Models of surface complexing for a quantitative description of adsorption interactions of biomolecules with high disperse silica

  • N. N. Vlasova Інститут хімії поверхні НАН України
  • L. P. Golovkova Інститут хімії поверхні НАН України
  • O. V. Markitan Інститут хімії поверхні НАН України
  • O. V. Severinovskaya Інститут хімії поверхні НАН України
  • N. G. Stukalina Інститут хімії поверхні НАН України
  • A. A. Chuiko Інститут хімії поверхні НАН України

Анотація

Surface complexation model which explains adsorption in terms of chemical reactions between surface functional groups and dissolved chemical compounds, is reported as an alternative for empirical approach to describing adsorption of biomolecules at oxide/water interface. The use of surface complexation model is demonstrated for adsorption of bilirubin, bile acids, amino acids, and biogenic amines from aqueous solution at high disperse silica surface. It is shown that these organic molecules are adsorbed due to formation of outer-sphere complexes as a result of interaction between silanol groups of silica surface and functional groups of biomolecules.

Посилання

Медицинская химия и клиническое применение диоксида кремния /под ред. А.А. Чуйко. Киев: Наук. думка, 2003. – 415 с.

Hayes K.F. Equilibrium, spectroscopic, and kinetic studies of ion adsorption at the oxide/aqueous interface // Ph.D. thesis. - Stanford University, Stanford, CА, USA, 1987.

Davis J.A., Kent D.B. Surface Complexation Modeling in Aqueous Geochemistry // Rev. Mineralog. – 1990. – V. 23. – P.177-260.

Schindler P.W., Kamber H.R. Die aciditat von silanolgruppen // Helv. Chim. Acta. – 1968. – V. 51. – P.1781-1786.

Hohl H., Stumm W. Interaction of Pb2+ with hydrous α-Al2O3 // J.Colloid Interface Sci. –1976. – V. 55. – P.281-288.

Sposito G. The Surface Chemistry of Solids. -New York: Oxford University Press, 1984. – 423 p.

Schindler P.W., Stumm W. The surface chemistry of oxides, hydroxides, and oxide minerals // Aquatic Surface Chemistry / Ed. Stumm W. - New York: John Wiley, 1987. - P.83-110.

Gouy G. Sur la constitution de la charge electrique a la surface d’un electrolyte // J.Phys. – 1910. – V. 9. – P.457-468.

Chapman D.L. A contribution to the theory of electrocapillarity // Philos. Mag. – 1913. – V. 6, N 25. – P.475-481.

Huang C.P., Stumm W. Specific adsorption of cations on hydrous Al2O3 // J. Colloid Interface Sci. – 1973. – V. 22. – P.231-259.

Dzombak D.A., Morel F.M.M. Surface Complexation Modeling: Hydrous Ferric Oxide. - New York: J.Wiley, 1990. - 393 p.

Stern O. Zur theory der electrolytischen doppelschicht // Z.Electrochem. – 1924. – B. 30. – S.508-516.

Davis J.A., James R.O., Leckie J.O. Surface ionization and complexation at the oxide/water interface // J.Colloid Interface Sci. – 1978. – V. 63. – P.480-499.

Bowden J.M. Model for ion adsorption on mineral surfaces. University of west Australia. – 1973. - 340 p.

Bousse L., Meindl J.D. The importance of Ψ/pH characteristics in the theory of the oxide/electrolyte interface // Geochemical Progress at Mineral Surfaces / Eds. J.A. Davis and K.F. Hayes. - ACS Symp. Ser. 323. Washington, D.C.: Am. Chem. Soc, 1986. – P.79-98.

Parks G.A., de Bruyn P.L. The zero point of charge of oxides // J. Phys. Chem. – 1962. – V. 66. – P.967-973.

Bolt G. H., Van Riemsdijk W.H., Ion Adsorption in Inorganic Variable Charge Constituents // Soil Chemistry. Amsterdam: Elsevier, 1982. – V. B. – P.459-504.

Hiemstra T., Van Riemsdijk W.H., Bolt G.H. Multisite proton adsorption modeling at the solid/solution interface of (hydr)oxides: a new approach // J. Colloid Interface Sci. – 1989. – V. 133. – P.91-104.

Herbelin A.L., Westall J.C. FITEQL. A computer program for determination of chemical equilibrium constants from experimental data. Version 3.1. - Oregon State University, 1994. Rep.94-01.

Ludwig Chr. GRFIT.A program for solving speciation problem: evaluation of equilibrium constants, concentrations, and other physical parameters. - University of Bern, 1992.

Zachara J.M., Ainsworth C.C., Cowan C.E., Schmidt R.L. Sorption of aminonaphtalene and quinoline on amorphous silica // Env. Sci. Technol. – 1990. – V. 24, N 1. – P.118‑126.

Kurtin W.E., Enz J., Dunsmoor C, Evans N., Lightner D.A. Acid dissociation constants of bilirubin and related carboxylic acid compounds in bile salt solutions // Archives in Biochem. Biophys. – 2000. – V. 381, N 1. – Р.83-91.

Brown G.E., Ir., Henrich V.E., Casey W.H. et al. Metal oxide surfaces and their interaction with aqueous solutions and microbial organisms // Chem. Rev. - 1999. – V. 99, N 1. – P.77-174.

Опубліковано
2006-06-20
Як цитувати
Vlasova, N. N., Golovkova, L. P., Markitan, O. V., Severinovskaya, O. V., Stukalina, N. G., & Chuiko, A. A. (2006). Models of surface complexing for a quantitative description of adsorption interactions of biomolecules with high disperse silica. Поверхня, (11-12), 118-137. вилучено із http://surfacezbir.com.ua/index.php/surface/article/view/183
Розділ
Хімія поверхні кремнезему