Магнітні характеристики нанокомпозитів складу вуглець-нікель

  • N. V. Abramov Інститут хімії поверхні ім. О.О. Чуйка Національної академії наук України
  • P. P. Gorbyk Інститут хімії поверхні ім. О.О. Чуйка Національної академії наук України
  • V. M. Bogatyrev Інститут хімії поверхні ім. О.О. Чуйка Національної академії наук України

Анотація

Піролітичним методом із полімер-сольових систем на основі фенол-формальдегіду і ацетату нікелю отримані нанокомпозитні частинки (НКЧ) структури типу «ядро-оболонка» складу Ni@C. Показано, що наночастинки (НЧ) Ni є однодоменними, крива намагнічування НК частинок Ni має форму характерну для суперпарамагнетиків і її розрахунки в рамках теорії парамагнетизму Ланжевена задовільно узгоджуються з експериментальними результатами. Методом магнітної гранулометрії на основі моделі «ядро–оболонка» знайдено, що НЧ Ni розподілені логнормально за розмірами, характеризуються середнім діаметром (5 – 8) нм. Розраховано значення товщини поверхневого шару НЧ Ni з неколінеарними, відносно об’ємних, магнітними моментами. Знайдено і порівняно з експериментальними результатами залежності питомої намагніченості насичення і питомої площі поверхні ансамблів НКЧ від середньої товщини вуглецевої оболонки.

Посилання

1. Feygenson M., Kou A., Kreno L.E., Tiano A.L., Patete J.M., Zhang F., Kim M.S., Solovyov V., Wong S.S., Aronson M.C. Properties of highly crystalline NiO and Ni nanoparticles prepared by high-temperature oxidation and reduction. Phys. Rev. B. 2010. 81: 014420. https://doi.org/10.1103/PhysRevB.81.014420

2. Baudouin D., Rodemerck U., Krumeich F., de Mallmann A., Szeto K.C., Ménard H., Veyre L., Candy J.P., Webb P.B., Thieuleux C., Copéret C. Particle size effect in the low temperature reforming of methane by carbon dioxide on silica-supported Ni nanoparticles. J. Catal. 2013. 297: 27. https://doi.org/10.1016/j.jcat.2012.09.011

3. Khurana J.M., Yadav S. Highly monodispersed PEG-stabilized Ni nanoparticles: proficient catalyst for the synthesis of biologically important spiropyrans. Aust. J. Chem. 2012. 65(3): 314. https://doi.org/10.1071/CH11444

4. Bussamara R., Eberhardt D., Feil A.F., Migowski P., Wender H., de Moraes D.P., Machado G., Papaléo R.M., Teixeira S.R., Dupont J. Sputtering deposition of magnetic Ni nanoparticles directly onto an enzyme surface: a novel method to obtain a magnetic biocatalyst. Chem. Commun. 2013. 49(13): 1273. https://doi.org/10.1039/c2cc38737a

5. Lee K.B., Park S., Mirkin C.A. Multicomponent magnetic nanorods for biomolecular separations. Angew. Chem. Int. Ed. Engl. 2004. 43(23): 3048. https://doi.org/10.1002/anie.200454088

6. Kalita P., Singh J., Singh M.K., Solanki P.R., Sumana G., Malhotra B.D. Ring like self assembled Ni nanoparticles based biosensor for food toxin detection. Appl. Phys. Lett. 2012. 100(9): 093702. https://doi.org/10.1063/1.3690044

7. Ma F., Huang J.J., Li J.G., Li Q. Microwave properties of sea-urchin-like Ni nanoparticles. J. Nanosci. Nanotechnol. 2009. 9(5): 3219. https://doi.org/10.1166/jnn.2009.051

8. Roy A., Srinivas V., Ram S., Chandrasekhar-Rao T.V. The effect of silver coating on magnetic properties of oxygen-stabilized tetragonal Ni nanoparticles prepared by chemical reduction. J. Phys. Condens. Matter. 2007. 19(34): 346220. https://doi.org/10.1088/0953-8984/19/34/346220

9. García-Cerda L.A., Bernal-Ramos K.M., Montemayor S.M., Quevedo-López M.A., Betancourt-Galindo R., Bueno-Báques D. Preparation of hcp and fcc Ni and Ni/NiO nanoparticles using a citric acid assisted pechini-type method. J. Nanomater. 2011. 2011: Article ID 162495.

10. Ma F., Ma J., Huang J.J., Li J.G. The shape dependence of magnetic and microwave properties for Ni nanoparticles. J. Magn. Magn. Mater. 2012. 324(2): 205. https://doi.org/10.1016/j.jmmm.2011.08.013

11. Leng Y.H., Wang Y.T., Li X.G., Liu T., Takahashhi S. Controlled synthesis of triangular and hexagonal Ni nanosheets and their size-dependent properties. Nanotechnology. 2006. 17(19): 4834. https://doi.org/10.1088/0957-4484/17/19/009

12. Chen W.M., Zhou W., He L., Chen C.P., Guo L. Surface magnetic states of Ni nanochains modified by using different organic surfactants. J. Phys. Condens. Matter. 2010. 22(12): 126003. https://doi.org/10.1088/0953-8984/22/12/126003

13. Akamaru S., Inoue M., Honda Y., Taguchi A., Abe T. Preparation of Ni nanoparticles on submicron-sized Al2O3powdery substrate by polyhedral-barrel-sputtering technique and their magnetic properties. Jpn. J. Appl. Phys. 2012. 51(6R): 065201. https://doi.org/10.7567/JJAP.51.065201

14. Maicas M., Sanz M., Cui H., Aroca C., Sánchez P. Magnetic properties and morphology of Ni nanoparticles synthesized in gas phase. J. Magn. Magn. Mater. 2010. 322(21): 3485. https://doi.org/10.1016/j.jmmm.2010.06.050

15. Saito G., Hosokai S., Akiyama T., Yoshida S., Yatsu S., Watanabe S. Size-controlled Ni nanoparticles formation by solution glow discharge. J. Phys. Soc. Jpn. 2010. 79(8): 083501. https://doi.org/10.1143/JPSJ.79.083501

16. Kalita P., Singh J., Singh M.K., Solanki P.R., Sumana G., Malhotra B.D. Ring like self assembled Ni nanoparticles based biosensor for food toxin detection. Appl. Phys. Lett. 2012. 100(3): 093702. https://doi.org/10.1063/1.3690044

17. Calandra P. Synthesis of Ni nanoparticles by reduction of NiCl2 ionic clusters in the confined space of AOT reversed micelles. Mater. Lett. 2009. 63(28): 2416. https://doi.org/10.1016/j.matlet.2009.08.016

18. Gonzalez I., De-Jesus J.C., Ca-izales E., Delgado B., Urbina C. Comparison of the surface state of Ni nanoparticles used for methane catalytic decomposition. J. Phys. Chem. C. 2012. 116(40): 21577. https://doi.org/10.1021/jp302372r

19. Choo S., Lee K., Jo Y., Yoon S.M., Choi J.Y., Kim J.Y., Park J.H., Lee K.J., Lee J.H., Jung M.H. Interface effect of magnetic properties in Ni nanoparticles with a hcp core and fcc shell structure. J. Nanosci. Nanotechnol. 2011. 11(7): 6126. https://doi.org/10.1166/jnn.2011.4488

20. Kotoulas A., Gjoka M., Simeonidis K., Tsiaoussis I., Angelakeris M., Kalogirou O., Dendrinou-Samara C. The role of synthetic parameters in the magnetic behavior of relative large hcp Ni nanoparticles. J. Nanopart. Res. 2011. 13(5): 1897. https://doi.org/10.1007/s11051-010-9941-2

21. Carroll K.J., Ulises-Reveles J., Shultz M.D., Khanna S.N., Carpenter E.E. Preparation of elemental Cu and Ni nanoparticles by the polyol method: an experimental and theoretical approach. J. Phys. Chem. C. 2011. 115(6): 2656. https://doi.org/10.1021/jp1104196

22. Bala T., Gunning R.D., Venkatesan M., Godsell J.F., Roy S., Ryan K.M. Block copolymer mediated stabilization of sub-5 nm superparamagnetic nickel nanoparticles in an aqueous medium. Nanotechnology. 2009. 20(41): 415603. https://doi.org/10.1088/0957-4484/20/41/415603

23. Yamauchi Y., Itagaki T., Yokoshima T., Kuroda K. Preparation of Ni nanoparticles between montmorillonite layers utilizing dimethylaminoborane as reducing agent. Dalton. Trans. 2012. 41(4): 1210. https://doi.org/10.1039/C1DT11395J

24. Herrmann I.K., Grass R.N., Stark W.J. High-strength metal nanomagnets for diagnostics and medicine: carbon shells allow long-term stability and reliable linker chemistry. Nanomedicine. 2009. 4(7): 787. https://doi.org/10.2217/nnm.09.55

25. Xu Y., Mahmood M., Li Z., Dervishi E., Trigwell S., Zharov V.P., Ali N., Saini V., Biris A.R., Lupu D., Boldor D., Biris A.S. Cobalt nanoparticles coated with graphitic shells as localized radio frequency absorbers for cancer therapy. Nanotechnology. 2008. 19(43): 435102. https://doi.org/10.1088/0957-4484/19/43/435102

26. Lokteva E.S., Kachevskii S.A., Turakulova A.O., Golubina E.V., Lunin V.V., Ermakov A.E., Uimin M.A., Mysik A.A. The hydrodechlorination of chlorobenzene in the vapor phase in the presence of metal-carbon nanocomposites based on nickel, palladium, and iron. Russ. J. Phys. Chem. A. 2009. 83(8): 1300. https://doi.org/10.1134/S003602440908010X

27. Galakhov V.R., Buling A., Neumann M., Ovechkina N.A., Shkvarin A.S., Semenova A.S., Uimin M.A., Yermakov A.Ye., Kurmaev E.Z., Vilkov O.Y., Boukhvalov D.W. Carbon states in carbon-encapsulated nickel nanoparticles studied by means of X-ray absorption, emission, and photoelectron spectroscopies. J. Phys. Chem. C. 2011. 115(50): 24615. https://doi.org/10.1021/jp2085846

28. Yermakov A.Ye., Boukhvalov D.W., Uimin M.A., Lokteva E.S., Erokhin A.V., Shchegoleva N.N. Hydrogen dissociation catalyzed by carbon‐coated nickel nanoparticles: experiment and theory. Chem. Phys. Chem. 2013. 14(2): 381. https://doi.org/10.1002/cphc.201200831

29. Galakhov V.R., Shamin S.N., Mironova E.M., Uimin M.A., Yermakov A.Ye., Boukhvalov D.W. Electronic structure and resonant X-ray emission spectra of carbon shells of iron nanoparticles. JETP Letters. 2012. 96(11): 710. https://doi.org/10.1134/S0021364012230075

30. David B., Pizúrová N., Schneeweiss O., Bezdi cka P., Morjan I., Alexandrescu R. Preparation of iron/graphite core–shell structured nanoparticles. J. Alloys Compd. 2004. 378(1–2): 112. https://doi.org/10.1016/j.jallcom.2003.10.088

31. Zhang H.J. The Mossbauer spectra of graphite-encapsulated iron and iron compound nanocrystals prepared in carbon arc method. Phys. Chem. Solids. 1999. 60(11): 1845. https://doi.org/10.1016/S0022-3697(99)00192-4

32. Bystrzejewski M., Huczko A., Lange H., Cudzilo S., Kici' nski W. Combustion synthesis route to carbon-encapsulated iron nanoparticles. Diamond Relat. Mater. 2007. 16(2): 225. https://doi.org/10.1016/j.diamond.2006.05.002

33. Wanga Z.H., Zhang Z.D., Choi C.J., Kim B.K. Structure and magnetic properties of Fe(C) and Co(C) nanocapsules prepared by chemical vapor condensation. J. Alloys Compd. 2003. 361(1–2): 289. https://doi.org/10.1016/S0925-8388(03)00441-9

34. Tokoro H., Fujii S., Muto S., Nasu S. Fe–Co and Fe–Ni magnetic fine particles encapsulated by graphite carbon. J. Appl. Phys. 2006. 99(8): 08Q512.

35. Dong X.L., Zhang Z.D., Xiao Q.F., Zhao X.G., Chuang Y.C., Jin S.R., Sun W.M., Li Z.J., Zheng Z.X., Yang H. Characterization of ultrafine γ-Fe(C), α-Fe(C) and Fe3C particles synthesized by arc-discharge in methane. J. Mater. Sci. 1998. 33(7): 1915. https://doi.org/10.1023/A:1004369708540

36. Majetich S.A., Artman J.O., VcHenry M.E., Nuhfer N.T., Staley S.W. Preparation and properties of carbon-coated magnetic nanocrystallites. Phys. Rev. B. 1993. 48(22): 16845. https://doi.org/10.1103/PhysRevB.48.16845

37. Scott J.H.J., Majetich S.A. Morphology, structure, and growth of nanoparticles produced in a carbon arc. Phys. Rev. B. 1995. 52(17): 12564. https://doi.org/10.1103/PhysRevB.52.12564

38. Weiss P. L'hypothèse du champ moléculaire et la propriété ferromagnétique. J. Phys. Theor. Appl. 1907. 6: 661. https://doi.org/10.1051/jphystap:019070060066100

39. Kittel C. Physical theory of ferromagnetic domains. Rev. Mod. Phys. 1949. 21(4): 541. https://doi.org/10.1103/RevModPhys.21.541

40. Malozemoff A.P., Slonczewski J.C. Magnetic domain wall in buble materials. (New York, London, Toronto, Sydney, San Francisco: Academic Press, 1979).

41. Vonsovsky S.V. Magnetizm. (Moscow: Nauka, 1971). [in Russian].

42. Frenkel J., Dorfman J. Spontaneous and induced magnetization in ferromagnetic bodies. Nature. 1930. 126: 274. https://doi.org/10.1038/126274a0

43. Kittel C. Theory of the structure of ferromagnetic domains in films and small particles. Phys. Rev. J. 1946. 70(11–12): 965. https://doi.org/10.1103/PhysRev.70.965

44. Néel L. Propriétés d'un ferromagnétique cubique en grains fins. Compt. Rend. 1947. 224: 1488.

45. Stoner E.C., Wohlfarth E.P. Interpretation of high coercivity in ferromagnetic materials. Nature. 1947. 160: 650. https://doi.org/10.1038/160650a0

46. Stoner E.C., Wohlfarth E.P. A mechanism of magnetic hysteresis in heterogenous alloys. Philos. Trans. 1948. 240(826): 599. https://doi.org/10.1098/rsta.1948.0007

47. Kondorskij E. Priroda vysokoy koertsitivnoy sily melkodispersnykh ferromagnetikov i teoriya odnodomennoy struktury. Izvestiya AN SSSR: Fizicheskaya seriya. 1952. 16(4): 398. [in Russian].

48. Kondorskij E. Mikromagnetizm i peremagnichivaniye kvaziodnodomennykh chastits. Izvestiya AN SSSR: Fizicheskaya seriya. 1978. 42(8): 1638. [in Russian].

49. Brown W.F. Criterion for uniform micromagnetization. Phys. Rev. 1957. 105(5): 1479. https://doi.org/10.1103/PhysRev.105.1479

50. Frei E.H., Shtrikman S., Treves D. Critical size and nucleation field of ideal ferromagnetic particles. Phys. Rev. 1957. 106(3): 446. https://doi.org/10.1103/PhysRev.106.446

51. Aharoni A., Frei E.H., Shtrikman S. Theoretical approach to the asymmetrical magnetization curve. J. Appl. Phys. 1959. 30(12): 1956. https://doi.org/10.1063/1.1735096

52. Aharoni A. Complete eigenvalue spectrum for the nucleation in ferromagnetic prolate spheroid. Phys. Rev. 1964. 131(4): 1478. https://doi.org/10.1103/PhysRev.131.1478

53. Aharoni A. Magnetization curling. Phys. Stat. Sol. 1966. 16(3): 1. https://doi.org/10.1002/pssb.19660160102

54. Stapper C.H. Micromagnetic solutions for ferromagnetic spheres. J. Appl. Phys. 1969. 40(2): 798. https://doi.org/10.1063/1.1657466

55. Eisenstein I., Aharoni A. Magnetization curling in a sphere. J. Appl. Phys. 1976. 47(1): 321. https://doi.org/10.1063/1.322318

56. Aharoni A. Magnetization buckling in a prolate spheroid. J. Appl. Phys. 1986. 60(3): 1118. https://doi.org/10.1063/1.337354

57. Aharoni A. Introduction to the Theory of Ferromagnetism. (Oxford: Clarendon Press, 1996).

58. Gubin S.P., Koksharov Yu.A., Khomutov G.B., Yurkov G.Yu. Magnetic nanoparticles: preparation, structure and properties. Russ. Chem. Rev. 2005. 74(6): 539. https://doi.org/10.1070/RC2005v074n06ABEH000897

59. Petrov A.E., Petinov V.I. Shevchenko V.V. Magnitnyye svoystva malykh aerozol'nykh chastits nikelya v oblasti 4,2-300K. Fizika Tverdogo Tela. 1972. 14(10): 3031. [in Russian].

60. Gorbik P.P., Mishchenko V.N., Abramov N.V., Troshchenkov Yu.N., Usov D.G. Magnitnyye svoystva nanochastits Fe3O4 poluchennykh metodom khimicheskoy kondensatsii i tverdofaznym sintezom. Chemistry, Physics and Surface Technology. 2010. 16: 165. [in Russian].

61. Néel L. Influence of thermal fluctuations on the magnetization of ferromagnetic small particles. C. R. Acad. Sci. 1949. 228(6): 664.

62. Weil L. J. Chem. Phys. 1954. 17: 263.

63. Wohlfarth E.P. The magnetic field dependence of the susceptibility peak of some spin glass materials. J. Phys. F: Met. Phys. 1980. 10(9): L241. https://doi.org/10.1088/0305-4608/10/9/006

64. Néel L. Théorie du traînage magnétique des ferromagnétiques en grains fins avec applications aux terres cuites. Ann. Géophys. 1949. 5: 99.

65. Krishnan K.M., Pakhomov A.B., Bao Y., Blomqvist P., Chun Y., Gonzales M., Griffin K., Ji X., Roberts B.K. Nanomagnetism and spin electronics: materials, microstructure and novel properties. J. Mater. Sci. 2006. 41(3): 793. https://doi.org/10.1007/s10853-006-6564-1

66. Vonsovsky S.V. Magnetizm. (Moscow: Nauka, 1971). [in Russian].

67. Scherrer P. Bestimmung der Grosse und der inneren Struktur von Kolloidteilchen mittels Rontgenstrahlen. Nachr. Ges. Wiss. Gottingen, Math.–Phys. Klasse. 1918. 2: 98.

68. Oranskaya E.I., Gornikov Yu.I., Fesenko T.V. Avtomatizirovannaya metodika opredeleniya srednikh razmerov kristallitov polikristallicheskikh tverdykh tel. Industrial Laboratory. Diagnostics of Materials. 1994. 60(1): 28. [in Russian].

69. Borisenko N.V., Bogatyrev V.M., Dubrovin I.V., Abramov N.V., Gaevaya M.V., Gorbik P.P. Sintez i svoystva magnitochustvitel'nykh nanokompozitov na osnove oksidov zheleza i kremniya. Sbornik trudov "Fiziko–khimiya nanomaterialov i supramolekulyarnykh struktur". 2007. 1: 394. [in Russian].

70. Bean, C.P., Jacobs I.S. Magnetic granulometry and super-paramagnetism. J. Appl. Phys. 1956. 27(12): 1448. https://doi.org/10.1063/1.1722287

71. Kaiser R., Miscolezy G. Magnetic properties of staible dispertions of subdomain magnetic particles. J. Appl. Phys. 1970. 1(3): 1064. https://doi.org/10.1063/1.1658812

72. Bibik E.E., Matygullin B.Ya., Raykhsr Yu.L., Shliomis M.I. Staticheskiye magnitnyye svoystva kolloidov magnetita. Magnitnaya Gidrodinamika. 1973. 1: 68. [in Russian].

73. Petranovska A.L., Abramov N.V., Turanska S.P., Gorbyk P.P., Kaminskiy A.N., Kusyak N.V. Adsorption of cis-dichlorodiammineplatinum by nanostructures based on single-domain magnetite. J. Nanostruct. Chem. 2015. 5(3): 275. https://doi.org/10.1007/s40097-015-0159-9

74. Dovzhyna A.M. Matematychna statystyka. (Moscow: Vyshcha shkola, 1975). [in Ukrainian].

75. Kikoin I.K. Tablitsy fizicheskikh velichin. Spravochnik. (Moscow: Atomizdat, 1976). [in Russian].

76. Yao Y.D., Chen Y.Y., Hsu C.M. Thermal and magnetic studies of nanocrystalline Ni. Nanostruct. Mater. 1995. 6(5–8): 933. https://doi.org/10.1016/0965-9773(95)00213-8

77. Petrov A.E., Petinov V.I. Shevchenko V.V. Magnitnyye svoystva malykh aerozol'nykh chastits nikelya v oblasti 4,2-300K. Fizika Tverdogo Tela. 1972. 14(10): 3031. [in Russian].

78. Nepyyko S.A. Fizicheskiye svoystva malykh metallicheskikh chastits. (Kyiv: Naukova dumka, 1989). [in Russian].

79. Ermakov A.E., Ivanov O.A., Shur Ya.S., Grechishkin R.M., Ivanova G.V. Magnetic properties of single-crystal Ni powders. Fizika Metallov Metallovedenie. 1972. 33(3): 558.

80. Krishnan K.M., Pakhomov A.B., Bao Y., Blomqvist P., Chun Y., Gonzales M., Griffin K., Ji X., Roberts B.K. Nanomagnetism and spin electronics: materials, microstructure and novel properties. J. Mater. Sci. 2006. 41(3): 793. https://doi.org/10.1007/s10853-006-6564-

81. Gangopadhyay S., Hadjipanayis G.C., Dale B., Sorensen C.M., Klabunde K.J., Papaefthymiou V., Kostikas A. Magnetic properties of ultrafine iron particles. Phys. Rev. B. 1992. 45: 9778. https://doi.org/10.1103/PhysRevB.45.9778

82. Morales M.P., Veintemillas-Verdaguer S., Montero M.I., Serna C.J., Roig A., Casas L.l., Martı’nez B., Sandiumenge F. Surface and Internal Spin Canting in γ-Fe2O3 Nanoparticles. Chem. Mater. 1999. 11(11): 3058. https://doi.org/10.1021/cm991018f

Опубліковано
2016-10-06
Як цитувати
Abramov, N. V., Gorbyk, P. P., & Bogatyrev, V. M. (2016). Магнітні характеристики нанокомпозитів складу вуглець-нікель. Поверхня, (8(23), 223-235. https://doi.org/10.15407/Surface.2016.08.223
Розділ
Наноматеріали і нанотехнології