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Abstract
The electrodynamical properties of the nonlinear metal composites are intensively

studied in many papers [1-7]. One of the most important property of such systems is the
abnormal enhancement of the nonlinear optical respond in the composites containing small
inclusions (compared to the wavelength of radiation) of a nonlinear dielectric covered by the
metal shell embedded in a dielectric host matrix [2-6]. The surface plasmons in the metal shell
may be tuned in resonance with the external electromagnetic field and produce a considerable
increase in the local field in the core of inclusion to make the nonlinear part of its dielectric
permittivity to be important. As a result, the connection between the applied and the local field
in the core becomes nonlinear and in some diapason of applied electric fields even ambiguous.
It happens to be that one value of the applied field corresponds to a few values of the local
fields and polarization of the inclusions that in its turns leads to instability in the composite
optical properties. This phenomenon is called the intrinsic optical bistability (I0B).

In this paper we calculate the dielectric permittivity and polarizability of a separate
inclusion_and analyze the parameters of the TOB. Further, we consider the dielectric function of

1. Local field in coated sphere particle
Let us consider a spherical inclusion covere
The core of the inclusion is the Kerr type nonlinear dielectric of a ra

dielectric function of the core in the form

3 :510+1Ea\1|- (1
ric function, ¥ is the nonlinear Kerr coefficient, and Eiis
ore. The dielectric function of the metal shell let be the

d with a metal shell of an outer radius ra.
dius r;. We choose the

where g, is a linear part of the dielect
an amplitude of the local field in the ¢

Drude type
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where &, does not depend on frequency w; @, , and v are the plasma and collision frequency
of conducting electrons respectively. The dielectric permittivity of the host matrix material we
denote as &x.

Let the external varying with time electromagnetic field E= Eoe‘

' acts on the inclusion. In

the long wavelength limit r2<<£‘/i32\, r2<(2,)|gm| the distribution of the electric field within
¢ c

the inclusion may be found by solving the Laplace equation for the two-layer sphere in the
homogeneous constant electric field £, By using the continuity conditions for the electric
potential and the normal component of the electric induction on the inclusion interfaces one
can get the local field as a function of the applied field

El =¥k, (1.3)
where ¥ is called the enhancement factor and given by the following expression
9 &
Yy ="
2p A (1.4)

A=(e]) +[B/2p-Ve +3/p-1lle; +¢&/

Here we use the relative dielectric functions with respect to &, in particular & =¢&/&n (i=1,2),
p=1- ri°/ r5 is a fraction of the metal in the inclusion. Below, an index » will be omitted if it
does not lead to confusion.

It is clear from (1.3) and (1.4) that one may obtain a considerable increase in the local electric
field provided that A —> 0. It can be done by tuning the parameters entering in (1.4). We
consider the simplest case in the limit, v/ <<1, when an imaginary part of (1.2) is negligible.
In this case the condition of the “resonance” corresponds to A=0 that reduces to a quadratic
equation in g2 (1.4). Roots of this equation may be written in the form

£, =(-BEyB -4¢/)/2, B=(/2p-De +3/p-1. (15)
We note that in our case always A<0 and the roots ¢,, <0. That is why ¢, <g¢,, and as well.
In the limiting case of small metal fraction, p<<1, expressions (1.5) may be simplified:
_ 3e 42 2

p, p<<l

A

) g'h- -
- 2p i 3/ +2 (1.6)
Since &,, are negative the realization of the enhancement of the local field requires that
Ree, (w) will be negative as well. One can see from (1.2) that- it takes place at frequencies
w<w,=w,/ JE: (we assume that ap>>V). The frequency ay corresponds to the frequency

of bulk plasmons. Tt also follows from (1.2) that a maximum enhancement of the local field
occurs when the frequency of electromagnetic wave approaches to

P - (1.7)

3%
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For example, at p <<l, when the metal fraction of inclusion is comparatively small,

w, =0, o, Do,



The enhancement of local field in the inclusion core means that the nonlinear term in
(1.1) must be taken into account. Therefore, the enhancement factor y (1.4) itself depends on
the local field £, and, in a general case, relation (1.3) turns out to be the equation for the local
field as a function of applied field Eo. Inserting (1.1) into (1.4) and multiplying a new
expression (1.3) by its complex conjugated, we obtain the following cubic equation for

o = -~ 12
E E =|E|
2

":’d ’Z r o 2 r r
x=y iE“ >0, x, =% ‘EO\ >0, A, =A(g] —> &), (1.8)

x>+ 2Re(—A5—°)x2 +

3 . _ 81 |g;

s=1+¢e;(3/2p-1), 7 a5t |6

This cubic equation has real coefficients and may have one real positive root or three real
positive roots depending on its parameters. It will be analyzed in detail in the next section.
Now we would like to pay more attention to the physical meaning of this result. Appearance of
three different values of the local field that correspond to one value of the applied electric field
means that the system becomes unstable. This phenomenon is called the intrinsic optical
bistability (10B) [6] and associated with a sudden change in the optical properties of the
inclusion and the disperse system as a whole depending on the amplitude of the incident

radiation.
Here we would like to note that the polarizability of the two-layer spherical inclusion

may be presented in the following form [11]
o =dm) Ll (1.9)
T E+2e,
where Z is the effective dielectric function of the individual two-layer inclusion in the dipole
approximation and given by the relation
é_:Ez51(3/10»2)+2(92 (1.10)
& +6,3/p-1)
A detail study of scattering and absorbing properties of such particles in the linear
approximation (with respect to the electric field) when there is no nonlinear term in g, (1.1) is
given in [12]. Combining (1.10) and (1.9) one may easily show that the enhancement factor
(1.4) and the polarizability coefficient (1.9) have the same denominator A (1.4). This means
that o considerably increases when the frequency w approaches to one of the frequencies (1.7).
At the same time, the absorption of radiation by the particle increases due to increasing in the

polarization.

X =xls,.

2. Optical bistability in coated sphere particle
Let us rewrite the cubic equation (1.8) in the following form
+raxt +bx+c=0,
A
o)
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ex” term in
Zzrends on
- - the local
7"2 a new
<_ztion for

(1.8)
— -~ree real
0 section.
ez zrance of
= =>:ric field
- > optical
e -5 of the
' -~ = incident
p—: aclusion
(1.9)
y - -2 dipole
(1.10)
® e linear
p - - (1.1) is
:~¢ factor
. s means
- 25 (1.7).
g : ~g in the

In a general case the location of roots of equation (2.1) on a complex plane depending on the

coefficients a,b,c is given in Table 1.

Table 1 Appendix

Range of parameters

X+ ax’+bx+c=0, O=(H/3)?

Location of roots on the complex
plane

H=-a*/3+b, G=2(a/3)’- ab/3+c

+(G/2)*<0,
in this case all roots are real
ab-c<0, x"
e, b0 )} 0
-o-0-0—> x'
-y, x"
>0, 620 2) T
—eoo1—— 5 '
b0, x"
cd B0 or (3) T
¢ o, b=, —ef—o-o> x
ab-cil x"
o=@, b>0or (4)
c<o, b<D. —~4—’A—0—) x'

Ceax’bx+c=0, Q=(H/3)}

H=-a"13+b, G=2(a/3)*- ab/3+c

+(G/2)*>0,
) in this case one root is real and two roots are complex conjugated
ab-c<0, x"
c<0,b>0. (5)
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> > X
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a sign of the discriminate

Q=(b/3—a2/9)3+(a3/27—ab/6+c/2)2 (2.2)
hree (point 1 of the Appendix) real

equation (2. 1) has one (point 5 of the Appendix) or t
positive roots. We may state that the two-layer particle manifests the I0B provided that
(2.22)

0<0, ab-c<0.

These inequalities in principle allow one to find the borers of 10B.
However, this systeml of inequalities is not convenient for a physical analysis because of

the high powers of the coefficients 4, b, c. Now we use some geometrical considerations on
the real plane x, - in our particular case, three positive roots of equation (2.1) emerge if a

graph of the function f(x)=¥’ +ax® +bx at real positive x Crosses three times a straight line

y(x)=- ¢ (See Fig.1). It happens if a derivative £(x) tums out to be zero at two different points
xand x2 (0<% <x,) and the straight line lies between flxy and flxz). At the same time, fixy >

fxa) which means that fro)<0in the interval (x1, X2)- These conditions may be reduced to the

following system of inequalities
—J3b
a <=3, 23)

f(x,)<c< fx),
where x,, = (-4 Ta® -3b)/3 are the roots of the quadratic equation f()=0.

In our notations (2.3) takes the form

Re(A, /8) <—V3Im(8,/9),

81 le’|
< — < f{x)
f(xz) 4p2 5 X f( \) (2‘4)

x,, = (-2Re(8,/)F JRe(B, /8) -3m(A, 61 /3,

A, =(&) +5;[8{0(3/2p—1)+3/p~1]+6{0,5 =1+£,(3/2p-D.

In our case b>0, ¢<0. Therefore, depending on

€
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the frequencies °, are given by formula (1.7) where & is substituted with &1 and
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X = A8, v.= 23408,

4 AL, @2.7)
Sflx)= 5755 Y, =0
Summing up these resuits, we can state that the JOB emerges in the two-layer spherical
particles with the Kerr-like nonlinear dielectric core (dielectric function (1.1)) covered with the
metal shell with no decay (the Drude type dielectric function (1.2) with zero imaginary part) in
the following frequency bands:
0 <o<o,. and 0", < u<u?, (2.8)
The I0B does not exist above the external applied fields that exceed the critical value

(2.9)

Influence of a small imaginary part of ¢ can be performed by using an expansion with
respect to the small parameter and slightly changes the obtained results. The case with finite
decaying requires numerical methods and will be done in the next section.

3. Numerical calculations of IOB in coated spherical particle
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Fig, 2. p=0.2, em=1 3 einf=1, =01, I'=0, &,15=5.
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Fig. 3. p=0.2, em=1.5, ginf=1, Q=0.1, [=0.05, £0=>.
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Fig. 6. p=0.2, em=1.9, einf=1, Q=0.1, ['=0.01, &,3=5.

4. Effective dielectric permittivity of nonlinear composite

with two-layer inclusions

While studying the processes of interaction of electromagnetic radiation and matrix
disperse systems (MDS) the method of effective medium is widely used. Usually, a
nonmagnetic MDS with discretely distributed inclusions (the dielectric permittivity &)
embedded a continuous host matrix (the dielectric permittivity £_) is substituted with a
continuous media that described by the effective dielectric permittivity & depending on 7,
€, a density number of inclusions », and their statistical distribution in the host matrix. This

method works especially good in the long wave length approximation. Below we use two the

most reliable approaches for calculation & .

At small density numbers of inclusions when their relative fraction f = gzzrzzn is small,

f<<1, the Maxwell-Garnet (MG) approximation is usually used [9]
£-¢ &-¢,

m

. £+2¢ g+2¢
l‘_ Sr10=5~ m m

At higher density numbers of inclusions the Bruggeman approximation is more relevant [10]

£-& £-¢
+(1- 7=
TR f)5+2a

S

m

Here & is given by relation (1.10). In this relation we have to insert &, = & + x'E,lz after

obtaining the local field (or more precisely Z|El ’2) from equation (2.1).

Now we consider the case of small amplitudes of the external field E, when

1'5, ’2 << &, . Expanding (1.10) with respect to small parameter, we may obtain with the same

accuracy the effective dielectric function of the inclusion particle




(3.3)

2
’

F=E, +Z‘E,l

where
_ 6. (3l p-2)+2&, _ o1/ p-1el
go-:gz_l_o,(___p’-—-——?—’z_—_x (/p=De; - 4.3)
£, +6,3/p-1) [&, +£,3/p-D]

the nonlinear effective dielectric permittivity we follow the scheme suggested

While calculating
for a system consisting of N nonlinear components with

in [11]. In this paper, it is shown that
- 12
dielectric functions &; =&, +f,\Ei\ ¢=1,...,N) and respective fractions f. the effective

nonlinear dielectric function is given by the relation

N
~_ X = |2
=& +Z-f—F.-|EI-\E°\ , (5.3)
i=l i
where F, = gf& and &, is given by the generalized formulas (1.3)or(23)
810
6‘0 - £m < 610 - gm
= , 6.3
6‘0 + 2£m ;f’ E:O + 2€m ( )
N+l g. _g:
- Zie 0 =0 7.3
Z,"f' £, + 28, (7.3)
In the case of generalized MG and Bruggeman formulas (6.3) and (7.3) we obtain
Sf.
F = fion 8.3)
£, +26,) (- Zio” Zm y?
(6 +26,0° 02 255 )
' fi&
F = d 93
1 N+l _f,g,-o ( )

£, +28) ) e
( i0 0) Z(Sio +2—E)2

i=1

Setting N=1 in these formulas we get
9 52 ~
Jen &S 10.3)

Fi== - , Fi== ,
(&, +26, - f (B~ 8,0 &,f + B - S)eEn

1]
g, + 28,
For small density numbers of inclusions,

small parameter, both formulas (10.3) give the same result
F o~ () (11.3)

1+28,/¢,
Inserting this into (5.3), we find the expression for the effective no

5=5+7E| .

g, +2¢,
where B = (C—2)".
f<<1, in the linear approximation with respect to this

nlinear dielectric permittivity
(12.3)

where
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Formulas (12.3) and (13.3) enables us to find the effective nonlinear dielectric permittivity of
the campnsite wising the known dielectric permittivities of the inclusion core €. the metal shell

€2, and the matrix material €, provided that Zlgl / << g, and f<<1,

(13.3)

Now we note that the expression for 7 may be written in another form by using the
results of Section 1:
72963 le,p+6,(3 - p)}2
2
16[’4[(5: =& )&, — €, )]Zl(gz ~&, )&, — &y, )l
From this relation one can see that at frequencies of the incident electromagnetic radiation

close to the frequencies of surface plasmons and provided that the imaginary part of ¢, is
comparatively small, a considerable enhancement of the effective Kerr coefficient 7 may

oceur. The numerical evaluations show that for inclusions with silver covering a ratio ¥ /x may
be of the order of 10°-10°.

x=x-f-p)

(14.3)

Conclusions

The perspectives of usage of the nonlinear metal composites (NMC) in science and
engineering have been discussed partly in [1-5]. In these papers, some types of nonlinear
dielectrics were named as the most promising for a further study.

Here we would like to stop on some theoretical conclusions that follow from the
reported study. From the results obtained in Section 1 we can see that an enhancement of the
local field in MDS with two-laver inclusions is possible only provided that a real part of the
dielectric function of a covering must be negative. For the dielectric functions of Drude’s type

it takes place at frequencies w < @ , /\/}:. It is known that in this range of frequencies the

weakly decaying surface modes exist in metals. Therefore, the metal covering of the nonlinear
dielectric makes easier an enhancement of the local field to the required level.

One more important fact is also worth noting. For the following NMC structures the
local field may be found by solving a cubic equation: a two-layer plane structure, a sphere of
nonlinear dielectric in a metal host matrix and a two-layer ellipsoid of a nonlinear dielectric
with a metal covering provided that the external electric field is parallel to one of its axis. It is
typical that for the Kerr type of nonlinear dielectric the coefficient #>0 and the coefficient c<Q.
However, the order of the corresponding equation is equal to five for a spherical anisotropic
dielectric inclusion with a metal core. For the two-layer ellipsoid that is similar to our sphere in
the structure at arbitrary orientation of the external electric field with respect to the ellipsoid
axes the order of this equation becomes seven. These changes in the order of equations may
lead to the richer picture of the IOB in these systems. Moreover, taking into account the

damping of electromagnetic radiation may considerably change the conditions of the IOB and a
magnitude of the enhancement coefficient.
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