РОЗКЛАД ПОРОШКІВ УН_х В УМОВАХ СТУПІНЧАТОГО НАГРІВАННЯ В ПОВІТРІ

В.В. Гарбуз, В.А. Петрова, О.В. Яковлев, С.В. Нужда, Л.Н. Кузьменко, І.А. Морозов, В.Д. Курочкін, В.В. Скороход, Ю.М. Солонін

Інститут проблем матеріалознавства ім. І.М. Францевича Національної академії наук України вул. Кржижановського 3, 03142, Київ-142, e-mail: wpetrowa@ukr.net

За допомогою ступінчатого нагрівання на повітрі (293 - 1073 K), а також у потоці гелію "in situ" (293 - 2000 K), кількісної окисно-відновної екстракції, газової хроматографії та кулонометрії C, H, N, O вивчено розклад нанорозмірних порошків YH_{2,48} та YH_{2,25}, поверхня яких пройшла He – термічну обробку (He)TO. Порошок YH_{2,25} (He)TO визначається більш високою термічною стійкістю, що наближається до компактних зразків YH_x.

Вступ

Продуктами гідрування компактних металів є порошки металогідридів, мікронні конгломерати яких складаються з нанорозмірних кластерів (доменів) [1].

Метод Не – термічної обробки поверхні гідридів призводить до упорядкування підграток метала та водню, що стабілізує властивості системи в цілому [2].

Метою досліджень стало вивчення особливостей розкладу порошків YH_x в ізотермічних умовах ступінчатого нагрівання в повітрі та потоці гелію.

Методи аналізу

Визначення складу матеріалу метало-гідридних систем в умовах безпосереднього контакту з повітрям проведено з використанням прямих кількісних методів. Водень, азот і кисень у вигляді H₂, N₂, CO визначені за допомогою методів відновної екстракції та газової хроматографії (ВЕ - ГХ) [3]. Вміст Не в зразках було встановлено за допомогою мас-спектрометрії тліючого розряду (прилад VG-9000, Велика Британія).

Вихідні зразки

У якості вихідних був використаний порошок YH_x із середнім розміром зерен 0,2 мкм, частина якого пройшла процедуру гелій-термічної обробки при T = 633 K; P = 100 КПа, $\tau = 13$ г.

Результати й обговорення

Компонентні характеристики зразків складу YH_x й YH_x (He)TO, які, з огляду вмісту водню, у подальшому поіменовані як $YH_{2,48}$ та $YH_{2,25}$ (He)TO відповідно, наведені в табл. 1.

При виборі температури визначення χ_H методом імпульсної ВЕ-ГХ, $\tau = 7$ с, були отримані температурні характеристики десорбції H₂ у потоці He з кроком 100 K, *«in situ»*, які представлені на рис. 1. Результати вимірів подані у відносних процентах при нормуванні по максимальному значенні вмісту елементів O, N, H, у сполуках де:

Y₂O₃; χ_O-21,25 % мас; 100 % від.

YN; _{XN} – 13,60 % мас; 100 % від.

Химия, физика и технология поверхности. 2008. Вып. 14. С. 206 – 209 206 YH₃; _{хн} – 3,22 % мас; 100 % від.

Формула зразка	Масова частка Δχ _i ±3,0 % від; Δχ _C ±0,0005 % мас; Δχ _{He} ±2,0 ppm				
	χн	χο	χи	χc	χHe
YH _{2,48}	2,67	1,30	0,001	0,003	1,9
YH _{2,25} (He)TO	2,42	1,20	0,001	0,003	11,0

Таблиця 1. Компонентні характеристики складу вихідних зразків гідриду ітрію

Рис. 1. Температурна залежність імпульсного дегідрування (H) YH_{2,48}, YH_{2,25} (He)TO у потоці гелію.

Як видно з рис. 1, для зразка складу $YH_{2,48}$, що не пройшов (He)TO в області 373 К спостерігається максимум виділення H_2 (65 %) та широкий максимум при 1373 К (35 %). Зразок $YH_{2,25}$ (He)TO відрізняється від попереднього відсутністю низькотемпературного піка при 373 К. Повторні серії вимірів дали аналогічні результати. Слід зазначити, що до $T_{n\pi}$ – 1786 К зразки продовжували містити помітні кількості водню. На рис. 2 представлені температурні залежності дегідрування, окиснення та оберненого азотування на повітрі.

Як видно з рис. 2, дегідрування зразка 1 відбувається при температурі 373 К, при цьому ступінь окиснення ітрієвої матриці становить 20 %. При 473 К вміст водню в пробі дорівнює нулю. Утворення Y_2O_3 відбувається при 573 К. Зразок, що пройшов (He)TO по своїх властивостях відрізняється від попереднього. При 473 К він втрачає 10 % водню, при цьому ступінь його окиснення становить 10 %. При 573 К у ітрієвої матриці залишається 10 % водню. Ступінь окиснення зразка становить 55 %. В області 673 К вміст водню в пробі наближається до нуля. При цьому ступінь окиснення зразка дорівнює 60 %, що супроводжується частковим азотуванням ітрієвої матриці до 8 %. Як видно, азотування перешкоджає подальшому окисненню проби до 873 К, при яких спостерігається утворення Y_2O_3 .

Рис. 2. Температурна залежність дегідрування (H), азотування (N) і окиснення (O) зразків YH_{2.48} (1), YH_{2.25} (He)TO (2) на повітрі.

Для уточнення температурних характеристик процесів взаємодії YH_x з атмосферрою повітря був проведений аналогічний експеримент із кроком 50 К. Отримані результати, представлені на рис. 3. Дегідрування порошку $YH_{2,48}$ відбувається при 373 К. Втрата водню призводить до взаємодії матриці Y з киснем повітря при 473 К, Y_2O_3 утворюється при 623 К.

Зразок YH_{2,25}, що пройшов (He)TO (2) в області до 423 К втрачає незначну кількість водню, яка супроводжується його окисненням до 10 %. З підвищенням температури від 473 К до 623 К відбувається одночасне окиснення та дегідрування зразка (рис. 3). Обидва ці процеси закінчуються при температурі 823 К з утворенням сесквіоксиду ітрію Y₂O₃, що на 200 К вище, ніж у випадку YH_{2,48}, який не пройшов (He)TO. Окиснення YH_{2,25} (He)TO на повітрі може бути представлено відповідно до реакції:

$$4YH_{2,25} + (3 + x)O_2 = 2Y_2O_3 + 4,50H_2O.$$

Очевидно при синтезі $YH_{2,48}$ гідрування матриці Y не досягло рівноваги при понижені температури середовища в атмосфері водню до кімнатної. Частина водню (65 %) не встигла прореагувати з утворенням хімічного зв'язку, характерного для гідридів ітрію, а утворила монофункціональний покрив на поверхні конгломератів наночастинок матриці. Тому при помірному нагріванні при 373 К, як у потоці гелію так і

в атмосфері повітря спостерігається його виділення в газову фазу. В першому випадку цей процес проходить відокремлено, у другому супроводжується окисненням ітрію.

Гелій-термічна обробка зразка $YH_{2,48}$ у замкненому об'ємі при 593 К на протязі 13 год дозволила завершити процес гідрування (закріплення атомів водню у ітрієвій матриці), з утворенням міцних хімічних зв'язків H – Y характерних для їх гідридів. Тому дегідрування $YH_{2,25}$ (2) у потоці гелію відбувається в області 1073 – 1773 К. На повітрі воно проходить від 423 К до 773 К з окисленням матриці ітрію, без наявності процесів низькотемпературного дегідрування зразків (рис. 1 – 3).

Висновки

Дегідрування в $YH_{2,25}$ (He)TO відбувається при температурі 473 – 773 К та супроводжується окисненням матриці Y до Y_2O_3 при 823 К, що на 200 К вище, ніж в $YH_{2,48}$.

Гелій-термічна обробка поверхні порошків підвищує стійкість YH_{2,25} як у атмосфері Не так і на повітрі.

Азотування Y проходить при 573 – 673 К в присутності гідридного водню і завершується розкладом нітридної фази при 723 К. На противагу даних [4] у потоці гелію в області 473 – 973 К виділення індивідуального водню не відбувається.

Одержані результати можуть бути використані при розробці систем нейтронного захисту атомних реакторів [5].

Література

- 1. Некоторые уроки химии в свете проблем аккумулирования водорода (удачи, ошибки, мистификации) / О.К. Алексеева, Л.Н. Падурец, П.П. Паршин, А.Н. Шилов // ICHMS'2005: Sevastopol, Crimea, Ukraine. September 5 11, 2005. Р. 280 283.
- 2. Trefilov V.A., Skorokhod V.V., Morozov I.A. The role of hydrogen in production of materials for space system engineering by powder metallurgy methods // Космічна наука та технологія. 2003. Т. 9, № 2. С. 355 361.
- 3. Вассерман А.М., Кунин Л.Л., Суровой Ю.Н. Определение газов в металлах. М.: Наука. 1976. 344 с.
- О способах и механизмах снижения термической устойчивости гидридных фаз механических сплавов на основе Mg, Ti, Y / О.Г. Ершова, В.Д. Добровольский, Ю.М. Солонин, Р.А. Морозова // ICHMS'2005: Sevastopol, Crimea, Ukraine. – September 5 – 11, 2005. – P. 180 – 181.
- 5. Гидриды металлов / Под ред. Мюллера В., Блэкледжа Д., Либовица Дж. М.: Атомиздат, 1973. – С. 58 – 81.

DECOMPOSITION OF YH_x POWDERS UNDER CONDITIONS OF STEP-BY-STEP HEATING IN AIR

V.V. Garbuz, V.A. Petrova, A.V. Yakovlev, S.V. Nuzhda, L.N. Kuzmenko, R.A. Morozova, V.D. Kurochkin, V.V. Skorokhod, Yu.M. Solonin

I. Frantsevich Institute for Problems of Materials Science NAS of Ukraine Krzhizhanovsky str. 3, 03142 Kyiv-142

Decomposition of nanosized $YH_{2,28}$ and $YH_{2,25}$ powders with the – heat pretreated surfaces has been studied by means of step-by-step heating in air (293 – 1073 K) as well as helium flow in situ (293 – 2000 K), quantitative red/ox extraction, gas, chromatography and coulometry of C, H, N, O. The $YH_{2,25}$ pretreated powder has a greater thermal stability close to that of bulk YH_x samples.