A.J., Shirakawa H., Louis E.J., Gau S.C., MacDiarmid A.G. Electrical Conductivity in Doped Polyacetylene. Phys. Rev. Lett. 1977. 39(17): 1098. https://doi.org/10.1103/PhysRevLett.39.1098

Shaheen S.E., Ginley D.S., Jabbour G.E. Organic-based photovoltaics: toward low-cost power generation. MRS Bull. 2005. 30(01): 10. https://doi.org/10.1557/mrs2005.2

Liang Y., Xu Z., Xia J., Tsai S.-T., Wu Y., Li G., Ray C., Yu L. For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Adv. Mater. 2010. 22(20) E135. https://doi.org/10.1002/adma.200903528

Park S.H., Roy A., Beaupre S., Cho S., Coates N., Moon J.S., Moses D., Leclerc M., Lee K., Heeger A.J. Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nature Photon. 2009. 3(5): 297. https://doi.org/10.1038/nphoton.2009.69

Koster L.J.A., Mihailetchi V.D., Blom P.W. Ultimate efficiency of polymer/fullerene bulk heterojunction solar cells. Appl. Phys. Lett. 2006. 88(9): 093511. https://doi.org/10.1063/1.2181635

Scharber M.C., Mühlbacher D., Koppe M., Denk P., Waldauf C., Heeger A.J., Brabec C.J. Design rules for donors in bulk-heterojunction solar cells-towards 10 % energy-conversion efficiency. Adv. Mater. 2006. 18(6): 789. https://doi.org/10.1002/adma.200501717

Yang G., Kampstra K.L., Abidian M.R. High performance conducting polymer nanofiber biosensors for detection of biomolecules. Adv. Mater. 2014. 26(29): 4954. https://doi.org/10.1002/adma.201400753

Hempel F., Law J.K.-Y., Nguyen T.C., Munief W., Lu X., Pachauri V., Susloparova A., Vu X.T., Ingebrandt S. PEDOT:PSS organic electrochemical transistor arrays for extracellular electrophysiological sensing of cardiac cells. Biosens. Bioelectron. 2017. 93: 132. https://doi.org/10.1016/j.bios.2016.09.047

Lee S.J., Kim H.P., Yusoff A.R.M., Jang J. Organic photovoltaic with PEDOT: PSS and V2O5 mixture as hole transport layer. Sol. Energy Mater. Sol. Cells. 2014. 120: 238. https://doi.org/10.1016/j.solmat.2013.09.009

Kim B.-J., Han S.-H., Park J.-S. Sheet resistance, transmittance, and chromatic property of CNTs coated with PEDOT:PSS films for transparent electrodes of touch screen panels. Thin Solid Films. 2014. 572: 68. https://doi.org/10.1016/j.tsf.2014.08.015

Ho K.-Y., Li C.-K., Syu H.-J., Lai Y., Lin C.-F., Wu Y.-R. Analysis of the PEDOT:PSS/Si nanowire hybrid solar cell with a tail state model. J. Appl. Phys. 2016. 120(21): 215501. https://doi.org/10.1063/1.4970827

Ryu K.S., Lee Y.-G., Hong Y.-S., Park Y.J., Wu X., Kim K.M., Kang M.G., Park N.-G., Chang S.H. Poly (ethylenedioxythiophene)(PEDOT) as polymer electrode in redox supercapacitor. Electrochim. Acta. 2004. 50(2, 3): 843. https://doi.org/10.1016/j.electacta.2004.02.055

Heeger A.J. Semiconducting and Metallic Polymers: The Fourth Generation of Polymeric Materials (Nobel Lecture). Angew. Chem. Int. Ed. 2001. 40(14): 2591. https://doi.org/10.1002/1521-3773(20010716)40:14<2591::AID-ANIE2591>3.0.CO;2-0

MacDiarmid A.G. "Synthetic Metals": A Novel Role for Organic Polymers (Nobel Lecture). Angew. Chem. Int. Ed. 2001. 40(14): 2581. https://doi.org/10.1002/1521-3773(20010716)40:14<2581::AID-ANIE2581>3.0.CO;2-2

Shirakawa H. The Discovery of Polyacetylene Film: The Dawning of an Era of Conducting Polymers (Nobel Lecture). Angew. Chem. Int. Ed. 2001. 40(14): 2574. https://doi.org/10.1002/1521-3773(20010716)40:14<2574::AID-ANIE2574>3.0.CO;2-N

Nordén B., Krutmeijer E. The nobel prize in chemistry. 2000: Advanced information.

dE Patent App. DE19,883,813,589. Jonas F., Heywang G., Schmidtberg W. Novel polythiophenes, process for their preparation, and their use. 1989.

Jonas F., Schrader L. Conductive modifications of polymers with polypyrroles and polythiophenes. Synth. Met. 1991. 41 (3): 831. https://doi.org/10.1016/0379-6779(91)91506-6

Heywang G., Jonas F. Poly(alkylenedioxythiophene)s - new, very stable conducting polymers. Adv. Mater. 1992. 4 (2): 116. https://doi.org/10.1002/adma.19920040213

Letheby H. On the production of a blue substance by the electrolysis of sulphate of aniline. J. Chem. Soc. 1862. 15 (0): 161. https://doi.org/10.1039/JS8621500161

Jozefowicz M., Yu L.T., Belorgey G., Buvet R. Conductivité Electronique et Propriétés Chimiques de Polyanilines Oligomères. J. Polym. Sci., Part C. Polym. Symposia. 1967. 16(5): 2943. https://doi.org/10.1002/polc.5070160548

Mamadou I., Yu L.-T., Buvet R. Compt. rend. l'Acad. Sci. (Paris) 1974. 279(23): 931.

Bolto B., McNeill R., Weiss D. Electronic Conduction in Polymers. III. Electronic Properties of Polypyrrole. Aust. J. Chem. 1963. 16(6): 1090. https://doi.org/10.1071/CH9631090

Dall'Olio A., Dascola G., Varacca V., Bocche V. Electron paramagnetic resonance and conductivity of an electrolytic oxypyrrole (pyrrole polymer) black. Compt. rend. l'Acad. Sci. 1968. C267: 433.

Diaz A.F., Kanazawa K.K., Gardini G.P. Electrochemical polimerization of pyrrole. J. Chem. Soc., Chem. Commun. 1979. 14: 635. https://doi.org/10.1039/c39790000635

Elschner A., Kirchmeyer S., Lövenich W., Merker U., Reuter K. PEDOT: Principles and Applications of an Intrinsically Conductive Polymer (Boca Raton: CRC Press, 2011). https://doi.org/10.1201/b10318

Natta G., Mazzanti G., Corradini P. Polimerizzazione stereospecifica dell'acetilene. Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. 1958. 25(8): 3.

Skotheim T.A., Reynolds J.R. Handbook of conducting polymers: conjugated polimers processing and aplications, Third Edition (Boca Raton: CRC Press, 2007).

Hatano M., Kambara S., Okamoto S. Paramagnetic and electric properties of polyacetylene. Journal of Polymer Science 1961. 51(156): S26. https://doi.org/10.1002/pol.1961.1205115623

Chiang C.K., Fincher C.R., Park Y.W., Heeger A.J., Shirakawa H., Louis E.J., Gau S.C., MacDiarmid A.G. Electrical conductivity in doped polyacetylene. Phys. Rev. Lett. 1977. 39(17): 1098. https://doi.org/10.1103/PhysRevLett.39.1098

Shirakawa H., Louis E.J., MacDiarmid A.G., Chiang C.K., Heeger A.J. Synthesis of Electrically Conducting Organic Polymers: Halogen Derivatives of Polyacetylene, (CH)x. J. Chem. Soc., Chem. Commun. 1977. 16: 578. https://doi.org/10.1039/c39770000578

Ito T., Shirakawa H., Ikeda S. Thermal cis-trans isomerization and decomposition of polyacetylene. J. Polym. Sci: Polym. Chem. Ed. 1975. 13: 1943. https://doi.org/10.1002/pol.1975.170130818

Naarmann H., Theophilou N. New process for the production of metal-like, stable polyacetylene. Synth. Met. 1987. 22 (1): 1. https://doi.org/10.1016/0379-6779(87)90564-9

Kovacic P., Jones M.B. Dehydro coupling of aromatic nuclei by catalyst-oxidant systems: poly(p-phenylene). Chem. Rev. 1987. 87(2): 357. https://doi.org/10.1021/cr00078a005

Kovacic P., Kyriakis A. Polymerization of benzene to p-polyphenyl. Tetrahedron Lett. 1962. 3(11): 467. https://doi.org/10.1016/S0040-4039(00)70494-1

Ivory D.M., Miller G.G., Sowa J.M., Shacklette L.W., Chance R.R., Baughman R.H. Highly conducting charge-transfer complexes of poly(p-phenylene). J. Chem. Phys. 1979. 71(3): 1506. https://doi.org/10.1063/1.438420

Nalwa H.S. Advanced Functional Molecules and Polymers. Volume 3: Electronic and Photonic Properties. (CRC Press, 2001).

Shacklette L.W., Elsenbaumer R.L., Chance R.R., Sowa J.M., Ivory D.M., Miller G.G., Baughman R.H. Electrochemical doping of poly-(p-phenylene) with application to organic batteries. J. Chem. Soc., Chem. Commun. 1982. 6: 361. https://doi.org/10.1039/c39820000361

Zhu L.M., Lei A.W., Cao Y.L., Ai X.P., Yang H.X. An all-organic rechargeable battery using bipolar polyparaphenylene as a redox-active cathode and anode. Chem. Commun. 2013. 49(6): 567. https://doi.org/10.1039/C2CC36622C

Grem G., Leditzky G., Ullrich B., Leising G. Realization of a blue-light-emitting device using poly(p-phenylene). Adv. Mater. 1992. 4(1): 36. https://doi.org/10.1002/adma.19920040107

Brédas J.L. Relationship between band gap and bond length alternation in organic conjugated polymers. J. Chem. Phys. 1985. 82(8): 3808. https://doi.org/10.1063/1.448868

Brédas J.L., Thémans B., Fripiat J.G., André J.M., Chance R.R. Highly conducting polyparaphenylene, polypyrrole, and polythiophene chains: An ab initio study of the geometry and electronic-structure modifications upon doping. Phys. Rev. B. 1984. 29(12): 6761. https://doi.org/10.1103/PhysRevB.29.6761

Ambrosch-Draxl C., Majewski J.A., Vogl P., Leising G. First-principles studies of the structural and optical properties of crystalline poly(para-phenylene). Phys. Rev. B. 1995. 51(15): 9668. https://doi.org/10.1103/PhysRevB.51.9668

Alves-Santos M., Dávila L.Y.A., Petrilli H.M., Capaz R.B., Caldas M.J. Application of standard DFT theory for nonbonded interactions in soft matter: Prototype study of poly-para-phenylene. J. Comput. Chem. 2005. 27(2): 217. https://doi.org/10.1002/jcc.20326

Shacklette L.W., Eckhardt H., Chance R.R., Miller G.G., Ivory D.M., Baughman R.H. Solid-state synthesis of highly conducting polyphenylene from crystalline oligomers. J. Chem. Phys. 1980. 73(8): 4098. https://doi.org/10.1063/1.440596

Armour M., Davies A.G., Upadhyay J., Wassermann A. Colored electrically conducting polymers from furan, pyrrole, and thiophene. J. Polym. Sci. Part A-1: Polym. Chem. 1967. 5(7): 1527. https://doi.org/10.1002/pol.1967.150050704

Tourillon G., Garnier F. New electrochemically generated organic conducting polymers. J. Electroanal. Chem. Interfac. Electrochem. 1982. 135(1): 173. https://doi.org/10.1016/0022-0728(82)90015-8

eP Patent App. EP19,890,106,236. Jonas F., Heywang G., Schmidtberg W., Heinze J., Dietrich M. Neue polythiophene, verfahren zu ihrer herstellung und ihre verwendung. 1989.

dE Patent App. DE19,883,813,589. Jonas F., Heywang G., Schmidtberg W. Novel polythiophenes, process for their preparation, and their use. 1989.

Groenendaal L., Jonas F., Freitag D., Pielartzik H., Reynolds J.R. Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future. Advanced Materials. 2000. 12 (7): 481. https://doi.org/10.1002/(SICI)1521-4095(200004)12:7<481::AID-ADMA481>3.3.CO;2-3

Dkhissi A., Beljonne D., Lazzaroni R. Atomic scale modeling of interfacial structure of PEDOT/PSS. Synth. Met. 2009. 159(5-6): 546. https://doi.org/10.1016/j.synthmet.2008.11.022

Winther-Jensen B., West K. Vapor-Phase Polymerization of 3,4-Ethylenedioxythiophene: A Route to highly conducting polymer surface layers. Macromolecules. 2004. 37(12): 4538. https://doi.org/10.1021/ma049864l

Bubnova O., Khan Z.U., Malti A., Braun S., Fahlman M., Berggren M., Crispin X. Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene). Nat. Mater. 2011. 10(6): 429. https://doi.org/10.1038/nmat3012

Xia Y., Sun K., Ouyang J. Solution-processed metallic conducting polymer films as transparent electrode of optoelectronic devices. Adv. Mater. 2012. 24(18): 2436. https://doi.org/10.1002/adma.201104795

Fabretto M.V., Evans D.R., Mueller M., Zuber K., Hojati-Talemi P., Short R.D., Wallace G.G., Murphy P.J. Polymeric material with metal-like conductivity for next generation organic electronic devices. Chem. Mater. 2012. 24(20): 3998. https://doi.org/10.1021/cm302899v

Kim N., Kang H., Lee J.-H., Kee S., Lee S.H., Lee K. Highly Conductive all-plastic electrodes fabricated using a novel chemically controlled transfer-printing method. Adv. Mater. 2015. 27(14): 2317. https://doi.org/10.1002/adma.201500078

Bubnova O., Khan Z.U., Wang H., Braun S., Evans D.R., Fabretto M., Hojati-Talemi P., Dagnelund D., Arlin J.-B., Geerts Y.H., Desbief S., Breiby D.W., Andreasen J.W., Lazzaroni R., Chen W.M., Zozoulenko I., Fahlman M., Murphy P.J., Berggren M., Crispin X. Semi-metallic polymers. Nat. Mater. 2014. 13(2): 190. https://doi.org/10.1038/nmat3824

Shi H., Liu C., Jiang Q., Xu J. Effective approaches to improve the electrical conductivity of PEDOT:PSS: A Review. Adv. Electronic Mater. 2015. 1(4): 1500017. https://doi.org/10.1002/aelm.201500017

Ha Y.-H., Nikolov N., Pollack S.K., Mastrangelo J., Martin B.D., Shashidhar R. Towards a transparent, highly conductive poly(3,4-ethylenedioxythiophene). Adv. Funct. Mater. 2004. 14(6): 615. https://doi.org/10.1002/adfm.200305059

Levermore P., Chen L., Wang X., Das R., Bradley D. Fabrication of highly conductive poly(3,4-ethylenedioxythiophene) films by vapor phase polymerization and their application in efficient organic light-emitting diodes. Advanced Materials. 2007. 19(17): 2379. https://doi.org/10.1002/adma.200700614

Badre C., Marquant L., Alsayed A.M., Hough L.A. Highly conductive poly(3,4-ethylenedioxythiophene):poly (styrenesulfonate) films using 1-ethyl-3-methylimidazolium tetracyanoborate ionic liquid. Adv. Funct. Mater. 2012. 22(13): 2723. https://doi.org/10.1002/adfm.201200225

Zhu Z., Liu C., Xu J., Jiang Q., Shi H., Liu E. Improving the electrical conductivity of PEDOT:PSS films by binary secondary doping. Electronic Mater. Lett. 2016. 12(1): 54. https://doi.org/10.1007/s13391-015-5272-x

Wu F., Li P., Sun K., Zhou Y., Chen W., Fu J., Li M., Lu S., Wei D., Tang X., Zang Z., Sun L., Liu X., Ouyang J. Conductivity enhancement of PEDOT:PSS via addition of chloroplatinic acid and its mechanism. Adv. Electronic Mater. 2017. 3(7): 1700047. https://doi.org/10.1002/aelm.201700047

Dkhissi A., Louwet F., Groenendaal L., Beljonne D., Lazzaroni R., Brédas J. Theoretical investigation of the nature of the ground state in the low-bandgap conjugated polymer, poly (3, 4-ethylenedioxythiophene). Chem. Phys. Lett. 2002. 359(5-6): 466. https://doi.org/10.1016/S0009-2614(02)00651-6

Dkhissi A., Beljonne D., Lazzaroni R., Louwet F., Groenendaal B. Modeling of the solid-state packing of charged chains (PEDOT) in the presence of the counterions (TSA) and the solvent (DEG). Theor.Chem. Acc. 2008. 119(4): 305. https://doi.org/10.1007/s00214-007-0384-5

Lenz A., Kariis H., Pohl A., Persson P., Ojamae L. The electronic structure and reflectivity of PEDOT:PSS from density functional theory. Chem. Phys. 2011. 384(1-3): 44. https://doi.org/10.1016/j.chemphys.2011.05.003

Kim E.-G., Brédas J.-L. Electronic evolution of poly(3,4-ethylenedioxythiophene) (PEDOT): from the isolated chain to the pristine and heavily doped crystals. J. Am. Chem. Soc. 2008. 130(50): 16880. https://doi.org/10.1021/ja806389b

Car R., Parrinello M. Unified Approach for Molecular Dynamics and Density-Functional Theory. Phys. Rev. Lett. 1985. 55(22): 2471. https://doi.org/10.1103/PhysRevLett.55.2471

Galli G., Parrinello M. Ab-initio molecular dynamics: principles and practical implementation. In: Computer Simulation in Materials Science. (Dordrecht: Kluwer Academic Publishers, 1991). https://doi.org/10.1007/978-94-011-3546-7_13

Burkhardt S.E., Rodriguez-Calero G.G., Lowe M.A., Kiya Y., Hennig R.G., Abruna H.D. Theoretical and electrochemical analysis of poly(3,4-alkylenedioxythiophenes): electron-donating effects and onset of p-doped conductivity. J. Phys. Chem. C. 2010. 114(39): 16776. https://doi.org/10.1021/jp106082f

Poater J., Casanovas J., Solá M., Alemán C. Examining the planarity of poly(3,4-ethylenedioxythiophene): consideration of self-rigidification, electronic, and geometric effects. J. Phys. Chem. A. 2010. 114(2): 1023. https://doi.org/10.1021/jp908764s

Wijsboom Y.H., Sheynin Y., Patra A., Zamoshchik N., Vardimon R., Leitus G., Bendikov M. Tuning of electronic properties and rigidity in PEDOT analogs. J. Mater. Chem. 2011. 21(5): 1368. https://doi.org/10.1039/C0JM02679D

Franco-Gonzalez J.F., Zozoulenko I.V. Molecular dynamics study of morphology of doped PEDOT: from solution to dry phase. J. Phys. Chem. B. 2017. 121(16): 4299. https://doi.org/10.1021/acs.jpcb.7b01510

Palumbiny C.M., Liu F., Russell T.P., Hexemer A., Wang C., Müller-Buschbaum P. The crystallization of PEDOT:PSS polymeric electrodes probed in situ during printing. Adv. Mater. 2015. 27(22): 3391. https://doi.org/10.1002/adma.201500315

Brédas J., Heeger A. Influence of donor and acceptor substituents on the electronic characteristics of poly(paraphenylene vinylene) and poly(paraphenylene). Chem. Phys. Lett. 1994. 217(5-6): 507. https://doi.org/10.1016/0009-2614(93)E1421-C

Shalabi A., Aal S.A., Assem M. PEDOTs-PCnBMs polymer-fullerene BHJ solar cells: Quantum mechanical calculations of photovoltaic and photophysical properties. Nano Energy. 2012. 1(4): 608. https://doi.org/10.1016/j.nanoen.2012.04.002

Chang Y., Lee K., Kiebooms R., Aleshin A., Heeger A. Reflectance of conducting poly(3,4-ethylenedioxythiophene). Synth. Met. 1999. 105(3): 203. https://doi.org/10.1016/S0379-6779(99)00095-8

Dkhissi A., Beljonne D., Lazzaroni R., Louwet F., Groenendaal L., Brédas J.L. Density functional theory and Hartree-Fock studies of the geometric and electronic structure of neutral and doped ethylenedioxythiophene (EDOT) oligomers. Int. J. Quantum Chem. 2003. 91(3): 517. https://doi.org/10.1002/qua.10446

Alemán C., Armelin E., Iribarren J.I., Liesa F., Laso M., Casanovas J. Structural and electronic properties of 3, 4-ethylenedioxythiophene, 3, 4-ethylenedisulfanylfurane and thiophene oligomers: A theoretical investigation. Synth. Met. 2005. 149(2-3): 151. https://doi.org/10.1016/j.synthmet.2004.12.012

Patra A., Wijsboom Y.H., Zade S.S., Li M., Sheynin Y., Leitus G., Bendikov M. Poly (3, 4-ethylenedioxyselenophene). J. Am. Chem. Soc. 2008. 130(21): 6734. https://doi.org/10.1021/ja8018675

Muñoz W.A., Singh S.K., Franco-Gonzalez J.F., Linares M., Crispin X., Zozoulenko I.V. Insulator to semimetallic transition in conducting polymers. Phys. Rev. B. 2016. 94(20): 205202. https://doi.org/10.1103/PhysRevB.94.205202

Eur. Patent 440957. Bayer A.G. New polythiophene dispersions: their preparation and their use. 1991.

Kirchmeyer S., Reuter K. Scientific importance, properties and growing applications of poly(3,4-ethylenedioxythiophene). J. Mater. Chem. 2005. 15(21): 2077. https://doi.org/10.1039/b417803n

Yin H.-E., Huang F.-H., Chin W.-Y. Hydrophobic and flexible conductive films consisting of PEDOT:PSS-PBA/fluorine-modified silica and their performance in weather stability. J. Mater. Chem. 2012. 22(28): 14042. https://doi.org/10.1039/c2jm31352a

Heuer R.W., Wehermann R., Kirchmeyer S. Electrochromic window based on conducting poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate). Adv. Funct. Mater. 2002. 12(2): 89. https://doi.org/10.1002/1616-3028(20020201)12:2<89::AID-ADFM89>3.0.CO;2-1

Aleshin A.N., Williams S.R., Heeger A.J. Transport properties of poly(3,4-ethylenedioxythiophene)/ poly(styrenesulfonate). Synth. Met. 1998. 94(2) 173. https://doi.org/10.1016/S0379-6779(97)04167-2

Jonas F., Krafft W., Muys B. Poly(3, 4-ethylenedioxythiophene): Conductive coatings, technical applications and properties. Macromol. Symp. 1995. 100(1): 169. https://doi.org/10.1002/masy.19951000128

De Paoli M.-A., Casalbore-Miceli G., Girotto E.M., Gazotti W.A. All polymeric solid state electrochromic devices. Electrochim. Acta. 1999. 44(18): 2983. https://doi.org/10.1016/S0013-4686(99)00013-4

Cao Y., Yu G., Zhang C., Menon R., Heeger A.J. Polymer light-emitting diodes with polyethylene dioxythiophene-polystyrene sulfonate as the transparent anode. Synth. Met. 1997. 87(2): 171. https://doi.org/10.1016/S0379-6779(97)03823-X

Ouyang J., Chu C.-W., Chen F.-C., Xu Q., Yang Y. High-conductivity poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) film and its application in polymer optoelectronic devices. Adv. Funct. Mater. 2005. 15(2): 203. https://doi.org/10.1002/adfm.200400016

Yoshika Y., Jabbour G.E. Desktop inkjet printer as a tool to print conducting polymers. Synth. Met. 2006. 156(11-13): 779. https://doi.org/10.1016/j.synthmet.2006.03.013

Fan B., Mei X., Ouyang J. Significant conductivity enhancement of conductive poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) films by adding anionic surfactants into polymer solution. Macromolecules. 2008. 41(16): 5971. https://doi.org/10.1021/ma8012459

Dimitriev O.P., Piryatinski Y.P., Pud A.A. Evidence of the controlled interaction between PEDOT and PSS in the PEDOT:PSS complex via concentration changes of the complex solution. J. Phys. Chem. B. 2011. 115(6): 1357. https://doi.org/10.1021/jp110545t

Casado J., Hernandez V., Ramirez F.J., Lopez Navarrete J.T. Ab initio HF and DFT calculations of geometric structures and vibrational spectra of electrically conducting doped oligothiophenes. J. Mol. Struct.: THEOCHEM. 1999. 463(1-2): 211. https://doi.org/10.1016/S0166-1280(98)00416-3

Zade S.S., Bendikov M. Theoretical study of long oligothiophene dications: bipolaron vs polaron pair vs triplet state. J. Phys. Chem. B. 2006. 110(32): 15839. https://doi.org/10.1021/jp062748v

Zade S.S., Bendikov M. Twisting of conjugated oligomers and polymers: case study of oligo- and polythiophene. Chem.-Eur. J. 2007. 13(13): 3688. https://doi.org/10.1002/chem.200600819

Alemán C., Casanovas J. Theoretical investigation of the 3,4-ethylenedioxythiophene dimer and unsubstituted heterocyclic derivatives. J. Phys. Chem. A. 2004. 108(8): 1440. https://doi.org/10.1021/jp0369600

Agalya G., Lv C., Wang X., Koyama M., Kubo M., Miyamoto A. Theoretical study on the electronic and molecular properties of ground and excited states of ethylenedioxythiophene and styrenesulphonic acid. Appl. Surf. Sci. 2005. 244(1-4): 195. https://doi.org/10.1016/j.apsusc.2004.09.139

Brédas J.L., Wudl F., Heeger A.J. Polarons and bipolarons in doped polythiophene: A theoretical investigation. Solid State Commun. 1987. 63(7): 577. https://doi.org/10.1016/0038-1098(87)90856-8

Gangopadhyay R., Das B., Molla M.R. How does PEDOT combine with PSS? Insights from structural studies. RSC Adv. 2014. 4(83): 43912. https://doi.org/10.1039/C4RA08666J

Rumbau V., Pomposo J.A., Eleta A., Rodrigues J., Grande H., Mecerreyes D., Ochoteco E. First enzymatic synthesis of water-soluble conducting poly(3,4-ethylenedioxythiophene). Biomacromolecules. 2007. 8(2): 315. https://doi.org/10.1021/bm060949z

Ouyang J. Solution-processed PEDOT:PSS films with conductivities as Indium Tin Oxide through a treatment with mild and weak organic acids. ACS Appl. Mater. Interfaces. 2013. 5(24): 13082. https://doi.org/10.1021/am404113n

Runge E., Gross E.K.U. Density-functional theory for time-dependent systems. Phys. Rev. Lett. 1984. 52(12): 997. https://doi.org/10.1103/PhysRevLett.52.997

Nagarajan S., Kumar J., Bruno F.F., Samuelson L.A., Nagarajan R. Biocatalytically synthesized poly(3,4-ethylenedioxythiophene). Macromolecules. 2008. 41(9): 3049. https://doi.org/10.1021/ma0717845

Gao F., Ren S., Wang J. The renaissance of hybrid solar cells: progresses, challenges, and perspectives. Energy Environ. Sci. 2013. 6(7): 2020. https://doi.org/10.1039/c3ee23666h

Bagher A.M. Comparison of organic solar cells and inorganic solar cells. Int. J. Renewable and Sustainable Energy. 2014. 3(3): 53. https://doi.org/10.11648/j.ijrse.20140303.12

Vivo P. Doctoral (Science in Technology) Thesis. (Tampere, 2010).

Scharber M.C., Sariciftci N.S. Efficiency of bulk-heterojunction organic solar cells. Prog. Polym. Sci. 2013. 38(12): 1929. https://doi.org/10.1016/j.progpolymsci.2013.05.001

Liu X., Chen H., Tan S. Overview of high-efficiency organic photovoltaic materials and devices. Renewable and Sustainable Energy Rev. 2015. 52(C): 1527. https://doi.org/10.1016/j.rser.2015.08.032

Kim M.-S. Ph.D (Materials Science and Engineering) Thesis. (Michigan, 2009).

Wonneberger H. Doctoral. (Chem.) Thesis. (Mainz, 2012). [in German].

Wright M., Uddin A. Organic-inorganic hybrid solar cells: A comparative review. Sol. Energy Mater. Sol. Cells. 2012. 107: 87. https://doi.org/10.1016/j.solmat.2012.07.006

Gruber M., Stickler B.A., Trimmel G., Schürrer F., Zojer K. Impact of energy alignment and morphology on the efficiency in inorganic-organic hybrid solar cells. Org. Electron. 2010. 11(12): 1999. https://doi.org/10.1016/j.orgel.2010.08.015

X. Fan, M. Zhang, X. Wang, F. Yang, X. Meng, Recent progress in organic-inorganic hybrid solar cells, J. Mater. Chem. A, 2013, 1, 8694. https://doi.org/10.1039/c3ta11200d

Mehmood U., Rahman S., Harrabi K., Hussein I.A., Reddy B.V.S. Recent Advances in Dye Sensitized Solar Cells. Advances in Materials Science and Engineering. 2014. 2014: 1. https://doi.org/10.1155/2014/974782

Cao Y., Bai Y., Yu Q., Cheng Y., Liu S., Shi D., Gao F., Wang P. Dye-sensitized solar cells with a high absorptivity ruthenium sensitizer featuring a 2-(hexylthio) thiophene conjugated bipyridine. J. Phys. Chem. C. 2009. 113(15): 6290. https://doi.org/10.1021/jp9006872

Yella A., Lee H.W., Tsao H.N., Yi C., Chandira A.K., Nazeeruddin M.K., Dia E.W., Yeh C.Y., Zakeeruddi S.M., Grätzel M. Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science. 2011. 334(6056): 629. https://doi.org/10.1126/science.1209688

Mikroyannidis J.A., Stylianakis M.M., Suresh P., Roy M.S., Sharma G.D. Synthesis of perylene monoimide derivative and its use for quasi-solid-state dyesensitized solar cells based on bare and modified nano-crystalline ZnO photoelectrodes. Energy Environ. Sci. 2009. 2(12): 1293. https://doi.org/10.1039/b915235k

Wu J., Lan Z., Lin J., Huang M., Huang Y., Fan L., Luo G. Electrolytes in Dye-Sensitized Solar Cells. Chem. Rev. 2015. 115(5): 2136. https://doi.org/10.1021/cr400675m

Li B., Wang L., Kang B., Wang P., Qiu Y. Review of recent progress in solidstate dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells. 2006. 90(5): 549. https://doi.org/10.1016/j.solmat.2005.04.039

Song T.-B., Chen Q., Zhou H., Jiang C., Wang H.-H., Yang (Michael) Y., Liu Y., You J., Yang Y. Perovskite solar cells: film formation and properties. J. Mater. Chem. A. 2015. 3(17): 9032. https://doi.org/10.1039/C4TA05246C

Kojima A., Teshima K., Shirai Y., Miyasaka T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009. 131(17): 6050. https://doi.org/10.1021/ja809598r

Lin Q., Armin A., Nagiri R.C.R., Burn P.L., Meredith P. Electro-optics of perovskite solar cells. Nature Photonics. 2015. 9(2): 106. https://doi.org/10.1038/nphoton.2014.284

Boix P.P., Nonomura K., Mathews N., Mhaisalkar S.G. Current progress and future perspectives for organic/inorganic perovskite solar cells. Materials Today. 2014. 17(1): 16. https://doi.org/10.1016/j.mattod.2013.12.002

Snaith H.J. Perovskites: The emergence of a new era for low-cost, high-efficiency solar cells. J. Phys. Chem. Lett. 2013. 4(21): 3623. https://doi.org/10.1021/jz4020162

Liu Y., Hong Z., Chen Q., Chang W., Zhou H., Song T.-B., Young E., Yang (Michael) Y., You J., Li G., Yang Y. Integrated perovskite/bulk-heterojunction toward efficient solar cells. Nano Lett. 2014. 15(1): 662. https://doi.org/10.1021/nl504168q

Im J.-H., Lee C.-R., Lee J.-W., Parka S.-W., Park N.-G. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale. 2011. 3(10): 4088. https://doi.org/10.1039/c1nr10867k

Green M.A., Ho-Baillie A., Snaith H.J. The emergence of perovskite solar cells. Nature Photonics. 2014. 8(7): 506. https://doi.org/10.1038/nphoton.2014.134

Wang B., Xiao X., Chen T. Perovskite photovoltaics: a high-efficiency newcomer to the solar cell family. Nanoscale. 2014. 6(21): 12287. https://doi.org/10.1039/C4NR04144E

Baikie T.J. Fang Y., Kadro J.M., Schreyer M., Wei F., Mhaisalkar S.G., Graetzel M., White T.J. Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. J. Mat. Chem. A. 2013. 1(18): 5628. https://doi.org/10.1039/c3ta10518k

Sum T.C., Mathews N. Advancements in perovskite solar cells: photophysics behind the photovoltaics. Energy Environ. Sci. 2014. 7(8): 2518. https://doi.org/10.1039/C4EE00673A

Umebayashi T., Asai K., Kondo T., Nakao A. Electronic structures of lead iodide based low-dimensional crystals. Phys. Rev. B. 2003. 67(15): 155405. https://doi.org/10.1103/PhysRevB.67.155405

Mosconi E., Amat A., Nazeeruddin M.K., Grätzel M., De Angelis F. First-principles modeling of mixed halide organometal perovskites for photovoltaic applications. J. Phys. Chem. C. 2013. 117(27): 13902. https://doi.org/10.1021/jp4048659

Umari P., Mosconi E., De Angelis F. Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 perovskites for solar cell applications. Sci. Rep. 2014. 4(1): 4467. https://doi.org/10.1038/srep04467

Even J., Pedesseau L., Jancu J.-M., Katan C. Importance of spin-orbit coupling in hybrid organic/inorganic perovskites for photovoltaic applications. J. Phys. Chem. Lett. 2013. 4(17): 2999. https://doi.org/10.1021/jz401532q

Noh J.H., Im S.H., Heo J.H., Mandal T.N., Seok S.I. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett. 2013. 13(4): 1764. https://doi.org/10.1021/nl400349b

Liu M., Johnston M.B., Snaith H.J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature. 2013. 501(7467): 395. https://doi.org/10.1038/nature12509

Jung H.S., Park N.-G. Perovskite Solar Cells: From Materials to Devices. Small. 2014. 11(1): 10. https://doi.org/10.1002/smll.201402767

Di Giacomo F., Zardetto V., D'Epifanio A., Pescetelli S., Matteocci F., Razza S., Di Carlo A., Licoccia S., Kessels W.M.M., Creatore M., Brown T.M. Flexible perovskite photovoltaic modules and solar cells based on atomic layer deposited compact layers and UV-irradiated TiO2 scaffolds on plastic substrates. Adv. Energy Mater. 2015. 5(8): 1401808. https://doi.org/10.1002/aenm.201401808

You J., Hong Z., Yang Y.M., Chen Q., Cai M., Song T.-B., Chen C.C., Lu S., Liu Y., Zhou H., Yang Y. Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. ACS Nano. 2014. 8(2): 1674. https://doi.org/10.1021/nn406020d

Kim B.J., Kim D.H., Lee Y.-Y., Shin H.-W., Han G.S., Hong J.S., Mahmood K., Ahn T.K., Joo Y. C., Hong K.S., Park N.-G., Lee S., Jung H.S. Highly efficient and bending durable perovskite solar cells: toward a wearable power source. Energy Envirov Sci. 2015. 8(3): 916. https://doi.org/10.1039/C4EE02441A

Green M.A., Ho-Baillie A., Snaith H.J. The emergence of perovskite solar cells. Nature Photonics. 2014. 8(7): 506. https://doi.org/10.1038/nphoton.2014.134

Burschka J., Pellet N., Moon S.-J., Humphry-Baker R., Gao P., Nazeeruddin M.K., Grätzel M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature. 2013. 499(7458): 316. https://doi.org/10.1038/nature12340

Jeon N.J., Noh J.H., Kim Y.C., Yang W.S., Ryu S., Seok S.I. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nature Materials. 2014. 13(9): 897. https://doi.org/10.1038/nmat4014

Malinkiewicz O., Yella A., Lee Y.H., Espallargas G.M., Graetzel M., Nazeeruddin M.K., Bolink H.J. Perovskite solar cells employing organic charge-transport layers. Nature Photon. 2013. 8(2): 128. https://doi.org/10.1038/nphoton.2013.341

Ponseca C.S., Savenije T.J., Abdellah M., Zheng K., Yartsev A., Pascher T., Harlang T., Chabera P., Pullerits T., Stepanov A., Wolf J.P., Sundström V. Organometal halide perovskite solar cell materials rationalized: ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination. J. Am. Chem. Soc. 2014. 136(14): 5189. https://doi.org/10.1021/ja412583t

Stoumpos C.C., Malliakas C.D., Kanatzidis M.G. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inor. Chem. 2013. 52(15): 9019. https://doi.org/10.1021/ic401215x

Giorgi G., Fujisawa J.-I., Segawa H., Yamashita K. Small photocarrier effective masses featuring ambipolar transport in methylammonium lead iodide perovskite: A density functional analysis. J. Phys. Chem. Lett. 2013. 4(24): 4213. https://doi.org/10.1021/jz4023865

Ogomi Y., Kukihara K., Qing S., Toyoda T., Yoshino K., Pandey S., Momose H., Hayase S. Control of charge dynamics through a charge-separation interface for all-solid perovskite-sensitized solar cells. Chem. Phys. Chem. 2014. 15(6): 1062. https://doi.org/10.1002/cphc.201301153

Stranks S.D., Eperon G.E., Grancini G., Menelaou C., Alcocer M.J.P., Leijtens T., Herz L.M., Petrozza A., Snaith, H.J. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science. 2013. 342(6156): 341. https://doi.org/10.1126/science.1243982

Wehrenfennig C., Eperon G.E., Johnston M.B., Snaith H.J., Herz L.M. High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater. 2013. 26(10): 1584. https://doi.org/10.1002/adma.201305172

Snaith H.J., Abate A., Ball J.M., Eperon G.E., Leijtens T., Noel N.K., Stranks S.D., Wang J.T., Wojciechowski K., Zhang W. Anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 2014. 5(9): 1511. https://doi.org/10.1021/jz500113x

Kim H.-S., Park N.-G. Parameters affecting I-V hysteresis of CH3NH3PbI3 perovskite solar cells: effects of perovskite crystal size and mesoporous TiO2 layer. J. Phys. Chem. Lett. 2014. 5(17): 2927. https://doi.org/10.1021/jz501392m

Nie W., Tsai H., Asadpour R., Blancon J.-C., Neukirch A.J., Gupta G., Crochet J.J., Chhowalla M., Tretiak S., Alam M.A., Wang H.-L., Mohite A.D. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science. 2015. 347(6221): 522. https://doi.org/10.1126/science.aaa0472

Dharani S., Mulmudi H.K., Yantara N., Trang P.T., Park N.G., Graetzel M., Mhaisalkar S., Mathews N., Boix P.P. High efficiency electrospun TiO2 nanofiber based hybrid organic-inorganic perovskite solar cell. Nanoscale. 2014. 6(3): 1675. https://doi.org/10.1039/C3NR04857H

Diao F., Liang W., Tian F., Wang Y., Vivo P., Efimov A., Lemmetyinen H. Preferential Attachments of Organic Dyes onto {101} Facets of TiO2 Nanoparticles. J. Phys. Chem. C. 2015. 119(16): 8960. https://doi.org/10.1021/acs.jpcc.5b01369

Lellig P., Niedermeier M.A., Rawolle M.A., Meister M., Laquai F., Müller-Buschbaum P., Gutmann J.S. Comparative study of conventional and hybrid blocking layers for solid-state dye-sensitized solar cells. Phys. Chem. Chem. Phys. 2012. 14(5): 1607. https://doi.org/10.1039/C2CP23026G

Matteocci F., Mincuzzi G., Giordano F., Capasso A., Artuso E., Barolo C., Viscardi G., Brown T.M., Reale A., Di Carlo A. Blocking layer optimisation of poly(3-hexylthiopene) based solid state dye sensitized solar cells. Organic Electronics. 2013. 14(7): 1882. https://doi.org/10.1016/j.orgel.2013.03.037

Wang D.H., Morin P., Lee C., Ko Ko Kyaw A., Leclerc M., Heeger A.J. Effect of processing additive on morphology and charge extraction in bulkheterojunction solar cells. J. Mater. Chem. A. 2014. 2(36): 15052. https://doi.org/10.1039/C4TA03091E

Roberson L.B., Poggi M.A., Kowalik J., Smestad G.P., Bottomley L.A., Tolbert L.M. Correlation of morphology and device performance in inorganic-organic TiO2-polythiophene hybrid solid-state solar cells. Coord. Chem. Rev. 2004. 248(13-14): 1491. https://doi.org/10.1016/j.ccr.2004.02.013

Lee C.-K., Pao C.-W., Chen C.-W. Correlation of nanoscale organizations of polymer and nanocrystals in polymer/inorganic nanocrystal bulk heterojunction hybrid solar cells: insights from multiscale molecular simulations. Energy Environ. Sci. 2013. 6(1): 307. https://doi.org/10.1039/C2EE23372J

Scharber M.C., Mühlbacher D., Koppe M., Denk P., Waldauf C., Heeger A.J., Brabec C.J. Design rules for donors in bulk-heterojunction solar cells-towards 10 % energy-conversion efficiency. Adv. Mater. 2006. 18(6): 789. https://doi.org/10.1002/adma.200501717

Xiang H., Wei S.-H., Gong X. Identifying optimal inorganic nanomaterials for hybrid solar cells. J. Phys. Chem. C. 2009. 113(43): 18968. https://doi.org/10.1021/jp907942p

Timonov A.M., Vasil'yeva S.V. Elektronnaya provodimost' polimernykh soyedineniy. Sorosovskiy obrazovatel'nyy zhurnal. 2000. 3: 33. [in Russian].

Andreyeva O.A., Burkova L.A. Issledovaniye mekhanizma khimicheskogo dedopirovaniya provodyashchego polipirrola metodom EPR-spektroskopii. Fizika tverdogo tela. 2011. 53(9): 1826. [in Russian].

Chitte H.K., Bhat N.V., Walunj V.E., Shinde G.N. Synthesis of polypyrrole using ferric chloride (FeCl3) as oxidant together with some dopants for use in gas sensors. J. sensor technology. 2011. 1(2): 47. https://doi.org/10.4236/jst.2011.12007

Heeger A.J. Charge transfer in polymeric systems. Striving toward intrinsic properties. Faraday Discus. Chem. Soc. 1989. 88: 203. https://doi.org/10.1039/dc9898800203

Odzhayev V.B., Popok V.N., Azarko I.I. Fizika elektroprovodyashchikh polimerov. (Minsk: Belgosuniversitet, 2000). [in Russian].

Tager A.A. Fiziko-khimiya polimerov. (Moskva: Khimiya, 1968). [in Russian].

Hassan S.M., Baker A.Gh., Jafaar H.I. AC electrical conductivity for po-lyaniline prepared in different acidic medium. Int. j. basic appl. Sci. 2012. 1(2): 352. https://doi.org/10.17142/ijbas-2012.1.2.22

Hendi A.A. AC Conductivity and dielectric measurements of bulk tetracy-anoquinoidimethane. Australian j. basic appl. Sci. 2011. 5(7): 380.

Hill R.M. Variable-range hopping. Physica Status Solidi A. 1976. 34(2): 601. https://doi.org/10.1002/pssa.2210340223

Olivier G., Mostefa M. Notes on the hopping conduction in granular metals. J. Physics C: Solid State Phys. 1984. 17(32): 5729. https://doi.org/10.1088/0022-3719/17/32/008

Joung D., Khondaker S. I. Efros-Shklovskii variable-range hopping in reduced graphene oxide sheets of varying carbon sp2 fraction. Phys. Rev. B. 201. 286 (23): 235423.

Taher Y. B., Oueslati A., Maaloul N. K., Khirouni K., Gargouri M. Conductivity study and correlated barrier hopping (CBH) conduction mechanism in diphosphate compound. Applied Physics A. 2015. 120(4): 1537. https://doi.org/10.1007/s00339-015-9353-3

Mott N., Devis E. Elektronnyye protsessy v nekristallicheskikh veshchestvakh. T. 1. (Moskva: Mir, 1982). [in Russian].

Likharev K. K. Single-electron devices and their applications. Proceedings of the IEEE. 1999. 87(4): 606. https://doi.org/10.1109/5.752518

Xie H., Sheng P. Fluctuation-induced tunneling conduction through nanoconstrictions. Phys. Rev. B. 2009. 79(16): 165419. https://doi.org/10.1103/PhysRevB.79.165419

Salkola M.I, Bishop A.R, Trugman S.A, Mustre de Leon J. Correlation-function analysis of nonlinear and nonadiabatic systems: Polaron tunnelingю Phys. Rev. B: Condensed matter. 199. 51(14):8878. https://doi.org/10.1103/PhysRevB.51.8878

Trixler F. Quantum Tunnelling to the Origin and Evolution of Life. Curr Org Chem. 2013 17(16): 1758. https://doi.org/10.2174/13852728113179990083

Karmakar S., Behera D. Non-overlapping small polaron tunneling conduction coupled dielectric relaxation in weak ferromagnetic NiAl2O4. J. Phys. Condens Matter. 2019. 31(24): 245701. https://doi.org/10.1088/1361-648X/ab03f0

Saville P. Polypyrrole Formation and use. Defence R&D Canada - Atlantic, Technical memorandum DRDC Atlantic TM 2005-004 January 2005.

Gu H., Huang Y., Zhang X., Wang Q., Zhu J., Shao L., Haldolaarachchige N., Young D.P., Wei S., Guo Z. Magnetoresistive polianiline-magnetite nanocomposites with negative dielectrical properties. Polymer. 2012. 53(3): 801. https://doi.org/10.1016/j.polymer.2011.12.033

Chougule M.A., Pawar S.G., Godse P.R., Mulik R.N., Sen S., Patil V.B. Synthesis and characterization of polypyrrole (PPy) thin films. Soft nanoscience letters. 2011. 1(1): 6. https://doi.org/10.4236/snl.2011.11002

Fattoum A., Othman Z.B., Arous M. DC AC conductivity of polyaniline/poly(methyl methacrylathe) blends below the percolation threshold. Materials chem. Phys. 2012. 135(1): 117. https://doi.org/10.1016/j.matchemphys.2012.04.033

Bohli N., Gmati F., Mohamed A.B., Vigneras V., Mianc J.-L. Conductivity mechanism of polyaniline organic films: the effects of solvent type and casting temperature. J. Phys. D: Appl. Phys. 2009. 42(20): 205404. https://doi.org/10.1088/0022-3727/42/20/205404

Bishop A.R., Campbell D.K., Fesser K. Polyacetylene and relativistic field theory models. Mol. Cryst. Liq. Cryst. 1981. 77(1-4): 253. https://doi.org/10.1080/00268948108075245

Brazovskii S.A., Kirova N.N. Excitons, polarons and bipolarons in conducting polymers. JETP Lett. 1981. 33(1): 4.

Bredas J.L., Chance R.R., Silbey R. Comparative theoretical study of the doping of conjugated polymers: polarons in polyacetylene and polyparaphenylene. Phys. Rev. B: Condens. Matter. 1982. 26(10): 5843. https://doi.org/10.1103/PhysRevB.26.5843

Su W.P., Schrieffer J.R. Soliton dynamics in polyacetylene. Proc. Natl. Acad. Sci. USA. 1980. 77(10): 5626. https://doi.org/10.1073/pnas.77.10.5626

Tol A.J.W. The instability of a bipolaron versus two polarons: charge localization in cyclo-dodecathiophene. Synth. Met. 1995. 74(1): 95. https://doi.org/10.1016/0379-6779(95)80043-3

Brocks G. Polarons and bipolarons in oligothiophenes: a first principles study. Synth. Met. 1999. 102(1-3): 914. https://doi.org/10.1016/S0379-6779(98)00958-8

Silva G.M.E. Electric-field effects on the competition between polarons and bipolarons in conjugated polymers. Phys. Rev. B. 2000. 61(16): 10777. https://doi.org/10.1103/PhysRevB.61.10777

Zade S.S., Bendikov M. Theoretical study of long oligothiophene dications: bipolaron vs polaron pair vs triplet state. J. Phys. Chem. B. 2006. 110(32): 15839. https://doi.org/10.1021/jp062748v

Zamoshchik N., Salzner U., Bendikov M. Nature of charge carriers in long doped oligothiophenes: the effect of counterions. J. Phys. Chem. C. 2008. 112(22): 8408. https://doi.org/10.1021/jp7111582

Heeger A.J., Kivelson S., Schrieffer J.R., Su W.P. Solitons in conducting polymers. Rev. Mod. Phys. 1988. 60(3): 781. https://doi.org/10.1103/RevModPhys.60.781

Bredas J.L., Street G.B. Polarons, bipolarons, and solitons in conducting polymers. Acc. Chem. Res. 1985. 18(10): 309. https://doi.org/10.1021/ar00118a005

Shimoi Y., Kuwabara M., Abe S., Highly doped nondegenerate conjugated polymers theory using the DMRG method. Syn. Met. 2001. 119: 213. https://doi.org/10.1016/S0379-6779(00)00781-5

Santos M.J.L., Brolo A.G., Girotto E.M. Study of polaron and bipolaron states in polypyrrole by in situ Raman spectroelectrochemistry. Electrochim. Acta 2007. 52: 6141. https://doi.org/10.1016/j.electacta.2007.03.070

Dai Y., Blaisten-Barojas E. Energetics, structure, and charge distribution of reduced and oxidized n-pyrrole oligomers: a density functional approach. J. Chem. Phys. 2008. 129: 164903. https://doi.org/10.1063/1.2996297

Dai Y., Blaisten-Barojas E. Monte Carlo study of oligopyrroles in condensed phases. J. Chem. Phys. 2010. 133: 034905. https://doi.org/10.1063/1.3457675

Dai Y., Chowdhury S., Blaisten-Barojas E. Density functional theory study of the structure and energetics of negatively charged oligopyrroles. Int. J. Quant. Chem. 2011. 111: 2295. https://doi.org/10.1002/qua.22659

Lin X., Smela E., Yip S. Polaron-induced conformation change in single polypyrrole chain: an intrinsic actuation mechanism, Int. J. Quant. Chem. 2005. 102: 980. https://doi.org/10.1002/qua.20433

Dai Y., Wei C., Blaisten-Barojas E. Bipolarons and polaron pairs in oligopyrrole dications. Computational and Theoretical Chemistry. 2012. 993: 7. https://doi.org/10.1016/j.comptc.2012.05.018

Опубліковано
2019-10-30
Як цитувати
Лобанов, В. В., Теребінська, М. І., Філоненко, О. В., & Ткачук, О. І. (2019). Сонячні елементи на основі органічних і органо-неорганічних матеріалів. Поверхня, (11(26), 270-343. https://doi.org/10.15407/Surface.2019.11.270
Розділ
Теорія хімічної будови і реакційної здатності поверхні.