Процеси адсорбції в накопиченні, розділенні та застосуванні рідкоземельних елементів

  • S. P. Turanska Інститут хімії поверхні ім. О.О. Чуйка Національної академії наук України
  • N. V. Opanaschuk Житомирський державний університет ім. Івана Франка
  • N. M. Kusyak Житомирський державний університет ім. Івана Франка
  • V. V. Turov Інститут хімії поверхні ім. О.О. Чуйка Національної академії наук України
  • P. P. Gorbyk Інститут хімії поверхні ім. О.О. Чуйка Національної академії наук України
  • D. B. Kargin Євразійський національний університет ім. Л.Н. Гумілева
  • M. Z. Kokarev Євразійський національний університет ім. Л.Н. Гумілева

Анотація

Виконано огляд нових робіт з адсорбції рідкоземельних елементів (РЗЕ) на органічних і неорганічних матеріалах. Узагальнено результати пошуку речовин, які зв’язують РЗЕ, основні дані щодо отримання адсорбентів, їхніх властивостей, структури та механізмів сорбційних процесів. Наведено інформацію про взаємодію РЗЕ з карбоксильними і фосфатними групами бактеріальних клітин. Розглянуто принципи розділення, накопичення та області застосування РЗЕ, пов’язані з використанням наночастинок, нанокомпозитів та інших структур з розвиненою поверхнею.

Посилання

1. Spravochnik khimika. Khimiya i khimicheskaya tekhnologiya. http://chem21.info/info/1165291/. [in Russian].

2. http://forbes.net.ua/magazine/forbes/1412778-zolotaya-zhila-s-chem-ukraina-vhodit-v-novuyu-tehnologicheskuyu-eru

3. http://365info.kz/2015/04/stanet-li-kazaxstan-liderom-na-mirovom-rynke-redkozemelnyx-metallov/

4. https://www.gazeta.ru/science/2014/09/05_a_6203945.shtml

5. Chen S., Xiao M., Lu D., Zhan X. Use of a microcolumn packed with modified carbon nanofibers coupled with inductively coupled plasma mass spectrometry for simultaneous on-line preconcentration and determination of trace rare earth elements in biological samples. Rapid Commun. Mass Spectrom. 2007. 21(15): 2524. https://doi.org/10.1002/rcm.3123

6. Xu Y., Kuraoka E., Usuda S., Kim S.Y., Hitomi K., Tada T., Yamazaki H., Ishii K. Study on adsorption behavior of trivalent rare earths onto a macroporous silica-based TODGA adsorbent from high level liquid waste. CYRIC Annual Report. 2011. 2010–2011: 88.

7. Fu Q., Yang L., Wang Q. On-line preconcentration with a novel alkyl phosphinic acid extraction resin coupled with inductively coupled plasma mass spectrometry for determination of trace rare earth elements in seawater. Talanta. 2007. 72(4): 1248. https://doi.org/10.1016/j.talanta.2007.01.015

8. Lu K., Peng H.-L., Chen D.‐T., Shi N., Xu D.‐F. Investigation of rare earth ions adsorption properties of PP-g-AA. J. Appl. Polym. Sci. 2000. 76(10): 1549. https://doi.org/10.1002/(SICI)1097-4628(20000606)76:10<1549::AID-APP8>3.0.CO;2-B

9. Zhang L., Ding S.-D., Yang T., Zheng G.-C. Adsorption behavior of rare earth elements using polyethyleneglycol (phosphomolybdate and tungstate) heteropolyacid sorbents in nitric solution. Hydrometallurgy. 2009. 99(1–2): 109. https://doi.org/10.1016/j.hydromet.2009.07.002

10. Liu X., Wang C.Z., Hupalo M., Yao Y.X., Tringides M.C., Lu W.C., Ho K.M. Adsorption and growth morphology of rare-earth metals on graphene studied by ab initio calculations and scanning tunneling microscopy. Phys. Rev. B. 2010. 82(24): 245408. https://doi.org/10.1103/PhysRevB.82.245408

11. Milutina A.D., Kolesnikov V.A. Effect of the nature of the electrolyte on the isoelectric point in contact with carbon nanomaterials. Uspekhi v khimii i khimicheskoy tekhnologii. 2015. 29(1): 28. [in Russian].

12. Fuks S.L., Chebakova N.K., Prokosheva N.V. Issledovaniye protsessa adsorbtsii ionov redkozemel'nykh metallov. Aktual'nyye voprosy nauki i tekhniki. Sbornik nauchnykh trudov po itogam mezhdunarodnoy nauchno-prakticheskoy konferentsii. N 3. (Samara, 2016). [in Russian].

13. Sazonova V.F., Kojemyak M.A., Kladko T.N. Adsorption of lanthanum ions by finely dispersed waxes. Odesa National University Herald. Chemistry. 2013. 18(4(48)): 54. [in Russian].

14. Mursalimova M.L. Ph.D (Chem.) Thesis. (Moscow, 2009). [in Russian].

15. Moriwaki H., Koide R., Yoshikawa R., Warabino Y., Yamamoto H. Adsorption of rare earth ions onto the cell walls of wild-type and lipoteichoic acid-defective strains of Bacillus subtilis. Appl. Microbiol. Biotechnol. 2013. 97(8): 3721. https://doi.org/10.1007/s00253-012-4200-3

16. Challaraj Emmanuel E.S., Vignesh V., Anandkumar B., Maruthamuthu S. Bioaccumulation of cerium and neodymium by Bacillus cereus isolated from rare earth environments of Chavara and Manavalakurichi, India. Indian J. Microbiol. 2011. 51(4): 488. https://doi.org/10.1007/s12088-011-0111-8

17. Takahashi Y., Chatellier X., Hattori K.H., Kato K., Fortin D. Adsorption of rare earth elements onto bacterial cell walls and its implication for REE sorption onto natural microbial mats. Chem. Geol. 2005. 219(1–4): 53. https://doi.org/10.1016/j.chemgeo.2005.02.009

18. Boyanov M.I., Kelly S.D., Kemner K.M., Bunker B.A., Fein J.B., Fowle D.A. Adsorption of cadmium to Bacillus subtilis bacterial cell walls: a pH-dependent X-ray absorption fine structure spectroscopy study. Geochim. Cosmochim. Acta. 2003. 67(18): 3299. https://doi.org/10.1016/S0016-7037(02)01343-1

19. Takahashi Y., Tada A., Kimura T., Shimizu H. Formation of outer- and inner-sphere complexes of lanthanide elements at montmorillonite–water interface. Chem. Lett. (Tokyo). 2000. 2000(6): 701. https://doi.org/10.1246/cl.2000.700

20. Takahashi Y., Tada A., Shimizu H. Distribution pattern of rare earth ions between water and montmorillonite and its relation to the sorbed species of the ions. Anal. Sci. 2004. 20(9): 1301. https://doi.org/10.2116/analsci.20.1301

21. Ozaki T., Gillow J.B., Francis A.J., Kimura T., Ohnuki T., Yoshida Z. Association of Eu(III) and Cm(III) with Bacillus subtilis and Halobacterium salinarum. J. Nucl. Sci. Technol. 2002. 39(3): 950. https://doi.org/10.1080/00223131.2002.10875626

22. Markai S., Andre`s Y., Montavon G., Grambow B. Study of the interaction between europium(III) and Bacillus subtilis: fixation sites, biosorption modeling and reversibility. J. Colloid Interface Sci. 2003. 262(2): 351. https://doi.org/10.1016/S0021-9797(03)00096-1

23. Ohta A., Kawabe I. REE(III) adsorption onto Mn dioxide (d-MnO2) and Fe oxyhydroxide: Ce(III) oxidation by d-MnO2. Geochim. Cosmochim. Acta. 2001. 65(5): 695. https://doi.org/10.1016/S0016-7037(00)00578-0

24. Bau M. Scavenging of dissolved yttrium and rare earths by precipitating iron oxyhydroxide: experimental evidence for Ce oxidation, Y-Ho fractionation, and lanthanide tetrad effect. Geochim. Cosmochim. Acta. 1999. 63(1): 67. https://doi.org/10.1016/S0016-7037(99)00014-9

25. Bagheryan S. Facile and efficient method for the adsorption and separation of lanthanum rare earth metal oxide using iron(II) sulfide nanoparticles coated on magnetite In: The 1 st International Applied Geological Congress, Department of Geology, Islamic Azad University. (26–28 April, 2010, Mashad Branch, Iran). P. 236.

26. Quinn K.A. Infuence of solution and surface chemistry on ytrium and rare earth element sorption. (University of South Florida, USA, 2006).

27. Byrne R.H., Sholkovitz E.R. Chapter 158 Marine chemistry and geochemistry of the lanthanides. Handbook on the Physics and Chemistry of Rare Earths. 1996. 23: 497. https://doi.org/10.1016/S0168-1273(96)23009-0

28. Ohta A., Kawabe I. Rare earth element partitioning between Fe oxyhydroxide precipitates and aqueous NaCl solutions doped with NaHCO3: Determinations of rare earth element complexation constants with carbonate ions Geochem. J. 2000. 34(6): 439. https://doi.org/10.2343/geochemj.34.439

29. K.A. Quinn, R.H. Byrne, J. Schijf Sorption of yttrium and rare earth elements by amorphous ferric hydroxide: Influence of solution complexation with carbonate. Geochim. Cosmochim. Acta. 2006. 70(16): 4151. https://doi.org/10.1016/j.gca.2006.06.014

30. Zhang Z., Fenter P., Cheng L., Sturchio N.C., Bedzyk M.D., Predota M., Bandura A.V., Kubicki J.D., Lvov S.N., Cummings P.T., Chialvo A.A., Ridley M.K., Benezeth P., Anovitz L., Palmer D.A., Machesky M., Wesolowski D.J. Ion adsorption at the rutile–water interface: linking molecular and macroscopic properties. Langmuir. 2004. 20(12): 4954. https://doi.org/10.1021/la0353834

31. Piasecki W., Sverjensky D.A. Speciation of adsorbed yttrium and rare earth elements on oxide surfaces. Geochim. Cosmochim. Acta. 2008. 72(16): 3964. https://doi.org/10.1016/j.gca.2008.05.049

32. Ridley M.K., Machesky M.L., Wesolowski D.J., Palmer D.A. Surface complexation of neodymium at the rutile–water interface: a potentiometric and modeling study in NaCl media to 250 °C. Geochim. Cosmochim. Acta. 2005. 69(1): 63. https://doi.org/10.1016/j.gca.2004.06.028

33. Marmier N., Dumonceau A.J., Fromage F. Surface complexation modeling of Yb(III) sorption and desorption on hematite and alumina. J. Contam. Hydrol. 1997. 26(1–4): 159. https://doi.org/10.1016/S0169-7722(96)00065-4

34. Marmier N., Delise’e A., Fromage F. Surface complexation modeling of Yb(III), Ni(II), and Cs(I) sorption on magnetite. J. Colloid Interface Sci. 1999. 211(1): 54. https://doi.org/10.1006/jcis.1998.5968

35. Marmier N., Delise’e J.A., Fromage F. Surface complexation modeling of Yb(III) and Cs(I) sorption on silica. J. Colloid Interface. Sci. 1999. 212(2): 228. https://doi.org/10.1006/jcis.1999.6086

36. Marmier N., Fromage F. Comparing electrostatic and non-electrostatic surface complexation modeling of the sorption of lanthanum on hematite. J. Colloid Interface Sci. 1999. 212(2): 252. https://doi.org/10.1006/jcis.1998.6039

37. Vodyanitskiy Yu.N., Shoba S.A., Lopatovskaya O.G. Soyedineniya zheleza v karbonatno-sul'fatnykh pochvakh na krasnotsvetnykh kembriyskikh porodakh v yuzhnom Priangar'ye. Pochvovedenie. 2014. 5: 553. [in Russian].

38. Kosmulski M. Standard enthalpies of adsorption of di- and trivalent cations on alumina. J. Colloid Interface Sci. 1997. 192(1): 215. https://doi.org/10.1006/jcis.1997.4994

39. Hazenkamp M.F., Blasse G. Rare-earth ions adsorbed onto porous glass: Luminescence as a characterizing tool. Chem. Mater. 1990. 2(2): 105. https://doi.org/10.1021/cm00008a008

40. Davydov S.Yu., Pavlyk A.V. Adsorbtsiya redkozemel'nykh metallov na kremnii: izmeneniye raboty vykhoda. Fizika tverdogo tela. 2003. 45(7): 1325. [in Russian].

41. Shibata N., Painter G.S., Satet R.L., Hoffmann M.J., Pennycook S.J., Becher P.F. Rare-earth adsorption at intergranular interfaces in silicon nitride ceramics: Subnanometer observations and theory. Phys. Rev. B. 2005. 72(14): 140101. https://doi.org/10.1103/PhysRevB.72.140101

42. Dampilova B.V., Zonkhoeva E.L. Sorption and desorption of ions of rare-earth metals on clinoptilolite tuff. Vestnik VSGUTU. 2013. 4(43): 26.

43. Sukharev Yu.I., Potemkin V.A., Grigorieva E.A. Matematicheskoye modelirovaniye struktury glaukonita ural'skogo mestorozhdeniya. Izvestiya Chelyabinskogo nauchnogo tsentra. 2004. 1(22): 137. [in Russian].

44. Grigorieva E.A. Ph.D (Chem.) Thesis. (Chelyabinsk, 2004). [in Russian].

45. Davranche M., Pourret O., Gruau G., Dia A., Le Coz-Bouhnik M. Adsorption of REE(III)-humate complexes onto MnO2: Experimental evidence for cerium anomaly and lanthanide tetrad effect suppression. Geochim. Cosmochim. Acta. 2005. 69(20): 4825. https://doi.org/10.1016/j.gca.2005.06.005

46. Sonke J.E., Salters V.J.M. Lanthanide–humic substances complexation. I. Experimental evidence for a lanthanide contraction effect. Geochim. Cosmochim. Acta. 2006. 70(6): 1495. https://doi.org/10.1016/j.gca.2005.11.017

47. Yoshida T., Ozaki T., Ohnuki T., Francis A.J. Adsorption of rare earth elements by γ-Al2O3 and Pseudomonas fluorescens cells in the presence of desferrioxamine B: implication of siderophores for the Ce anomaly. Chem. Geol. 2004. 212(3–4): 239. https://doi.org/10.1016/j.chemgeo.2004.08.046

48. Bregadze V.I., Sivaev I.B. Sniper medicine, or a chemical sight for neutron shooting. Priroda. 2004. 4: 3. [in Russian].

49. Fujimoto T., Ichikawa H., Akisue T., Fujita I., Kishimoto K., Hara H., Imabori M., Kawamitsu H., Sharma P., Brown S.C., Moudgil B.M., Fujii M., Yamamoto T., Kurosaka M., Fukumori Y. Accumulation of MRI contrast agents in malignant fibrous histiocytoma for gadolinium neutron capture therapy. Appl. Radiat. Isot. 2009. 67(7–8): 355. https://doi.org/10.1016/j.apradiso.2009.03.063

50. Le U.M., Cui Z. Long–circulating gadolinium–encapsulated liposomes for potential application in tumor neutron capture therapy. Int. J. Pharm. 2006. 312(1–2): 105. https://doi.org/10.1016/j.ijpharm.2006.01.002

51. Endres P.J., Paunesku T., Vogt S., Meade T.J., Woloschak G.E. DNA−TiO2 nanoconjugates labeled with magnetic resonance contrast agents. J. Am. Chem. Soc. 2007. 129(51): 15760. https://doi.org/10.1021/ja0772389

52. Tang J., Xing G., Zhao F., Yuan H., Zhao Y. Modulation of structural and electronic properties of fullerene and metallofullerenes by surface chemical modifications. J. Nanosci. Nanotechnol. 2007. 7(4–5): 1085. https://doi.org/10.1166/jnn.2007.301

53. Liang X.–J., Chen C., Zhao Y., Jia L., Wang P.C. Biopharmaceutics and therapeutic potential of engineered nanomaterials. Curr. Drug. Metab. 2008. 9(8): 697. https://doi.org/10.2174/138920008786049230

54. Wang J., Chen C., Li B., Yu H., Zhao Y., Sun J., Li Y., Xing G., Yuan H., Tang J., Chen Z., Meng H., Gao Y., Ye C., Chai Z., Zhu C., Ma B., Fang X., Wan L. Antioxidative function and biodistribution of [Gd@C82(OH)22]n nanoparticles in tumor-bearing mice. Biochem. Pharmacol. 2006. 71(6): 872. https://doi.org/10.1016/j.bcp.2005.12.001

55. Turanska S.P., Turelyk M.P., Petranovska A.L., Turov V.V., Gorbyk P.P. Nanocomposites in neutron capture therapy. Surface. 2010. 2(17): 355. [in Russian].

56. Pilipchuk E.V., Gorbyk P.P. B- and Gd-containing nanomaterials and nanocomposites for neutron capture therapy. Surface. 2014. 6(21): 150. [in Ukrainian].

57. Pylypchuk Ie.V., Kołodyńska D., Kozioł M., Gorbyk P.P. Gd-DTPA Adsorption on chitosan/magnetite nanocomposites. Nanoscale Res. Lett. 2016. 11(1): 168. https://doi.org/10.1186/s11671-016-1363-3

58. Gorbyk P.P., Petranovskaya A.L., Pilipchuk E.V., Abramov N.V., Oranskaya E.I., Korduban A.M. Synthesis of magnetosensitive Gd-containing nanostructures. Him. Fiz. Tehnol. Poverhni. 2011. 2(4): 385. [in Russian].

59. Pilipchuk E.V., Petranovskaya A.L., Gorbik P.P. Sintez i svoystva nanokompozitov na osnove magnetita, modifitsirovannogo dietilentriaminpentauksusnoy kislotoy. Nanostrukturnoye materialovedeniye. 2012. 3: 47. [in Russian].

60. Pylypchuk Ie.V. Ph.D (Chem.) Thesis. (Kyiv, 2013). [in Ukrainian].

61. Gorbyk P.P. Nanokompozyty z funktsiyamy medyko-biolohichnykh nanorobotiv: syntez, vlastyvosti, zastosuvannya. Nanosistemi, Nanomateriali, Nanotehnologii. 2013. 11(2): 323. [in Ukrainian].

62. Gorbyk P.P., Lerman L.B., Petranovska A.L., Turanska S.P. Magnetosensitive nanocomposites with functions of medico-biological nanorobots: Synthesis and properties. Advances in Semiconductor Research: Physics of Nanosystems, Spintronics and Technological Applications. Chapter 9. (New York: Nova Science Publishers, 2014).

63. Uvarova I.V., Gorbik P.P., Gorobets S.V., Ivaschenko O.A., Ulyanchenko N.V. Nanomaterialy medychnoho pryznachennya. (Kyiv: Naukova Dumka, 2014). [in Ukrainian].

64. Pylypchuk Ie.V., Zubchuk Yu.O., Petranovskaya A.L., Turanska S.P., Gorbyk P.P. Synthesis and properties of Fe3O4/hydroxyapatite/pamidronic acid/ diethylenetriaminepentaacetic acid/Gd3+ nanocomposites. Him. Fiz. Tehnol. Poverhni. 2015. 6(3): 326. [in Ukrainian]. https://doi.org/10.15407/hftp06.03.326

65. Kołodyńska D., Gęca M., Pylypchuk I.V., Hubicki Z. Development of new effective sorbents based on nanomagnetite. Nanoscale Res. Lett. 2016. 11(1): 152. https://doi.org/10.1186/s11671-016-1371-3

66. Gorbyk P.P., Lerman L.B., Petranovska A.L., Turanska S.P., Pylypchuk Ie.V. Magnetosensitive nanocomposites with hierarchical nanoarchitecture as biomedical nanorobots: Synthesis, properties, and application. Chapter 10. Fabrication and Self-Assembly of Nanobiomaterials, Applications of Nanobiomaterials. 2016. 1: 289.

67. Kurochkin V.Yu., Ilin A.A., Ilin A.P. Razrabotka katalizatora srednetemperaturnoy konversii monooksida ugleroda vodyanym parom s ispol'zovaniyem soyedineniy tipa perovskita i shpineli. In: Vserossiyskiy seminar "Termodinamika poverkhnostnykh yavleniy i adsorbtsii". (Ivanovo: Ples, 2008). P. 24. [in Russian].

68. Bortnyk N.V., Brichka A.V., Bakalinska O.M., Brichka S.Ya., Kartel M.T. Catalase-like activity of carbon nanotubes decorated with nanoceria. Surface. 2015. 7(22): 244. [in Ukrainian].

69. Zaitseva O.V. Adsorbtsiya redkozemel'nykh elementov na kletochnykh stenkakh nakopitel'nykh kul'tur sul'fatvosstanavlivayushchikh bakteriy, vydelennykh iz priobskogo neftyanogo mestorozhdeniya. Vestnik SSU. Yestestvennonauchnaya seriya. 2007. 8(58): 341. [in Russian].

70. Avramenko V.A. IV Mezhdunarodnyy internet-simpozium po sorbtsii i ekstraktsii: materialy. (Vladivostok: Dal'nauka, 2012). [in Russian].

71. Ponomareva M.A. Ph.D (Chem.) Thesis. (St. Petersburg, 2014). [in Russian].

72. Arkhipova A.A. Ph.D (Chem.) Thesis. (Moscow, 2015). [in Russian].

73. Patent RF 2457266. Extraction method of amount of rare-earth elements from solutions. Rychkov V.N., Kirillov E.V., Smirnov A.L., Dementiev A.A., Poponin N.A. 2010.

Опубліковано
2016-10-06
Як цитувати
Turanska, S. P., Opanaschuk, N. V., Kusyak, N. M., Turov, V. V., Gorbyk, P. P., Kargin, D. B., & Kokarev, M. Z. (2016). Процеси адсорбції в накопиченні, розділенні та застосуванні рідкоземельних елементів. Поверхня, (8(23), 187-217. https://doi.org/10.15407/Surface.2016.08.187
Розділ
Наноматеріали і нанотехнології