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The problem of finding the distribution of functional of a trajectory of a particle executing a 

random walk in a disordered medium containing both traps and obstacles is considered. As a model of 
a disordered medium, the Schirmacher model, which is the combination of the random barriers model 
and the multiple-trapping model, is used. Forward and backward Feynman-Kac equations with the 
boundary conditions at discontinuity points are formulated. As an example, the distribution of the 
residence time in a half-space is obtained. It is shown that the anomalous subdiffusion due to traps 
and that due to obstacles give very different distributions. 
 

1. Introduction 
1.1. Functional of a random-walk trajectory 

A Brownian functional is defined as  
 

                        

 

(1.1)

 

where ( )x   is a trajectory of a Brownian particle and ( )U x  is a prescribed function, the type 
of which depends on the problem considered. Brownian functionals arise in various fields of 
science; for example, a functional equal to the time spent by the particle in a given domain 
arises in chemical kinetics [1, 2, 6, 8]. In this case, ( ) 1U x   in domain and ( ) 0U x   

otherwise. Other examples include functionals with functions ( )U x x  and 2( )U x x , which 

are of interest for the theory of nuclear magnetic resonance [9]: the case 2( )U x x was 
considered in the study of the dynamics of the growing surface [5]. 

Using the path integral method proposed by Feynman, Kac derived a partial 
differential equation which allows one to find the distribution of the Brownian functional with 
an arbitrary positive function ( )U x  [11]: 

 
 

(1.2)

 

Here ),,( tpxG  is the Laplace transform in variable A  for the function ),,( tAxG  
equal to the joint probability that, at time t , the particle is at point x  and the functional is 
equal to A ; D  is the diffusion coefficient. This Feynman-Kac equation has been widely used 
for the calculation of distributions of functional with different functions ( )U x  [14]. 

Equation (1.2) was derived under the assumption that the medium in which the 
process occurs is homogeneous. If the medium is inhomogeneous, the calculation of the 
distribution of the functional becomes much more complicated [13, 17]; however, if the self-
averaging property holds, then for an inhomogeneous medium we can obtain an equation 
similar to equation (1.2). In [19], such equations (forward and backward) were derived for 
media that can be described by the random traps model. In this model, the diffusion-slowing 
occurs due to the particle delay in the traps. In the present paper, equations are derived in a 
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more realistic model which takes into account the presence of both traps and different kinds 
of obstacles in a disordered medium. In such a case, other equations are obtained, because 
obstacles create an essentially new mechanism for diffusion-slowing. This mechanism 
consists in the fact that the particle cannot move with equal probability in all directions, so 
that the negative velocity correlations arise. 

Interest in the study of functional of a random-walk trajectory has increased with the 
development measurement techniques. The latest methods allow one to track the trajectory of 
the individual particles, and thus to find the distribution of different functional 
experimentally. By analyzing these distributions, one can obtain valuable information about 
the characteristics of random walks; particular, by the structure of environment in which they 
occur. To do this, we need appropriate theoretical models. 

For the first time, the generalized Feynman-Kac equations were derived in [4, 22] in 
the framework of the continuous time random walk model. In principle, these equations can 
be used to find the distributions of functionals in disordered media; however, they, as well as 
the random traps equations, take into account only one diffusion-slowing mechanism - the 
delay in the traps. Generalized Feynman-Kac equations were recently derived in [3] on the 
basis of the Langevin equations. Since this approach assumes that the particle can move with 
equal probability in any direction, the resulting equations are also equivalent to the random 
traps equations. 

We are interested in calculating the distribution of the functional (1.1) when the 
motion of a particle whose trajectory appears under the integral is described by the equation 

 
 

(1.3)

 

where )(tPn  is the probability that the particle is in site n  at time t  and nmW  is the transition 
rate from site m  to site n . In [19], it was shown that at any structure of the lattice, i.e. for any 
parameters nmW , the joint distribution of the functional (1.1) and the particle coordinates 
satisfies the equation 
 

 

 

(1.4)

 

Here ),( tpGn  is Laplace transform in variable A  for the function ),( tAGn  equal to the 

joint probability that the particle is at site n  at time t  and the functional is equal to A ; nU  is 
value of ( )U x  at the site n . This equation describes a random walk with a first order chemical 
reaction whose rate npU  varies in space. The variable p  plays the role of a parameter. 

If the self-averaging property holds, then the averaged over elementary physical 
volume distribution of the functional, for any extended sample of a disordered medium at 
large times will coincide with the distribution found by solving equation (1.4) and averaging 
this solution over the ensemble of configurations. Thus, if the self-averaging property holds, 
the problem reduces to finding the averaged over the ensemble of configurations solutions of 
equation (1.4). In this paper we obtain the equations which this averaged solutions must 
satisfy within the Schirmacher model [7, 15, 18].  

 

1.2. Schirmacher model 
In the Schirmacher model, all lattice sites are divided into two types: transport states 

among which hopping is allowed and traps which are only accessible via the transport states. 
The equation (1.3) takes the form 
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(1.5)

(1.6)

 

where )(tPn  is the probability that the particle is in transport state n  at time t ; )(tQn  is the 

probability that the particle is in trap n  at time t ; mn  is the transition rate from transport 

state n  to transport state m ; n  and n  are, respectively, the transitions rates from the n -th 
transport state to the n -th trap and back. As a result of averaging of this equations over the 
ensemble of configurations and passing to the continuum limit, the authors of [7, 15, 18] 
obtained following equation for the averaged probability density of finding a particle at the 
point x  at the time t  ),( tx : 
 

 

(1.7)

 

Here 2a  is the parameter and )(t  is the memory function that in Laplace space 
st   can be represented as ( ) ( ) ( )s s s    , where 

 

 

 

 (1.8)
 

 (1.9)
 

Here )(s  is the memory function that can be obtained by averaging equation (1.5) at zero 
parameters n  and n , i.e., in the absence of traps and )(s  is the function that describes the 
effect of traps on dispersive (anomalous) transport. These functions can be calculated in 
different approximations. The works [7, 15, 18], proposed methods for finding functions 

)(s  in EMA (effective medium approximation) and )(s  in CPA (coherent potential 
approximation). In this paper, specific forms of these functions will not be used. 

In [21], the Schirmacher model was generalized to the case when the diffusing particle 
could disappear according to the first order chemical reaction with space dependent reaction 
rate nk . The terms )(tPk nn  and )(tQk nn  were added to the right sides of equations (1.5) 
and (1.6), respectively. It was assumed that the motion through the transport state described 
by the random barriers model, i.e., that the transport transition rates are symmetric 
( nmmn   ). After averaging and passing to the continuum limit, the following equation was 
obtained: 
 

 

 

(1.10)

 

where )(xk  is the reaction rate constant (a continuum extension of the nk ); 
 

 

 

 (1.11) 
 

 (1.12)
 

The functions )(t  and )(t  enter into equation (1.10) separately and not as the combination 

0
( ) ( ) ( )

t
t t d        as in the case of equation (1.7). Therefore, this equation will have 

different forms depending on contributions made by barriers and by traps to the dispersive 
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transport. For example, if dispersive transport is caused by barriers without traps ( ( ) 0s  ), 

the equation would look like 
 

 

 

(1.13)

 

and if it is caused by traps without barriers ( ( )s const  ), then the equation would be 
 

 

 

 (1.14)

 

where *( , ) ( ) exp( ( ) )x t t k x t    . The solutions of the equations (1.13) and (1.14) with the 

same function *( , )x t  may differ materially [21]. This means that the barriers and traps 
manifest themselves differently in the diffusion-reaction processes, if a chemical reaction 
constant varies in space. This fact, in principle, can be used to determine the microscopic 
structure of a disordered medium. 
 
2. Forward equation 
2.1. Particle is in transport state at the initial time 
In the Shirmacher model, the equation (1.4) takes the form  
 

 

 

(2.1)
 

(2.2)

 

Functions ( , )nF p t  and ( , )nC p t  are the parts of the function ( , )nC p t  which correspond to the 
position of the particle in the transport state and trap, respectively. From the above it follows 
that within the Shirmacher model, averaged distribution ( , , )G x p t  must satisfy the equation, 
differs from equation (1.10) only in the form of reaction constant: 
 

 

 

(2.3) 

 

where 
 

 

 

(2.4) 
 

 (2.5)
 

This equation is a direct Feynman-Kac equation for the considered model. It differs 
from the analogous equation of the random traps model and equations obtained in [4, 22], by 
the presence of an additional memory function *( , )x t  caused by barriers.  

Function ( , , )G x p t  gives the joint distribution of the functional (1.1) and coordinate of 
the particle at time t . To find the distribution of functional only, we need to integrate this 
function in the coordinate x . In particular, to find 0( , , )H x A t  − the distribution of functional 

(1.1) corresponding to the starting point 0x , it is necessary to find a solution of equation (2.3), 

corresponding to the initial condition 0( , ,0) ( )G x p x x   (we denote it by 0( , , ; )G x p t x  
intedrating this solution with respect to x : 
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(2.6) 

 

and taking the inverse Laplace transform p A . 
 

2.2. Particle is not necessary in transport state at the initial time 
Equation (2.3) is obtained under the assumption that the particle is in the transport 

state at the initial time [7, 15, 18, 21]. However, this assumption is not always satisfied. In 
some cases, the experiment is carried out so that the probability distribution of finding a 
particle in different states is equilibrium. In this section, we derive a generalization of (2.3) in 
case of arbitrary distribution. 

First, consider the case when there is no chemical reaction. Suppose that at the initial 
time the probability of finding the particle in the trap of i -th type is 0

i . Then the probability 
that the particle will remain trapped until the time t  is equal to  
 

 

(2.7) 

 

and the probability that the particle will make first transition from a trap to the transport state 
in the interval ( , )t t dt  is equal to 
 

 
(2.8) 

 

where i  is the transitions rate from the trap of i -th type to the transport state and N  is the 
number of traps types. Using these expressions, we can write the equation for the probability 
of finding the particle in the transport state. 

In the Schirmacher model, the total probability of finding the particle at the point x , 
( , )x t  and the probability ( , )P x t  − of finding the particle in the transport state at same point, 

are related by (in Laplace domain t s ) 
 

 (2.9) 
 

Here, the second term on the right represents the probability that the particle is trapped. 
Equation (1.7) in terms of the function ( , )P x s  has the form 
 

 
(2.10) 

 

This equation is valid if, at the initial time the particle is in the transport state. If there 
is a nonzero probability that the particle is trapped, then the equation is as follows: 
 

 
(2.11) 

 

where 0P  is the probability that a particle is in the transport state at the initial time: 
0

0 1
1

N

ii
P 


  . The last term in the right-hand side describes the arrival of the particles into 

the transport state, represented by the formula (2.8). In this case, the total probability is 
expressed as 
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(2.12) 

Here, the second term on the right represents the probability that the particle is trapped, but 
before it has already been in the transport state. The third term represents the probability that 
the particle is trapped without having visited the transport state; this term corresponds to the 
probability (2.7). The equation for the overall probability is written as 
 

 

(2.13) 

 

If, at the initial time, the probability is not concentrated at one point, and distributed 

over a certain region, the last term in this equation is of the form 
02

2
21

( )
( )

N i

i
i

x
a s

x s







  . The 

consequence of (2.13) is that the resulting flux in the considered model is given by 
 

 

(2.14) 

 

Using this expression and the approach proposed in [21], we can generalize the 
equation (2.13) for the case when the diffusing particle disappears according to the reaction of 
the first order. As a result, we obtain the equation 
 

 

(2.15) 

 

where *( , ) ( ) exp( ( ) ); ( )x t t k x t t      is the function that in Laplace domain t s  can be 
represented as 
 

 

(2.16) 

 

Forward Feynman-Kac equation is obtained from (2.15) by substituting ( , , )G x p t  instead of 
( , )x t  and ( )pU x  instead of ( )k x . The solution of the obtained equation corresponding to 

starting point 0x  can be represented as the sum of regular and singular terms. In Laplace 
domain t s , A p  we will have 
 

 
(2.17) 

 

where the 0( , , ; )G x p s x  satisfies the equation 
 

 

(2.18)
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Here 
 

 

(2.19) 

 

3. Boundary conditions 
The function ( )U x  can have discontinuities at certain points. In order for the 

properties of the original discrete model to reflect correctly by a continuous model, it is 
necessary to put the correct boundary conditions at these points. In this section, the boundary 
conditions for the equation (2.18) at a points of discontinuity of the function ( )U x  are 
considered on a simple example of a regular one-dimensional lattice. A more general 
approach to the problem of boundary conditions is provided in [20]. 

First, consider the case where there are no traps: 0, 0n n   . In one-dimensional 
random barriers model under the condition that the jumps are made only to neighboring sites, 
the Laplace transform of equation (2.1) becomes ( n nG F  in this case) 
 

 (3.1) 
 

In matrix form, this can be written as 
 

 (3.2) 
 

where 1V


 is diagonal matrix with the components 1 1
, ,, 0n n n n mV s pU V    for n m ; 2V


 is 

symmetrical tridiagonal matrix with the components 
2 2 2
, 1 2 1 2 , 1 1, 1 2, ,n n n n n n n n nV V V            2

, 0n n mV    for 1m  . We can write formal 

solution of equation (3.2) as: 
 

 (3.3) 
 

This solution is valid for each configuration, i.e. for each set of parameters n . As a result of 
averaging, we obtain 
 

 (3.4) 
 

This relationship implies that the averaged function G satisfies the equation 
 

 (3.5) 
 

where 
 

 (3.6) 
 

The matrix 3V


 is symmetrical because the matrices 1V


 and 2V


 are symmetrical and 
the operation of averaging and the operation of taking an inverse matrix both retain 
symmetry. Although this will not be a tridiagonal matrix but it can be approximated by a 
tridiagonal matrix with good accuracy [12]. Therefore, we can write (3.5) as 
 

 (3.7) 
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The component 3
, 1n nV   must be symmetric function of ns pU  and 1ns pU  . If 

0nU  , it should be reduced to the function ( )s , and if 1nU  , it must be equal to 
( )s p  . The only function satisfying these conditions is 

  3
, 1 1 / 2n n n nV s pU s pU       We denote it by 1/ 2n . 

Suppose that the function ( )U x  has a discontinuity at some point between the sites l  
and 1l  . Then (3.7) for the sites l  and 1l   can be written as 
 

 

(3.8) 

 

and 
 

 
(3.9) 

 

where ( , , )G x p s  is the continuous extension of the discrete function 
n

G : 

( , , ) /n n
G x p s G a  and a  is the lattice constant. The symbol  ( )o f a  denote a function of 

higher degree of smallness than ( )f a  as a  tends to 0. The left side of (3.8), in view of(3.9) 
can be rewritten as 
 

 

(3.10) 

 

(Here, the first equality holds if the initial condition 0 ( )G x  is smooth. We can use this 
assumption, since the diffusion process at large times does not depend on the exact form of 
the initial condition. This assumption corresponds to the assumption in real time domain that 
the time derivative of ( , , )G x p s  is smooth function of x .) Substituting relation (3.10) into 
(3.8), we find  
 

 
(3.11) 

 

In the continuum limit, this relation reduced to the boundary condition 
 

 (3.12) 
 

Here, the sign "+" denote the value of function on one side of the boundary, and the sign "-" – 
on the other. Considering the sites to the left of discontinuity, we obtain the relation 
 

 
(3.13) 

 

instead of (3.11). Eliminating the expression 1 2 1, , , ,( ) ( )l l p s l p sG x G x      from (3.11) and 

(3.13) and passing to the continuum limit, we obtain the second boundary condition as 
 

 
(3.14) 
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Now consider the case where there are traps, but the particle is in the transport state at 
the initial time. Making the Laplace transforms of equations (2.1) and (2.2), excluding the 
probability of finding the particle in the traps nС , and averaging over the parameters n  and 

n , we obtain the equation for the probability of finding the particle in transport states as: 
 

 (3.15) 
 

This equation differs from (3.1) only by the presence of a configuration independent 
term ( )ns pU ; so to this equation the above reasoning can be applied. Therefore, the 

function ( , , )F x p s  satisfies the boundary conditions 
 

 (3.16) 
 

 
(3.17) 

 

To obtain the boundary conditions for the function ( , , )G x p s , it is necessary to use the 
relation similar to the relation (2.9): 
 

 (3.18) 
 

As a result, we obtain the following boundary conditions: 
 

 (3.19) 
 

 

(3.20)

 

If the particle is not necessarily in the transport state at the initial time, then, arguing 
as in subsection (2.2), we obtain the relation between functions ( , , )G x p s  and ( , , )F x p s  
 

 
(3.21) 

 

The boundary conditions for the function ( , , )F x p s  remain unchanged. Substituting 
the relation (3.21) in (3.16) and (3.17), we find the boundary conditions for the function 

( , , )G x p s  
 

 
(3.22) 

 

 

(3.23) 

 

If at the initial time the probability is concentrated at one point and this point is not on 
the boundary, the last boundary conditions are reduced to the boundary conditions (3.19), and 
(3/20). Henceforth, we will consider only such case. 
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4. Backward equation 
In this section, we show that the distribution of the functional 0( , , )H x A t can be found 

not only by integrating the joint distribution 0( , , ; )G x p s x , but also by solving the backward 
equation. 

First consider the case when, at the initial time, the particle is in the transport state. In 
this case, ( ) 1z   and 0 0( , , ; ) ( , , ; )rG x p s x G x p s x . We assert that the distribution of the 
functional (1.1) corresponding to the initial position of the particle x  in the Laplace space 
( ,A p t s  ) satisfies the backward equation 
 

 
(4.1)

 

and the backward boundary conditions 
 

 (4.2)
 

 
(4.3)

 

(A similar problem with a discontinuity across an interior boundary was considered in 
[16].) In order to prove this assertion, we multiply (2.18) by ( , , )f x p s  and integrate with 
respect to x . On the left side, we obtain 
 

 
(4.4)

 

The right-hand side, after a double integration by parts, can be written as 
 

 

(4.5)

 

Here the sum is taken over all points of discontinuity. Each point of discontinuity gives two 
terms of the sum with opposite signs. In view of the boundary conditions (3.19, 3.20) and 
(4.2, 4.3), the sum vanishes. The integral term in view of (4.1) can be rewritten in the form  
 

 
(4.6)

 

Equation (4.6) and (4.4), we find 
 

 
(4.7)

 

Thus, if a function ( , , )f x A t  satisfies the equation (4.1) and the boundary conditions 
(4.2, 4.3), then this function is the Laplace transform of the distribution of the functional (1.1) 
corresponding to the initial position of the particle x : ( , , ) ( , , )f x A t H x A t . 

Now consider the case when, at the initial time, the particle is not necessarily in the 
transport state. From equation (2.18) and the boundary conditions (3.19, 3.20), it follows that 
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the function 0( , , ; )rG x p s x  corresponding to the function ( )z  different from unity, and the 

function 0( , , ; )rG x p s x  corresponding to the function ( )z  equal to unity (call it 

0( , , ; )rG x p s x ), are connected by the relation 
 

 
(4.8)

 

Substituting this relation into (2.27) and integrating with respect to x , we obtain 
 

 
(4.9)

 

where 0
0( , , )H x p s  is the distribution of the functional corresponding to the function ( )z  

equal to unity. Thus, in this case, it is necessary to solve equation (4.1) with the boundary 
conditions (4.2 and 4.3) and then substitute the functions found in the relation (4.9). 

 

5. The residence time in the half-space 
Consider the problem of calculating the distribution of the functional (1.1) with the 

function ( )U x  equal to unity at 0x   and zero at 0x  .  
Equation (4.1), in this case, can be written as 

 

 

(5.1)

 

The solution of this equation is the form [4, 22] 
 

 

(5.2)

 

Constant 1C  and 2C  are determined from the boundary condition (4.2 and 4.3) 
 

 
(5.3)

 

 (5.4)
 

where 2( ) ( ) ( ( ))s s s a s   . Substituting the resulting function 0
0( , , )H x p s  into formula 

(4.9) we obtain the final solution  
 

 

(5.5)

 

With the forward equation the calculation will be more complex. It is necessary to 
consider the cases 0 0x   and 0 0x  . If 0 0x   then, according to the formula (2.17), the 

function 0( , , ; )G x p s x  can be represented as 
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(5.6)

 

In the regions 0 0x   and 0 0x  , the function 0( , , ; )rG x p s x  satisfies the equations 
 

 
(5.7)

 

and 
 

 
(5.8)

 

respectively. A bounded at infinity solution of these equations has the form 
 

 

(5.9)

 

At point 0x  , this solution must satisfy the boundary conditions (3.19 and 3.20) 
 

 (5.10) 
 

 (5.11) 
 

At point 0x x , the function 0( , , ; )G x p s x  must be continuous, and its first derivative should 
have a jump caused by the delta-function:  
 

 
(5.12)

 

 
(5.13) 

 

The distribution 0( , , )H x p s  is calculated by the formula (2.6) 

 

(5.14)

 

Finding constant 1 2 3 4,C C C C , and substituting them into the last formula, we get a result 

identical to the result obtained with the backward equation. Case 0 0x   is similar. 
In [4, 22], the authors obtained a solution of this problem for the special case when: 

there are no barriers, ( )s const  ; the particle at the initial time is in the transport state, 

( ) 1z  ; and the function ( )s  corresponds to the anomalous subdiffusion, 1( )s s   . In 
this particular case, provided 0 0x  , we get the following distribution: 
 

 
(5.15)
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Having performed the inverse Laplace transform, the authors obtained the following 
distribution for the relative residence time in the half-space /p A t   for the t  : 
 

 

(5.16)

 

In the limit 0  , this distribution takes the form of two delta-peaks located at 
0p   and 1p  ; that is, the particle is localized in one of the two half-spaces. 

Distribution (5.14) is obtained under the assumption that the anomalous subdiffusion 
is caused by traps. What if anomalous subdiffusion is caused by barriers? We put 

( )s const  ; ( ) 1z  ; 1( )s s    in (5.5). Instead of (5.15), we find 
 

 
(5.17)

 

and instead of (5.16) we find 
 

 

(5.18)

 

For small   we have 2sin( / 2) / 2, cos( / 2) 1 ( / 2) / 2           , 
 

 
(5.19)

 

We can see that, in the limit 0  , the distribution (5.18) takes the form of a delta-
peak located at 1 2p  ; that is, the time spent in the area 0x   is equal to half of the total 
time. Disagreement with the previous result is explained by the fact that subdiffusion caused 
by barriers is stationary. The mobility of a particle does not change with time [10]. For small 
 , the particle cannot move away from the initial position at a large distance because the 
labyrinth is too tangled (or the environment is too crowded). But in the space available to it, 
the particle continues to move, spending approximately equal time in both areas 0x   and 

0x  . 
 

6. Conclusions. 
In the present paper, both forward and backward Feynman-Kac equations for random 

walks in disordered media are obtained. As a model of a disordered medium, the Schirmacher 
model, which is the combination of the random barriers model and the multiple-trapping 
model, is used. This model takes into account the presence in real disordered media both traps 
and different kinds of obstacles. Through this it can describe both non-stationary subdiffusion 
due to a delay of particles in traps and stationary subdiffusion due to the negative velocity 
correlations. It is shown that the distributions of functionals for media with different 
microscopic structures may differ significantly. This means that the obtained equations can be 
used to determine the structure of a disordered medium. For this purpose the parameters of 
these equations, in particular, memory functions ( )t  and ( )t  must be chosen so that the 
theoretical distribution of functional coincide with the experimental one. Having these 
memory functions, and knowing the dependence of these functions on the parameters 
characterizing the structure of the medium (see [7, 15, 18]), it is possible, in principle, to find 
these medium structure parameters. 
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ФУНКЦІЯ РОЗПОДІЛУ ТРАЄКТОРІЇ ЧАСТИНКИ, ЯКА ЗДІЙСНЮЄ 
ВИПАДКОВІ БЛУКАННЯ В НЕВПОРЯДКОВАНОМУ СЕРЕДОВИЩІ 

 
В.П. Шкілев, В.В. Лобанов 

 
Інститут хімії поверхні ім. О.О. Чуйка Національної академії наук України  

вул. Генерала Наумова, 17, Київ, 03164, Україна, lobanov@isc.gov.ua 
 

Розв'язана задача про знаходження функції розподілу траєкторії частинки, що 
здійснює випадкові блукання в невпорядкованому середовищі, яке містить як пастки, 
так і бар'єри. В якості моделі невпорядкованого середовища використана модель 
Ширмахера, яка є комбінацією моделей випадкових бар'єрів і багаторазового 
захоплення частинки. Сформульовано прямі і зворотні рівняння Фейнмана-Каца з 
граничними умовами в точках розриву. Як приклад отримано розподіл часу 
перебування частинки в півпросторі. Показано, що різні типи аномальної субдифузії, 
обумовленої пастками і бар'єрами, дають функції розподілу, які сильно розрізняються. 
 
 
ФУНКЦИЯ РАСПРЕДЕЛЕНИЯ ТРАЕКТОРИИ ЧАСТИЦЫ, СОВЕРШАЮЩЕЙ 

СЛУЧАЙНОЕ БЛУЖДАНИЕ В НЕУПОРЯДОЧЕННОЙ СРЕДЕ 
 

В.П. Шкилев, В.В. Лобанов 
 

Институт химии поверхности им. А.А. Чуйко Национальной академии наук Украины  
ул. Генерала Наумова, 17, Киев, 03164, Украина, lobanov@isc.gov.ua 

 
Решена задача о нахождении функции распределения траектории частицы, 

совершающей случайное блуждание в неупорядоченной среде, которая содержит как 
ловушки, так и барьеры. В качестве модели неупорядоченной среды использована 
модель Ширмахера, которая представляет собой комбинацию моделей случайных 
барьеров и многократного захвата частицы. Сформулированы прямые и обратные 
уравнения Фейнмана-Каца с граничными условиями в точках разрыва. В качестве 
примера получено распределение времени пребывания частицы в полупространстве. 
Показано, что различные типы аномальной субдиффузии, обусловленной ловушками и 
барьерами, дают сильно различающиеся функции распределения. 


