Нанокомпозити у нейтронозахватній терапії

  • S. P. Turanska Інститут хімії поверхні ім. О.О. Чуйка Національної академії наук України
  • M. P. Turelyk Інститут хімії поверхні ім. О.О. Чуйка Національної академії наук України
  • A. L. Petranovska Інститут хімії поверхні ім. О.О. Чуйка Національної академії наук України
  • V. V. Turov Інститут хімії поверхні ім. О.О. Чуйка Національної академії наук України
  • P. P. Gorbyk Інститут хімії поверхні ім. О.О. Чуйка Національної академії наук України

Анотація

Проаналізовано сучасний стан актуального науково-практичного напрямку в галузі розробки методу нейтронозахватної терапії.

Посилання

Брегадзе В.И., Сиваев И.Б. Лекарство–снайпер, или химический прицел для нейтрона // Природа. – 2004. – № 4. – С. 1–12.

Gadolinium in human glioblastoma cells for gadolinium neutron capture therapy / G. De Stasio, P. Casalbore, R. Pallini, B. Gilbert, F. Sanità, M.T. Ciotti, G. Rosi, A. Festinesi, L.M. Larocca, A. Rinelli, D. Perret, D.W. Mogk, P. Perfetti, M.P. Mehta, D. Mercanti // Cancer Research. – 2001. – V. 61. – P. 4272–4277.

Detta A., Cruickshank G.S. L–Amino Acid transporter–1 and boronophenylalanine–based boron neutron capture therapy of human brain tumors // Cancer Res. – 2009. – V. 69, N 5. – P. 2126–2132.

Development of Multifunctional Nanoparticles for Targeted Drug Delivery and Noninvasive Imaging of Therapeutic Effect / H.K. Sajja, M.P. East, H. Mao, Y.A. Wang, S. Nie, L. Yang // Current Drug Disc. Technolog. – 2009. – V. 6. – P. 43 – 51.

Duncan R. Designing polymer conjugates as lysosomotropic nanomedicines // Biochem. Soc. Trans. – 2007. – V. 35. – Р. 56 – 60.

Pietrangeli D., Ricciardi G. Neutral and polyanionic carboranylporphyrazines: Synthesis and physico–chemical properties // Appl. Radiat. and Isotop. – 2009. – V. 67, N. 7–8. – P. 97 – 100.

Synthesis of α–carboranyl–α–acyloxy–amides as potential BNCT agents / S.C. Jonnalagadda, J.S. Cruz, R.J. Connell, P.M. Scott, V.R. Mereddy // Tetrahedron Lett. – 2009. – V. 50, N. 30. – P. 4314 – 4317.

New types of potential BNCT agents, o–carboranyl aminoalcohols / C.–H. Lee, G.F. Jin, J.G. Joung, J.–D. Lee, H.S. Ban, H. Nakamura, J.–K. Cho, S.O. Kang // Tetrahedron Lett. – 2009. – V. 50, N 24. – P. 2960–2963.

Synthesis of tetrasubstituted Zn(II)–phthalocyanines carrying four carboranyl–units as potential BNCT and PDT agents / F. Giuntini, Y. Raoul, D. Dei, M. Municchi, G. Chiti, C. Fabris, P. Colautti, G. Jori, G. Roncucci // Tetrahedron Lett. – 2005. – V. 46, N 17. – P. 2979–2982.

Synthesis of Functionalized Carboranes as Potential Anticancer and BNCT Agents / V.J. Reddy, M.M. Roforth, C. Tan, M.V. Reddy // Inorg. Chem. – 2007. – V. 46, N 2. – P. 381–383.

Thomas J., Hawthorne M.F. Dodeca(carboranyl)–substituted клозоmers: toward unimolecular nanoparticles as delivery vehicles for BNCT // Chem. Commun. – 2001. – V. 18. − P. 1884−1885.

Клозоmers of High Boron Content: Synthesis, Characterization, and Potential Application as Unimolecular Nanoparticle Delivery Vehicles for Boron Neutron Capture Therapy / L. Ma, J. Hamdi, F. Wong, M.F. Hawthorne // Inorg. Chem. − 2006. − V. 45, N 1. − P. 278–285.

Toward the Synthesis of High Boron Content Polyanionic Multicluster Macromolecules / P. Farrs, A.M. Cioran, V. cha, F. Teixidor, B. tbr, B. Grner, C. Vias // Inorg. Chem. − 2009. − V. 48, N 17. − P. 8210–8219

Thymidine kinase 1 as a molecular target for boron neutron capture therapy of brain tumors / R.F. Bartha, W. Yanga, G. Wua, M. Swindalla, Y. Byunb, S. Narayanasamyb, W. Tjarksb, K. Tordoffc, M.L. Moeschbergerc, S. Erikssond, P.J. Binnse, K.J. Rileye // Proc. Nat. Acad. Sci. U.S.A − 2008. − V. 105, N 45. − P. 17493–17497.

Hyaluronan as carrier of carboranes for tumor targeting in boron neutron capture therapy / C.D. Meo, L. Panza, D. Capitani, L. Mannina, A. Banzato, M. Rondina, D. Renier, A. Rosato, V. Crescenzi // Biomacromolec. – 2007. – V. 8, N 2. – P. 552−559.

Bianco A., Kostarelos K., Prato M. Applications of carbon nanotubes in drug delivery // Curr. Opinion in Chem. Biol. − 2005. − V. 9, N 6. − P. 674−679.

Nanomedicine: An Emerging Modality Based on Nanotechnology for Therapy and Diagnosis / S. Gurusamy, J.H. Park, K. Kim, I.C. Kwon // J. Korean Ind. Eng. Chem. − 2007. − V. 18, N 3. − P. 199−204.

Physisorbed o–carborane onto lyso–phosphatidylcholine–functionalized, single–walled carbon nanotubes: a potential carrier system for the therapeutic delivery of boron / S.N. Yannopoulos, G.D. Zouganelis, S. Nurmohamed, J.R. Smith, N. Bouropoulos, G. Calabrese, D.G. Fatouros, J. Tsibouklis // Nanotechnology. – 2010. – V. 21, N 8. − P. 1−9.

Substituted carborane–appended water–soluble single–wall carbon nanotubes: new approach to boron neutron capture therapy drug delivery / Z. Yinghuai, A.T. Peng, K. Carpenter, J.A. Maguire, N.S. Hosmane, M. Takagaki // J. Am. Chem. Soc. − 2005. − V. 127, N 27. − P. 9875−9880.

Carborane derivatives loaded into liposomes as efficient delivery systems for boron neutron capture therapy / S. Altieri, M. Balzi, S. Bortolussi, P. Bruschi, L. Ciani, A.M. Clerici, P. Faraoni, C. Ferrari, M.A. Gadan, L. Panza, D. Pietrangeli, G. Ricciardi, S. Ristori // J. Med. Chem. − 2009. − V. 52, N 23. − P. 7829–7835.

Receptor–Targeted Liposomal Delivery of Boron–Containing Cholesterol Mimics for Boron Neutron Capture Therapy (BNCT) / B.T.S. Thirumamagal, X.B. Zhao, A.K. Bandyopadhyaya, S. Narayanasamy, J. Johnsamuel, R. Tiwari, D.W. Golightly, V. Patel, B.T. Jehning, M.V. Backer, R.F. Barth, R.J. Lee, J.M. Backer, W. Tjarks // Bioconjugate Chem. − 2006. − V. 17, N 5. − P. 1141–1150.

Transferrin–Loaded нидо–Carborane Liposomes: Tumor–Targeting Boron Delivery System for Neutron Capture Therapy / Y. Miyajima, H. Nakamura, Y. Kuwata, J.–D. Lee, S. Masunaga, K. Ono, K. Maruyama // Bioconjugate Chem. – 2006. – V. 17, N 5. – P. 1314–1320.

Synthesis, Liposomal Preparation, and in Vitro Toxicity of Two Novel Dodecaborate Cluster Lipids for Boron Neutron Capture Therapy / E. Justus, D. Awad, M. Hohnholt, T. Schaffran, K. Edwards, G. Karlsson, L. Damian, D. Gabel // Bioconjugate Chem. – 2007. – V. 18, N 4. – P. 1287–1293.

Synthesis of Boron Cluster Lipids: клозо–Dodecaborate as an Alternative Hydrophilic Function of Boronated Liposomes for Neutron Capture Therapy / J.–D. Lee, M. Ueno, Y. Miyajima, H. Nakamura // Organ. Lett. – 2007. –V. 9, N 2. – P. 323–326.

Pyridinium Lipids with the Dodecaborate Cluster as Polar Headgroup: Synthesis, Characterization of the Physical−Chemical Behavior, and Toxicity in Cell Culture / T. Schaffran, A. Burghardt, S. Barnert, R. Peschka–Sss, R. Schubert, M. Winterhalter, D. Gabel // Bioconjugate Chem. – 2009. – V. 20, N 11. – P. 2190–2198.

Synthesis of dodecaborate–conjugated cholesterols for efficient boron delivery in neutron capture therapy / H. Nakamura, M. Ueno, J.–D. Lee, H.S. Ban, E. Justus, P. Fan, D. Gabel References.// Tetrahedron Lett. – 2007. – V. 48, I. 18. – P. 3151–3154.

Delivery of sodium borocaptate to glioma cells using immunoliposome conjugated with anti–EGFR antibodies by ZZ–His B. Feng, K. Tomizawa, H. Michiue, S. Miyatake, X.–J. Han, A. Fujimura, M. Seno, M. Kirihata, H. Matsui // Biomaterials. – 2009. – V. 30, I. 9. – P. 1746 –  1755.

Disposition of TF–PEG–Liposome–BSH in tumor–bearing mice / Y. Ito, Y. Kimura, T. Shimahara, Y. Ariyoshi, M. Shimahara, S. Miyatake, S. Kawabata, S. Kasaoka and K. Ono // Appl. Radiat. and Isotop. – 2009. – V. 67, I. 7–8, S. 1. – P. 109–110.

Bryant L.H. , Bulte J.W.M. Dendrimers. Chemical principles and biotechnology applications // Focus on Biotechnol. Phys. and Chem. Basis of Biotechnol.– 2006. – V. 7. – P. 47–69.

Synthesis and biological evaluation of folate receptor–targeted boronated PAMAM dendrimers as potential agents for neutron capture therapy / S. Shukla, G. Wu, M. Chatterjee, W. Yang, M. Sekido, L.A. Diop, R. Muller, J.J. Sudimack, R.J. Lee, R.F. Barth, W. Tjarks // Bioconjugate Chem. – 2003. – V. 14, N 1. – P. 158–167.

Molecular targeting and treatment of composite EGFR and EGFRvIII positive gliomas using boronated monoclonal antibodies / W. Yang, G. Wu, R.F. Barth, M.R. Swindall, A.K. Bandyopadhyaya, W. Tjarks, K. Tordoff, M. Moeschberger,  T.J. Sferra, P.J. Binns, K.J. Riley, M.J. Ciesielski, R.A. Fenstermaker, C.J. Wikstrand // Clin Cancer Res. – 2008. – V. 14, N 3. – P. 883–891.

Site–specific conjugation of boron–containing dendrimers to anti–EGF receptor monoclonal antibody cetuximab (IMCC225) and its evaluation as a potential delivery agent for neutron capture therapy / G. Wu, R.F. Barth, W. Yang, M. Chatterjee, W. Tjarks, M.J. Ciesielski, R.A. Fenstermaker // Bioconjugate Chem. – 2004. – V. 15. – P. 185–194.

Determination of boron in tissues and cells using direct–current plasma atomic emission spectroscopy / R.F. Barth, D.M. Adams, A.H. Soloway, E.B. Mechetner // Anal Chem. – 1991. – V. 63. – P. 890–893.

Vascular endothelial growth factor selectively targets boronated dendrimers to tumor vasculature / M.V. Backer, T.I. Gaynutdinov, V. Patel, A.K. Bandyopadhyaya, B.T.S. Thirumamagal, W. Tjarks, R.F. Barth, K. Claffey, J.M. Backer // Mol. Cancer Ther. – 2005. – V. 4, N 9. – P. 1423–1429.

Nanotubes for cancer therapy and diagnostics / D.A. Buzatu, J.G. Wilkes, D. Miller,  J.A. Darsey, T. Heinze,  A. Biris, R. Berger, M. Diggs // US Pat. Application N:20060067939.

BN nanotubes coated with uniformly distributed Fe304 nanoparticles: novel magneto–operable nanocomposites / H. Yang, L. Jing, Y. Bando , T. Chengchun, Z. Chunyi, S. Youguo, E. Takayama–Muromachi , D. Golberg  // J. Mater. Chem. – 2010. – V. 20, N 5. – P. 1007–1011.

Folate Functionalized Boron Nitride Nanotubes and their Selective Uptake by Glioblastoma Multiforme Cells: Implications for their Use as Boron Carriers in Clinical Boron Neutron Capture Therapy / G. Ciofani, V. Raffa, A. Menciassi, A. Cuschieri // Nanoscale res. lett. – 2009. –V. 4, N 2. – P. 113–121.

Incorporation of Cesium Borocaptate onto Silicon Nanowires as a Delivery Vehicle for Boron Neutron Capture Therapy / K. Jiang, J.L. Coffer, J.G. Gillen, T.M.  Brewer // Chem. Mater. – 2010. – V. 22, N 2. – P. 279–281.

Incorporation and characterization of boron neutron capture therapy agents into mesoporous silicon and silicon nanowires / K. Jiang, A. Loni, L.T. Canham, J.L. Coffer // Phys. status solidi (a). – V. 206, I. 6. – P. 1361–1364.

Multifunctional gadolinium oxide nanoparticles: towards image–guided therapy / S. Roux, A.–C. Faure, C. Mandon, S. Dufort, C. Rivière, J.–L. Bridot, B. Mutelet, C.A. Marquette, V. Josserand, G. Le Duc, A. Le Pape, C. Billotey, M. Janier, J.–L. Coll, P. Perriat, O. Tillement // Imaging in Medicine. – 2010. – V. 2, N 2. – P. 211–223.

Hybrid gadolinium oxide nanoparticles combining imaging and therapy /J.L.Bridot, D.Dayde, C.Riviere, C.Mandon, C.Billotey, S.Lerondel, R.Sabattier, G.Cartron, A.Le Pape, G.Blondiaux, M.Janier, P.Perriat, S.Roux, O.Tillement // J. Mater. Chem. – 2009. – V.19. − P.  2328–2335.

A thermo–sensitive polymeric gel containing a gadolinium (Gd) compound encapsulated into liposomes significantly extended the retention of the Gd in tumors / U. Minh Le, D.S. Shaker, B.R. Sloat, Z. Cui // Drug Develop. and Ind. Pharmacy. – 2008. – V. 34, N 4. – P. 413–418.

Le U.M., Cui Z. Biodistribution and tumor–accumulation of gadolinium (Gd) encapsulated in long–circulating liposomes in tumor–bearing mice for potential neutron capture therapy // Intern. J. Pharmaceutics. – 2006. – V. 320, N 1–2. – P. 96–103.

Gadolinium conjugated TiO2–DNA oligonucleotide nanoconjugates show prolonged intracellular retention period and T1–weighted contrast enhancement in Magnetic Resonance images / T. Paunesku, T. Ke, R. Dharmakumar, N. Mascheri, A. Wu, B. Lai, S. Vogt, J. Maser, K. Thurn, B. Szolc–Kowalska, A. Larson, R.C. Bergan, R. Omary, D. Li, Z.–R. Lu, G.E. Woloschak // Nanomedicine. – 2008. – V. 4, N 3. – P. 201–207.

Labeling TiO2 nanoparticles with dyes for optical fluorescence microscopy and determination of TiO2–DNA nanoconjugate stability / K.T. Thurn, T. Paunesku, A. Wu, E.M. Brown, B. Lai,  S. Vogt, J. Maser, M. Aslam, V. Dravid, R. Bergan, G.E. Woloschak  // Small. – 2009. – V. 5, N 11. – P. 1318–1325.

Delivery of gadolinium–labeled nanoparticles to the sentinel lymph node : Comparison of the sentinel node visualization and estimations of intra–nodal gadolinium concentration by the magnetic resonance imaging / H. Kobayashi, S. Kawamoto, M. Bemardo, M.W. Brechbiel, M.V. Knopp, P.L. Choyke  // J. control. release. – 2006. – V. 111, N 3. – P. 343–351.

DNA−TiO2 Nanoconjugates Labeled with Magnetic Resonance Contrast Agents / P.J. Endres, T. Paunesku, S. Vogt, T.J. Meade, G.E. Woloschak // J. Amer. Chem. Soc. – 2007. – V. 129, N 51. – P. 15760–15761.

In vitro cellular accumulation of gadolinium incorporated into chitosan nanoparticles designed for neutron–capture therapy of cancer / F. Shikata, H. Tokumitsu, H. Ichikawa, Y. Fukumori // Europ. J. Pharmac. and Biopharmac. – 2002. – V. 53, N 1. – P. 57–63.

Accumulation of MRI contrast agents in malignant fibrous histiocytoma for gadolinium neutron capture therapy / T. Fujimoto, H. Ichikawa, T. Akisue, I. Fujita, K. Kishimoto, H. Hara, M. Imabori, H. Kawamitsu, P. Sharma, S.C. Brown, B.M. Moudgil, M. Fujii, T. Yamamoto, M. Kurosaka, Y. Fukumori // Appl. Radiat. and isotopes. – 2009. – V. 67, N 7–8. – P. S355–358.

Le U.M., Cui Z. Long–circulating gadolinium–encapsulated liposomes for potential application in tumor neutron capture therapy // Intern. J. Pharmacentics – 2006. – V. 312, N 1–2. –P. 105–112.

Use of fullerenes in diagnostic and/or therapeutic agents/Watson A. D., Klaveness J.,Jamieson G.C., Fellmann J.D., Vogt N.B.// US Pat. Application N:08/284606. – 1994–1997.

Modulation of structural and electronic properties of fullerene and metallofullerenes by surface chemical modifications / J. Tang, G. Xing, F. Zhao, H. Yuan, Y. Zhao // J. Nanosci. Nanotechnol. – 2007. – V. 7. – P. 1085–1101.

Periodical variation of electronic properties in polyhydroxylated metallofullerene materials / J. Tang, G. Xing, Y. Zhao, L. Jing, X. Gao, Y. Cheng, H. Yuan, F. Zhao, Z. Chen, H. Meng, H. Zhang, H. Qian, R. Su, K. Ibrahim // Adv. Mater. – 2006. – V. 18. – P. 1458–1462.

Antioxidative function and biodistribution of [Gd@C82(OH)22]n nanoparticles in tumor–bearing mice / C. Chen, G. Xing, J. Wang, Y. Zhao, B. Li, J. Tang, G. Jia, T. Wang, J. Sun, L. Xing, H. Yuan, Y. Gao, H. Meng, Z. Chen, F. Zhao, Z. Chai, X. Fang // Nano. Lett. – 2005. – V. 5. – P. 2050–2057.

Biopharmaceutics and Therapeutic Potential of Engineered Nanomaterials / X.–J. Liang, C. Chen, Y. Zhao, L. Jia, P.C. Wang // Curr. Drug. Metab. – 2008. – V. 9, N 8.– P. 697–709.

56.       Active oxygen species generated from photoexcited fullerene (C60) as potential medicines: O2–* versus 1O2 / Y. Yamakoshi, N. Umezawa, A. Ryu, K. Arakane, N. Miyata, Y. Goda, T. Masumizu, T. Nagano // J. Am. Chem. Soc. – 2003. – V. 125. – P. 12803–12809.

One–dimensional metallofullerene crystal generated inside single–walled carbon nanotubes / J. Wang, C. Chen, B. Li, H. Yu, Y. Zhao, J. Sun, Y. Li, G. Xing, H. Yuan, J. Tang, Z. Chen, H. Meng, Y. Gao, C. Ye, Z. Chai, C. Zhu, B. Ma, X. Fang, L. Wan // Biochem. Pharmacol. – 2006. – V. 71. – P. 872–881.

  Molecular Characterization of the Cytotoxic Mechanism of Multiwall Carbon Nanotubes and Nano–Onions on Human Skin Fibroblast / L. Ding, J. Stilwell, T. Zhang, O. Elboudwarej, H. Jiang, J.P. Selegue, P.A. Cooke, J.W. Gray, F.F. Chen  // Nano Lett. – 2005. – V. 5, N 12. – P. 2448–2464.

Опубліковано
2010-08-28
Як цитувати
Turanska, S. P., Turelyk, M. P., Petranovska, A. L., Turov, V. V., & Gorbyk, P. P. (2010). Нанокомпозити у нейтронозахватній терапії. Поверхня, (2(17), 355-374. вилучено із http://surfacezbir.com.ua/index.php/surface/article/view/425
Розділ
Медико-біологічні проблеми поверхні