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The problem of finding the distribution of functional of a trajectory of a particle executing a
random walk in a disordered medium containing both traps and obstacles is considered. As a model of
a disordered medium, the Schirmacher model, which is the combination of the random barriers model
and the multiple-trapping model, is used. Forward and backward Feynman-Kac equations with the
boundary conditions at discontinuity points are formulated. As an example, the distribution of the
residence time in a half-space is obtained. It is shown that the anomalous subdiffusion due to traps
and that due to obstacles give very different distributions.

1. Introduction
1.1. Functional of a random-walk trajectory
A Brownian functional is defined as

A= t J(x(7))dT, (1~1)
A /( U(a(r))d

where x(7) is a trajectory of a Brownian particle and U(x) is a prescribed function, the type
of which depends on the problem considered. Brownian functionals arise in various fields of
science; for example, a functional equal to the time spent by the particle in a given domain
arises in chemical kinetics [1, 2, 6, 8]. In this case, U(x)=1 in domain and U(x)=0

otherwise. Other examples include functionals with functions U(x) = x and U(x) = x", which

are of interest for the theory of nuclear magnetic resonance [9]: the case U(x)=x"was

considered in the study of the dynamics of the growing surface [5].

Using the path integral method proposed by Feynman, Kac derived a partial
differential equation which allows one to find the distribution of the Brownian functional with
an arbitrary positive function U(x) [11]:

G (z.p.t PG (. p. t
é Lf p.t) _pf ,LJ.F ) U ()G . p. b). (1.2)
Ot O

Here G(x,p,t) is the Laplace transform in variable A4 for the function G(x,A4,t)

equal to the joint probability that, at time ¢, the particle is at point x and the functional is
equal to 4; D is the diffusion coefficient. This Feynman-Kac equation has been widely used
for the calculation of distributions of functional with different functions U(x) [14].

Equation (1.2) was derived under the assumption that the medium in which the
process occurs is homogeneous. If the medium is inhomogeneous, the calculation of the
distribution of the functional becomes much more complicated [13, 17]; however, if the self-
averaging property holds, then for an inhomogeneous medium we can obtain an equation
similar to equation (1.2). In [19], such equations (forward and backward) were derived for
media that can be described by the random traps model. In this model, the diffusion-slowing
occurs due to the particle delay in the traps. In the present paper, equations are derived in a
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more realistic model which takes into account the presence of both traps and different kinds
of obstacles in a disordered medium. In such a case, other equations are obtained, because
obstacles create an essentially new mechanism for diffusion-slowing. This mechanism
consists in the fact that the particle cannot move with equal probability in all directions, so
that the negative velocity correlations arise.

Interest in the study of functional of a random-walk trajectory has increased with the
development measurement techniques. The latest methods allow one to track the trajectory of
the individual particles, and thus to find the distribution of different functional
experimentally. By analyzing these distributions, one can obtain valuable information about
the characteristics of random walks; particular, by the structure of environment in which they
occur. To do this, we need appropriate theoretical models.

For the first time, the generalized Feynman-Kac equations were derived in [4, 22] in
the framework of the continuous time random walk model. In principle, these equations can
be used to find the distributions of functionals in disordered media; however, they, as well as
the random traps equations, take into account only one diffusion-slowing mechanism - the
delay in the traps. Generalized Feynman-Kac equations were recently derived in [3] on the
basis of the Langevin equations. Since this approach assumes that the particle can move with
equal probability in any direction, the resulting equations are also equivalent to the random
traps equations.

We are interested in calculating the distribution of the functional (1.1) when the
motion of a particle whose trajectory appears under the integral is described by the equation

P, (
nl ) — T P(#) 1.
Ot ZIIR?? m ,] ZIImnPR(fJ- ( 3)

T m

where P (¢) is the probability that the particle is in site » at time ¢ and W  is the transition

rate from site m to site n. In [19], it was shown that at any structure of the lattice, i.e. for any
parameters W . the joint distribution of the functional (1.1) and the particle coordinates

nm >

satisfies the equation

oG t)
v E% }’ ZUM!(T?H p.t) Z”” nGr(p,t) — pU,GL(p.t). (1.4)

1

Here G,(p,t) is Laplace transform in variable A4 for the function G,(A4,¢) equal to the
joint probability that the particle is at site » at time ¢ and the functional is equal to 4; U, is
value of U(x) at the site n. This equation describes a random walk with a first order chemical
reaction whose rate pU, varies in space. The variable p plays the role of a parameter.

If the self-averaging property holds, then the averaged over elementary physical
volume distribution of the functional, for any extended sample of a disordered medium at
large times will coincide with the distribution found by solving equation (1.4) and averaging
this solution over the ensemble of configurations. Thus, if the self-averaging property holds,
the problem reduces to finding the averaged over the ensemble of configurations solutions of
equation (1.4). In this paper we obtain the equations which this averaged solutions must
satisfy within the Schirmacher model [7, 15, 18].

1.2. Schirmacher model

In the Schirmacher model, all lattice sites are divided into two types: transport states
among which hopping is allowed and traps which are only accessible via the transport states.
The equation (1.3) takes the form
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where P (¢) is the probability that the particle is in transport state » at time ¢; O (¢) is the
probability that the particle is in trap »n at time ¢; @, is the transition rate from transport

state n to transport state m ; x, and v, are, respectively, the transitions rates from the n -th
transport state to the n-th trap and back. As a result of averaging of this equations over the
ensemble of configurations and passing to the continuum limit, the authors of [7, 15, 18]
obtained following equation for the averaged probability density of finding a particle at the
point x at the time ¢ p(x,?):

a0 t 52
Iple,t) = r;zf Ot —1) ,L), pla, 7)dT. (1.7)
0

ot O

Here a’ is the parameter and ©(¢) is the memory function that in Laplace space
t —> s can be represented as O(s) ="¥Y(s)D(s), where

P(s) = ».-(.«+ X(s)). (1.9)

Here A(s) is the memory function that can be obtained by averaging equation (1.5) at zero
parameters «, and v,, i.e., in the absence of traps and X(s) is the function that describes the
effect of traps on dispersive (anomalous) transport. These functions can be calculated in
different approximations. The works [7, 15, 18], proposed methods for finding functions
A(s) in EMA (effective medium approximation) and X(s) in CPA (coherent potential
approximation). In this paper, specific forms of these functions will not be used.

In [21], the Schirmacher model was generalized to the case when the diffusing particle
could disappear according to the first order chemical reaction with space dependent reaction
rate k,. The terms —k, P, (¢t) and —k,Q, (¢) were added to the right sides of equations (1.5)
and (1.6), respectively. It was assumed that the motion through the transport state described
by the random barriers model, i.e., that the transport transition rates are symmetric
(w,, =o, ). After averaging and passing to the continuum limit, the following equation was

mn

obtained:

Dpla,t) 5 O T
(V —{:2{{;3 / {U* (e, t—71 m *P*(,:'.T—L;');)(,r'.(;')d(;'}clT—f.'(.t';]p(.r. t), (1.10)

where k(x) is the reaction rate constant (a continuum extension of the &, );

(e, t) =W (t)exp(—k(x)t),
O*(w,t) = D(t) exp(—k(x)t).

(1.11)
(1.12)
The functions W(¢) and ®(¢) enter into equation (1.10) separately and not as the combination

0() = J.;‘P(t —7)®(7)d7 as in the case of equation (1.7). Therefore, this equation will have

different forms depending on contributions made by barriers and by traps to the dispersive
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transport. For example, if dispersive transport is caused by barriers without traps (Z(s) =0),
the equation would look like

dp(x,t) 5 O ‘ . 0 oL (1.13)
— L =a"— O (.t —7)—plx, 7)dT — E(2)p(2, 1), :
o =gy [ Ot = D) gl )T — Kl

and if it is caused by traps without barriers ( A(s) = const ), then the equation would be

Splx, t] tl o2 i
il azx”

t
f Sz, ¢ — mplz. 7 idr — kixz)p(z. t), (1.14)

where @ (x,?) = O(t)exp(—k(x)t). The solutions of the equations (1.13) and (1.14) with the

same function ® (x,#) may differ materially [21]. This means that the barriers and traps
manifest themselves differently in the diffusion-reaction processes, if a chemical reaction
constant varies in space. This fact, in principle, can be used to determine the microscopic
structure of a disordered medium.

2. Forward equation
2.1.  Particle is in transport state at the initial time
In the Shirmacher model, the equation (1.4) takes the form

OFn(p, t) () (7. 1) (p.t) 7.t) = plinFulp.t)
1.;.::- i _ %wanmlﬁ.t,'—;':‘-:MHFHIF't.-I_ﬁ'nFnl'\"D':-'l+I;“C-n|"p-¢"| —}:“['nFnlJ'\-lt_.l. (21)
. 2.2
‘l:rlll--)-“.lf::.f — 'fn-Fﬂ LP- 3_:' — I-"n':-rr‘:';.al'\' :.:I - ;;{i'n{_'.'“ua. :-:I' ( )

Functions F,(p,t) and C, (p,t) are the parts of the function C, (p,t) which correspond to the

position of the particle in the transport state and trap, respectively. From the above it follows
that within the Shirmacher model, averaged distribution G(x, p,t) must satisfy the equation,

differs from equation (1.10) only in the form of reaction constant:

ﬁ(_rtr p ” a’ 0 f {0 (x, t—TJ— | f_ﬁ*{;r. — Q)G (z,p, Q)d(}dr — pU(x)G(z,p, t), (2.3)
{_9‘{‘ \‘_91"
where
Uz, t) = U(t) exp(—pU(x)t), 2.4)
O*(x,t) = O(t) exp(—pU(x)t). (2.5)

This equation is a direct Feynman-Kac equation for the considered model. It differs
from the analogous equation of the random traps model and equations obtained in [4, 22], by

the presence of an additional memory function W' (x,7) caused by barriers.

Function G(x, p,t) gives the joint distribution of the functional (1.1) and coordinate of
the particle at time ¢. To find the distribution of functional only, we need to integrate this
function in the coordinate x . In particular, to find H(x,, A4,¢) — the distribution of functional
(1.1) corresponding to the starting point x,, it is necessary to find a solution of equation (2.3),
corresponding to the initial condition G(x, p,0)=0(x—x,) (we denote it by G(x, p,t;x,)
intedrating this solution with respect to x:
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Hxqg,p,t) = / Gz, p.tyxg)dax, (2.6)

and taking the inverse Laplace transform p — 4.

2.2, Particle is not necessary in transport state at the initial time

Equation (2.3) is obtained under the assumption that the particle is in the transport
state at the initial time [7, 15, 18, 21]. However, this assumption is not always satisfied. In
some cases, the experiment is carried out so that the probability distribution of finding a
particle in different states is equilibrium. In this section, we derive a generalization of (2.3) in
case of arbitrary distribution.

First, consider the case when there is no chemical reaction. Suppose that at the initial
time the probability of finding the particle in the trap of i-th type is &’. Then the probability

that the particle will remain trapped until the time ¢ is equal to
N
Z 9_:_'IE’;ITp|:: —u;t), (27)
=1

and the probability that the particle will make first transition from a trap to the transport state
in the interval (¢,7+dt) is equal to

N
Z 0l viexp(—v;t)dt, .
=1

where v, is the transitions rate from the trap of i-th type to the transport state and N 1is the

number of traps types. Using these expressions, we can write the equation for the probability
of finding the particle in the transport state.

In the Schirmacher model, the total probability of finding the particle at the point x,
p(x,t) and the probability P(x,¢) — of finding the particle in the transport state at same point,

are related by (in Laplace domain ¢ — s )
plz,s) = P(x,s)+ (X(s)/s)P(x, s). (2.9)

Here, the second term on the right represents the probability that the particle is trapped.
Equation (1.7) in terms of the function P(x,s) has the form

) N . 9 'fjg . )
Plx,s) —d(x —xg) = a*W(s)——=Pl(x,s) — XY(s)P(x,s). (2.10)

A2

¥4

This equation is valid if, at the initial time the particle is in the transport state. If there
is a nonzero probability that the particle is trapped, then the equation is as follows:

8:v;
s+ v

NI al
sP(z,8) — Pod(x — 2p) = a’¥(s) ( P(z,s) — X(s)P(x,s) + Z dax — zp), (2.11)

3
dx?
1=1

where F, is the probability that a particle is in the transport state at the initial time:

F =1 —le 0’ . The last term in the right-hand side describes the arrival of the particles into

the transport state, represented by the formula (2.8). In this case, the total probability is
expressed as
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N

plr,s) = P(z,s) + (X(s)/s)P(x,s —O—Z

=1

Here, the second term on the right represents the probability that the particle is trapped, but
before it has already been in the transport state. The third term represents the probability that

the particle is trapped without having visited the transport state; this term corresponds to the
probability (2.7). The equation for the overall probability is written as

gﬂ
5+ v

é(x — xp). (2.12)

52 N 00 52

by,
sp(x,s) —d(r —xp) =a QtsﬁJ—pit s) —a” -9(5]2 pa xﬁil —n). (2.13)

If, at the initial time, the probability is not concentrated at one point, and distributed
N 82 0’ (x)
oK s+ v,
consequence of (2.13) is that the resulting flux in the considered model is given by

over a certain region, the last term in this equation is of the form a’®(s )Z

N E}D(t]
J(x, s) = —a’O(s) {p T, 8) — Z 1 (2.14)

Using this expression and the approach proposed in [21], we can generalize the
equation (2.13) for the case when the diffusing particle disappears according to the reaction of

the first order. As a result, we obtain the equation

dplz,t) o8 [ . a8, ST
o " EL t I‘M_T*'Ei "z, 7 — ()plx, )l pdr—

a t C;' T
- azaﬁ {F" (x,t — T’IE_/_: e, e — k(x)plz, t),

(2.15)

where Q" (x,1) = Q(t)exp(—k(x)t); Q(¢) is the function that in Laplace domain ¢ — s can be
represented as

ﬂl‘:}—*ﬂplijz 02 IT"I (2.16)

Forward Feynman-Kac equation is obtained from (2.15) by substituting G(x, p,t) instead of
p(x,t) and pU(x) instead of k(x). The solution of the obtained equation corresponding to
starting point x, can be represented as the sum of regular and singular terms. In Laplace
domain t -> s, A — p we will have

1 — s+ pUiz))
s+ pli{x) dlx = o), (2.17)

Gl p,tizn) = Golx, pysixn) +
where the G(x, p,s;x,) satisfies the equation

[s +plU(z)|G iz psima) — s+ plliz))d(r — 20) =
P I | (2.18)
= a2 {@(s + pU(x)) = [B{s + pU ()G (z, py s 20)]}.
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Here

N ]
@ x)
18] ={?J|;.-;;|Z —. (2.19)
i1 st

3. Boundary conditions
The function U(x) can have discontinuities at certain points. In order for the

properties of the original discrete model to reflect correctly by a continuous model, it is
necessary to put the correct boundary conditions at these points. In this section, the boundary
conditions for the equation (2.18) at a points of discontinuity of the function U(x) are

considered on a simple example of a regular one-dimensional lattice. A more general
approach to the problem of boundary conditions is provided in [20].

First, consider the case where there are no traps: x, =0, v, =0. In one-dimensional

random barriers model under the condition that the jumps are made only to neighboring sites,
the Laplace transform of equation (2.1) becomes (G, = F, in this case)

[""+ P{rn]G:-'. - II;-: = "-"-":-1+1|-"E[Gn+1 - r—-::-'] +¢L:n—1,fﬂ[|f—?n—1 - G:ﬂ] (31)

In matrix form, this can be written as

Vg -G = V3G, (3.2)
where 7' is diagonal matrix with the components ¥ =s+pU,, V| =0 for n=m; V"’ is
symmetrical tridiagonal matrix with the components
V=0, = O s Vs =V = Ops Vi =0 for m>1. We can write formal
solution of equation (3.2) as:

G=(V—vHigh (3.3)

This solution is valid for each configuration, i.e. for each set of parameters @,. As a result of
averaging, we obtain

(G) = (VI =VH e (3.4)
This relationship implies that the averaged function <G> satisfies the equation
vhe - &P =T, (3.5)
where
Ve P v — vyt (3.6)

The matrix V* is symmetrical because the matrices V' and 7? are symmetrical and

the operation of averaging and the operation of taking an inverse matrix both retain
symmetry. Although this will not be a tridiagonal matrix but it can be approximated by a
tridiagonal matrix with good accuracy [12]. Therefore, we can write (3.5) as

[s 4 2Un](Ghn = G = V2t [(Chat = (Gha] + V2 a i [(Ghnot = (Gha]. (B7)
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The component V', , must be symmetric function of s+pU, and s+ pU, . If

n+l
U,=0, it should be reduced to the function A(s), and if U, =1, it must be equal to
A(s+p). The only function satisfying these conditions is
V) =A([s+pU,+s+pU,,]/2) Wedenoteitby A,,,,.

Suppose that the function U(x) has a discontinuity at some point between the sites /
and /—1. Then (3.7) for the sites / and /+1 can be written as

[s + plh |Gz, p,8) — & x) =

a (3.8)
= adip12 5 G, P8l o=y, y o T Ni-1y2[GlTio1, po8) — Gloy, p, s)] + ela],
and
S Ry . a N P .
[s+ pUin |Glzig1.p, 8) — r_rul__i',!+1_.l = aza[qu + pll |~_r“56|~.r.p._ | a[ag] 3.9)

where G(x,p,s) 1s the continuous extension of the discrete function <G>n:

G(x,,p,s) = <G>n /a and a is the lattice constant. The symbol 0[ f (a)] denote a function of

higher degree of smallness than f(a) as a tends to 0. The left side of (3.8), in view 0f(3.9)
can be rewritten as

[# + pll |Gz, p,s) — M) =
= [s + pUi41]Clzi1,p.5) = G (i) + of{s + pUy1 Y6 (41, py5) = 6" (1)) = (3.10)

g & ro 9o : 2
=a E[;‘u.ﬂ; + pU (=)g Gz, po8)|z=zysy + 02",

I

(Here, the first equality holds if the initial condition G°’(x) is smooth. We can use this

assumption, since the diffusion process at large times does not depend on the exact form of
the initial condition. This assumption corresponds to the assumption in real time domain that
the time derivative of G(x, p,s) is smooth function of x.) Substituting relation (3.10) into

(3.8), we find
o
Aoy po|Glrg—y, p, s) — Glay, p,s)| = _ﬂ"i-!+1,fEEG'lT'P- Slr=z,y,,0 T o[a]- (3.11)
In the continuum limit, this relation reduced to the boundary condition

[z, . p,s)|y = [Glz,, p,os)]-. (3.12)

Here, the sign "+" denote the value of function on one side of the boundary, and the sign
on the other. Considering the sites to the left of discontinuity, we obtain the relation

5
Ay p2[Glmi-1, p,8) — Glxy,p, s)| = —ady_gpa EGI;.T‘.F._ 8)z=z;_g;5 T 0[a] (3.13)

instead of (3.11). Eliminating the expression A, [G(xl_l’p,s)—G(xl,p’s)] from (3.11) and

(3.13) and passing to the continuum limit, we obtain the second boundary condition as

, a . ]
[Ai s+ plU |;2';|;|EL=[1'._p. 8)]4 = [Als + pU [.‘r'ijG[_r.p__ s)]-. (3.14)
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Now consider the case where there are traps, but the particle is in the transport state at
the initial time. Making the Laplace transforms of equations (2.1) and (2.2), excluding the

probability of finding the particle in the traps C,, and averaging over the parameters x, and
v,, we obtain the equation for the probability of finding the particle in transport states as:

[s+ U + Z(s 4 pUpn)|Fo — F = woy1pa[Fapt — Fu]l +wa_ioFaci — Fu]. (3.15)

This equation differs from (3.1) only by the presence of a configuration independent
term Z(s+ pU.); so to this equation the above reasoning can be applied. Therefore, the

function F(x, p,s) satisfies the boundary conditions

[F(z,,p.8)|+ = [F(z,.p, s)]-. (3.16)

(s + p{"[z'jjal—dF[:'._p. 8]+ =[Fis+ ,Li"[z'jjaiF[z'._p. )] —. (3.17)
i x

To obtain the boundary conditions for the function G(x, p,s), it is necessary to use the
relation similar to the relation (2.9):

Gile,p,s) =14+ (s + pUlx)) /(s + pUlz))|Fz, p, s). (3.18)
As a result, we obtain the following boundary conditions:

[@(s + pUiz) )Gz, p, s)|4 = [P(s + pU(z) )Gz, p, s]]-. (3.19)

[F(s +p("|;.r'jji{{ﬁ[s +pll () Glz,p. 8) 4+ =
e
3 (3.20)
= [F(= +p[f|;2'jjﬁ{ffl[.¢; +pli{z) )Gz, p, s} -,

If the particle is not necessarily in the transport state at the initial time, then, arguing
as in subsection (2.2), we obtain the relation between functions G(x, p,s) and F(x, p,s)

N 07

Glep,s) =14+ Xls+pliz)) /(s +pllz))]|F(x,p,s) + ; ﬁ (3.21)
The boundary conditions for the function F(x, p,s) remain unchanged. Substituting

the relation (3.21) in (3.16) and (3.17), we find the boundary conditions for the function

G(x, p,s)

[(s + pUl(x)) Gz, p,s) — £2(s + pUlx))]+ = (3.22)
= [@(s + pU(z) )Gz, p,s) — £(s + pU(x)]]-. |
[F(s+ ,ti"lli'jl;'%{tﬁs +pU(2))Glz,p,s) — (s + pUlz])}]+ =

.. (3.23)
= [@(s +p£-'|;-rjli'%{rﬁl;.=; +pU())G(z, p;s) — s+ pU(z))}] -

If at the initial time the probability is concentrated at one point and this point is not on
the boundary, the last boundary conditions are reduced to the boundary conditions (3.19), and
(3/20). Henceforth, we will consider only such case.
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4. Backward equation
In this section, we show that the distribution of the functional H(x,, 4,¢) can be found

not only by integrating the joint distribution G(x, p,s;x,), but also by solving the backward

equation.
First consider the case when, at the initial time, the particle is in the transport state. In

this case, ¢(z)=1 and G(x,p,s;x,)=G.(x,p,s;x,). We assert that the distribution of the
functional (1.1) corresponding to the initial position of the particle x in the Laplace space
(A — p, t — s) satisfies the backward equation
. 8 ooy O S .
[s +pU ()] f(z,p-s) = 1 = a*®(s + pU(z)) 5{¥(s + pU(z)) 5 f(z,p-5)} 4.1
¢ '
and the backward boundary conditions
[flz,p,s)]+ = [flz,p,s]]-. (4.2)
i I_ i Y a ) & i Ti % R EI:J r i %
[#(s + pl (x)) 5 flzp, 8|y = [F(s+ pU (x))5 flz.p, s)]-. (4.3)
(A similar problem with a discontinuity across an interior boundary was considered in

[16].) In order to prove this assertion, we multiply (2.18) by f(x, p,s) and integrate with
respect to x . On the left side, we obtain

f (4 plU(z)) flz, p,s)G(x, p, s xg)de — fx, p, =) 4.4
The right-hand side, after a double integration by parts, can be written as
- . J . a
a’ f Gile,p,szo)P(s + pUiz) ) —{%(s + pU(zx) ] — f(z, p.s) jdx+
e i (el
. . a .
+a” Z +{ flz,p,s)¥(s+ pU |;2';|j&—{d3[.<; + plU{z) )Gz, posion) }— (4.5)
i
— s+ plliz))G(x. p, s; 20)F (s + pU [i'j;lﬁ—f[z'.p..ij}i.
i d

Here the sum is taken over all points of discontinuity. Each point of discontinuity gives two
terms of the sum with opposite signs. In view of the boundary conditions (3.19, 3.20) and
(4.2, 4.3), the sum vanishes. The integral term in view of (4.1) can be rewritten in the form

flwo,p,s) = f Gz, p, s zp)dr. (4.6)
Equation (4.6) and (4.4), we find
flrg.p,s) = f Gz, p, s xg)de. 4.7)

Thus, if a function f(x, A4,t) satisfies the equation (4.1) and the boundary conditions
(4.2, 4.3), then this function is the Laplace transform of the distribution of the functional (1.1)
corresponding to the initial position of the particle x: f(x, A,t) = H(x, 4,t).

Now consider the case when, at the initial time, the particle is not necessarily in the
transport state. From equation (2.18) and the boundary conditions (3.19, 3.20), it follows that

67



the function G, (x, p,s;x,) corresponding to the function ¢(z) different from unity, and the
function G .(x,p,s;x,) corresponding to the function ¢(z) equal to unity (call it
G.(x, p,s;x,)), are connected by the relation

Gelz, posizo) = o s+ pU(x) )Gz, p. s: x). (4.8)

Substituting this relation into (2.27) and integrating with respect to x, we obtain

1

H. 0, P, 8] = )
I,.E u p "‘.-I = + PE-' |;T|_'|_:|

) + (s + p[:'[:z'._-.;lj[H':'[z'._-..p._ s —

s+ pU(xn I (4.9)

where H'(x,, p,s) is the distribution of the functional corresponding to the function ¢(z)

equal to unity. Thus, in this case, it is necessary to solve equation (4.1) with the boundary
conditions (4.2 and 4.3) and then substitute the functions found in the relation (4.9).

5. The residence time in the half-space
Consider the problem of calculating the distribution of the functional (1.1) with the
function U(x) equal to unity at x >0 and zero at x <0.

Equation (4.1), in this case, can be written as

- L.
. ﬂEETJIL.iJEHUILTQ.p._ s),rg < 0
sH (rg,p.s) —1= nf (5.1)

- o 1
a*Bs +PJH—2H"'[.T'.;..p.. s) —pH" (xg, p, ), 20 > 0.
7

The solution of this equation is the form [4, 22]

)] I\ = J.
Oy exp)—, | =—— —.>rq <
. _ 1 exp] a '\ H[sj] + st o v
H(zo,p,s) = —— (5.2)
I.--w otp[_i"_lil I.l L] +P ]+ 1 2o = 0
o2 aV Os+p) s+p "
Constant C, and C, are determined from the boundary condition (4.2 and 4.3)

Cob——=Cy+ =
ERrorrial e (5.3)

(s +p)Ca = -5(s)Cy. (5.4)

where Z(s) = l//(S)\/S/ (a’©(s)) . Substituting the resulting function H’(x,, p,s) into formula
(4.9) we obtain the final solution

1 alsp Sis+p) wn | 8
- — — - i - - p——— {".".'.p[— | —] Iy = i
. ) 8 slast+pl=is+plt+=is) a ‘1‘.' & =)
H{zp,p.s) = _ _ . (5.5
1 ¢ls +plp =\s) g [ s+p :
+— - = oPl——\/ g x>0
i+ p glatpl Sls+pl+ =18 a 1- Sz + p)

With the forward equation the calculation will be more complex. It is necessary to
consider the cases x, <0 and x,>0. If x, <0 then, according to the formula (2.17), the

function G(x, p,s;x,) can be represented as
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1 —

Glr,ptrg) =Gz, pos;r) + fl ol dlr—xq). (5.6)

In the regions x, <0 and x, > 0, the function G (x, p,s;x,) satisfies the equations

B &
sG(x,posirn) —@(8)8(x —x0) = aO(s)—=C,(z. p. 5 T0) (5.7
dxt
and

(=4 piG(x, pszw—ai—hs+p; GlrpszJ (5.8)

respectively. A bounded at infinity solution of these equations has the form

(CremplZ) /5 <
e <
Crep r:l'g s !
- . r [ s+p
Gz, posrg) =4 C g{ﬂ{p[——1k B ‘=+P,l] =0 (5.9)
i < r < 0
L 3 P[a‘g HIGJ1+ o tp[ 1|i e ‘,J] e

At point x =0, this solution must satisfy the boundary conditions (3.19 and 3.20)
POy 4+ Cy) = s 4+ p)Ca, (5.10)
P15 (=)(Ca — Cy) =DP(s+ p)=(s + p)Ca. (5.11)

At point x = x,, the function G(x, p,s;x,) must be continuous, and its first derivative should
have a jump caused by the delta-function:

- T I:' = Y ro { 8
r-latp[?ﬁi.:%] =I’_3{~x.p[ 1 I:—,J|'g-||]+ 4L‘CP[—?1|‘ ng-ll] (512)
L] — g | 8 P
a?d(s)Z(s){ Cy exp[— 1 =T -] —Ca “'51'-'[——'1 a0 ‘=J] C 1*‘-'{P[?1|." m]} = —pls). (5.13)

The distribution H(x,, p,s) is calculated by the formula (2.6)

1 _ é(sa) . , gt .'— I|I 2.9'.-_'_ \
Hiro.p,s) — j‘lﬁ} +r'11| a<i=s) {"CP[—h m]'FCEH'I.' a SI:PPJ-I_
(5.14)
(a2 |le
+"31k {1 ‘-‘-’-P[ 1|l HI””"' 41 {{'KP[ a 1|l =) ‘:J]_l}

Finding constant C,, C, C, C,, and substituting them into the last formula, we get a result

identical to the result obtained with the backward equation. Case x, >0 is similar.

In [4, 22], the authors obtained a solution of this problem for the special case when:
there are no barriers, y(s)=const; the particle at the initial time is in the transport state,

#(z)=1; and the function ®(s) corresponds to the anomalous subdiffusion, ®(s)~s'“. In
this particular case, provided x, =0, we get the following distribution:

.s‘ﬂ‘fg + |~.-=, + pf’"g

H{l,p, s) = (5.15)

69



Having performed the inverse Laplace transform, the authors obtained the following
distribution for the relative residence time in the half-space p, = 4/¢ for the t — oo

af2—1

Hi]l.[ﬁlfl:_,-:g:l _,I-:'+ + |J. — ‘l.:'+ :IL'I'.'.E'—l

flpy) = (5.16)

Iy
o

TPy T+l = py ) ? + 2eos(ma/2) Li‘,'::_"l.j (1 —py )=/
In the limit ¢ — 0, this distribution takes the form of two delta-peaks located at
p, =0 and p, =1; that is, the particle is localized in one of the two half-spaces.

Distribution (5.14) is obtained under the assumption that the anomalous subdiffusion
is caused by traps. What if anomalous subdiffusion is caused by barriers? We put

D(s) =const ; ¢(z)=1; w(s)~s"* in (5.5). Instead of (5.15), we find

s™/ 2 4 (s + p)—/?

H(0,p.s) = — — (5.17)
Hl_-\:t.'_'l + I:H + lI;,:ll—-\:r.-_-'
and instead of (5.16) we find
gin{m— ma/2) p 4 (1= py) e
.'EI:.U+:I = . _ — 0 a — . JI+.- 1—e /2 e (518)
T py (1 —py )7 + 2eos(m —ma/2)p, {1 - py )t/
For small & we have sin(7 —7a/2) = nat /2, cos(w —ma/2) = =1+ (met /1 2)* /2,

—_— i

" p T (1= )T
flp) = 5 ——7 —— : 5.19
2 [p},__c”' — (1= pyp == 4 | mt,-":?jlg_iu_ll__“-""]|jl — py i/t (5.19)

We can see that, in the limit & — 0, the distribution (5.18) takes the form of a delta-
peak located at p, =1/2; that is, the time spent in the area x >0 is equal to half of the total

time. Disagreement with the previous result is explained by the fact that subdiffusion caused
by barriers is stationary. The mobility of a particle does not change with time [10]. For small
a , the particle cannot move away from the initial position at a large distance because the
labyrinth is too tangled (or the environment is too crowded). But in the space available to it,
the particle continues to move, spending approximately equal time in both areas x>0 and
x<0.

6. Conclusions.

In the present paper, both forward and backward Feynman-Kac equations for random
walks in disordered media are obtained. As a model of a disordered medium, the Schirmacher
model, which is the combination of the random barriers model and the multiple-trapping
model, is used. This model takes into account the presence in real disordered media both traps
and different kinds of obstacles. Through this it can describe both non-stationary subdiffusion
due to a delay of particles in traps and stationary subdiffusion due to the negative velocity
correlations. It is shown that the distributions of functionals for media with different
microscopic structures may differ significantly. This means that the obtained equations can be
used to determine the structure of a disordered medium. For this purpose the parameters of
these equations, in particular, memory functions A(¢#) and X(¢) must be chosen so that the
theoretical distribution of functional coincide with the experimental one. Having these
memory functions, and knowing the dependence of these functions on the parameters
characterizing the structure of the medium (see [7, 15, 18]), it is possible, in principle, to find
these medium structure parameters.
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®YHKIIISA PO3OOJLTY TPAEKTOPII YACTUHKH, SIKA 3AIMCHIOE
BUITAIKOBI BJIYKAHHSA B HEBIIOPA/IKOBAHOMY CEPEJJOBHIII

B.II. llIkinen, B.B. Jlo6anoB

Tnemumym ximii nosepxnui im. O.0. Yyuxa Hayionanvnoi akademii Hayk Ykpainu
syn. I'enepana Haymosa, 17, Kuis, 03164, Ykpaina, lobanov@jisc.gov.ua

Poss'sazana 3a0aua npo 3naxoosicenns hyHKyii po3nodiny mpackmopii 4acmuHKuy, uo
301UCHIOE BUNAOKOBI ONIYKAHHS 8 HEeBNOPAOKOBAHOMY Cepedosulyi, ke MICIMUums K nacmKu,
maxk i oap'epu. B saxocmi mooleni HeBNOPAOKOBAHO2O CepedosUd BUKOPUCMAHA MOOEeb
Hlupmaxepa, sixka € Kombinayielo Mmoodeinell 6unaokosux oOap'epie i 6Oacamopazoeo2o
saxonnenns yacmunku. Copmynvosarno npsimi i 360pommi pisusnus @evinmana-Kaya 3
CPAHUYHUMU  YMOBAMU 6 MOYKAX po3pugy. K npuxkiad ompumano po3nooin uacy
nepebyganus wacmuuku 8 nienpocmopi. Iloxazano, wo pizHi munu anomaibHoi cyoougysii,
00ymognenoi nacmxkamu i 6ap'epamu, oaroms QyuKyii po3nooiny, AKi CUILHO PO3PI3HAIOMbCAL.

OYHKIUS PACITIPEAEJEHUS TPAEKTOPUA YACTHULBI, CQBEPIIIAIOIIIEﬁ
CIYYAHUHOE BJY/KJAHUE B HEYIIOPAJOYEHHOMU CPEJE

B.II1. llIknaes, B.B. Jlo6anos

Hnemumym xumuu nosepxnocmu um. A.A. Yyiiko Hayuonanvrou axademuu Hayk Yxkpaurl
va. I'enepana Haymosa, 17, Kues, 03164, Yxpauna, lobanov@isc.gov.ua

Pewena 3adaua o naxoxcoenuu Qyuxyuu pacnpedenenus mpaexmopuu 4acmuybl,
cogepuiaroweli cuydainoe OyxHcoanue 8 HeynopsOO4eHHOU cpede, KOMopas COOEPHCUM KAK
JIO8YWKU, MaK u oOapvepvl. B xauecmee mooenu HeynopsooueHHOU cpeodbl UCNOIb308AHA
mooenv lllupmaxepa, komopas npedcmasinsiem coOOU KOMOUHAYU0 Mooenel ClyYauHblx
bapvepos u muocokpamHozo 3axeama yacmuysl. Chopmynuposanvl npsamvie u obpammubvie
ypasuenusi Detinmana-Kaya ¢ epanuunvimu yCiosusmu 8 moukax paspviea. B xauecmee
npumepa NOIYYeHO pacnpeoeneHue 8pemeHu Npedbl8aHus 4acmuysbl 6 NoJAYNPOCMpPAHCMEe.
Ilokazano, ymo paznuunvie Munvl AHOMAILHOU CYOOUPDY3UU, 00YCI08TIEHHOL TOBYUKAMU U
bapvepamu, 0arom CUIbHO PAIUYAIOUWUECS PYHKYUU paACnpeOeNeHUs.
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