Деякі фізичні аспекти застосування наночастинок при діагностиці і лікуванні онкологічних захворювань

  • L. B. Lerman Інститут хімії поверхні ім. О.О. Чуйка Національної академії наук України

Анотація

Аналізуються можливості використання в медицині золотих и біметалевих наночастинок із срібним ядром і золотою оболонкою, а також магнітних композитних наночастинок. Для шаруватих сферичних і циліндричних частинок отримані нові розв’язки зв’язаних задач електродинаміки і теплопровідності. Наводяться результати розрахунково-експериментальних досліджень магнітних полів і технічних характеристик аплікаторів для модельних джерел поля. Розроблена методика визначення конфігурації магнітних систем для локалізації області дії магнітної сили і експериментально знайдені магнітні моменти агрегатів наночастинок. Визначені кінематичні характеристики руху магнітних частинок у кровоносних судинах при дії зовнішнього поля і встановлено умови втримання носіїв в органі-мішені. Отримані співвідношення для розрахунку температурних полій в околі наночастинок дозволили зв’язати температури в клітині і міжклітинної рідини з характеристиками електромагнітного поля, і тим самим установити необхідні для досягнення потрібних значень температур електричну напруженість і магнітну індукцію зовнішнього поля.

Посилання

1. Freitas R.A. Jr. Nanomedicine, Volume I: Basic Capabilities. (Texas, Georgetown: Landes Bioscience, 1999).

2. Silakov K.I., Silakova T.T. Nanotekhnologii v meditsine. Visnyk Natsionalʹnoho tekhnichnoho universytetu Ukrayiny "KPI" Seriya –Radiotekhnika. Radioaparatobuduvannya. 2014. 49: 212. [in Russian].

3. Igami M., Okazaki T. Current State of Nanotechnology: Patent Analysis. Foresight-Russia. 2008. 2(3): 32. [in Russian]. https://doi.org/10.17323/1995-459X.2008.3.32.43

4. Freitas R.A. Jr. Current Status of Nanomedicine and Medical Nanorobotics. J. Comput. Theor. Nanosci. 2005. 4: 1.

5. Roco M.C. National nanotechnology initiative: Past, present and future. Handbook on Nanoscience, Engineering and Technology. (Taylor and Francis, Boca Raton and London: CRC, 2007).

6. Hullman A. Economic Development of Nanotechnology: A Review of Indicators. Foresight-Russia. 2009. 3(1): 30. [in Russian].

7. Burne J.D., Betancouurt T., Brannon-Peppas L. Active targeting schemes for nanoparticles systems in cancer therapeutics. Adv. Drug Deliv. Rev. 2008. 60(15): 1615. https://doi.org/10.1016/j.addr.2008.08.005

8. Duncan R. The dawning era polymer therapeutics. Nat. Rev. Drug. Discov. 2003. 2(5): 347. https://doi.org/10.1038/nrd1088

9. Prashant K.J., El-Sayed I.H., El-Sayed M.A. Au nanoparticles target cancer. Nanotoday. 2007. 2(1): 18. https://doi.org/10.1016/S1748-0132(07)70016-6

10. Ruuge E.K., Rusetskiy A.N. Napravlennyy transport lekarstv s pomoshch'yu magnitnogo polya. ZhVKHO im. D.I. Mendeleyeva. 1987. 5: 89. [in Russian].

11. Gorbyk P.P. Nanokompozyty z funktsiyamy medyko-biolohichnykh nanorobotiv: syntez, vlastyvosti, zastosuvannya. Nanosistemi, Nanomateriali, Nanotehnologii. 2013. 11(2): 323. [in Ukrainian].

12. Shpak A.A., Gorbik P.P., Chekhun V.F. Nanokompozity mediko-biologicheskogo naznacheniya na osnove ul'tradispersnogo magnetita. In: Fiziko-khimiya nanomaterialov i supramolekulyarnykh struktur. V. 1. (Kyiv: Naukova Dumka, 2007). P. 45. [in Russian].

13. Dudchenko N.O. Magnetic nanoparticles for biomedical purposes: methods of synthesis, investigation of properties, applications. Nanosistemi, Nanomateriali, Nanotehnologii. 2009. 7(4): 1027. [in Ukrainian].

14. Shpak A.P., Gorbyk P.P. Nanomaterials and Supramolecular Structures: Physics, Chemistry, and Applications. (Springer, 2009).

15. Gorbyk P.P., Lerman L.B., Petranovska A.L., Turanska S.P. Magnetosensitive Nanocomposites with Functions of Medico-Biological Nanorobots: Synthesis and Properties. (New York: Nova Science Publishers, 2014).

16. Gorbyk P.P., Dubrovin I.V., Petranovska A.L., Turelyk M.P., Storozhuk L.P., Mishchenko V.M., Abramov M.V., Turanska S.P., Makhno S.N., Pilipchuk E.V., Chekhun V.F., Lukyanova N.Ju., Shpak A.P., Korduban A.M. Magnetocarried transport of therapeutic drugs: current state of development and prospects. Surface. 2010. 2(17): 286. [in Russian].

17. Nikiforov V.N. Biomeditsinskiye primeneniya magnitnykh nanochastits. Nanotekhnologii. 2011. 1: 90. [in Russian].

18. Tkachenko N.V., Ol'khovik L.P., Kamzin A.S. Magnitnaya keramika na osnove gidroksilapatita, modifitsirovannaya chastitsami geksagonal'nogo ferrita tipa M, dlya meditsinskikh primeneniy. Fizika tvordogo tela. 2011. 53(8): 1512. [in Russian].

19. Kyrilenko A.V., Chekhun V.F., Podoltsev A.D., Kondratenko I.P., Kucheryavaya I.N., Bondar V.V., Shpilevaya S.I., Todor I.N. Analysis of the force action of a high-gradient magnetic field on magnetic nanoparticles in a flowing fluid. Reports of the National Academy of Sciences of Ukraine. 2010. 9: 162. [in Russian].

20. Aliyev I.I. Spravochnik po elektrotekhnike i elektrooborudovaniyu. (Rostov: Feniks, 2004). [in Russian].

21. Antonov S.N., Kofanov D.E. Proyektirovaniye magnitnykh sistem elektrotekhnicheskikh ustroystv. (Stavropol: AGRUS, 2011). [in Russian].

22. Galchenko V.Ya., Yakimov A.N., Ostapuschenko D.L. Parametricheskiy sintez formy aksial'no-simmetrichnykh polyusov elektromagnita dlya sozdaniya odnorodnogo magnitnogo polya. Electrical Engineering & Electromechanics. 2010. 4: 33. [in Russian].

23. Galchenko V.Ya., Yakimov A.N., Ostapushchenko D.L. Solution of the inverse problem of creating a uniform magnetic field in coercimeters with partially closed magnetic systems. Russ. J. Nondestr. Test. 2011. 47: 295. https://doi.org/10.1134/S1061830911050056

24. Yakymov A.N., Halʹchenko V.Ya., Ostapushchenko D.L. Intelligent system for optimal-parametric synthesis of magnetic field sources with ferromagnetic elements of construction. Iskusstvennyy intellekt. 2011. 4: 374. [in Russian].

25. Vorob'yev M.A. Intellektual'naya sistema komp'yuternogo proyektirovaniya solenoidal'nykh mnogosektsionnykh istochnikov magnitnykh poley s zadannym raspredeleniyem polya v ob"yeme prostranstva. Iskusstvennyy intellekt. 2004. 1: 144. [in Russian].

26. Podol'tsev A.D., Kucheryavaya I.N. Konechno-elementnoye modelirovaniye magnitnykh i teplovykh protsessov pri magnitno-zhidkostnoy gipertermii biologicheskikh protsessov. Electronic Modeling. 2010. 32(1): 89. [in Russian].

27. Alphandéry E. Perspectives of Breast Cancer Thermoterapies. J. Cancer. 2014. 5(6): 472. https://doi.org/10.7150/jca.8693

28. Shishko E.D., Gamaleya N.F. Primeneniye kolloidnogo zolota v onkologicheskikh issledovaniyakh. Nanostrukturnoe Materialovedenie. 2010. 1: 69. [in Russian].

29. Paciotti G.F., Myer L., Weinreich D., Goia D., Pavel N., McLaughlin R.E., Tamarkin L. Colloidal gold: a novel vector for tumor directed drug delivery. Drug Deliv. 2004. 11(3): 169. https://doi.org/10.1080/10717540490433895

30. Powell A.C., Paciotti G.F., Libutti S.K. Colloidal gold: a novel nanoparticle for targeted cancer therapeutics. Methods Mol. Biol. 2010. 624: 375. https://doi.org/10.1007/978-1-60761-609-2_25

31. Eremenko A.M., Smirnova N.P., Yashan H.R., Ozkaraoglu E., Ertas G., Suzer S. Optical properties and xps-characterization of Ag/Au bimetallic nanoparticles in porous sol-gel silica. Him. Fiz. Tehnol. Poverhni. 2010. 1(1): 94.

32. Shapoval L.V. Ph.D (Phys.-Math.) Thesis. (St. Petersburg, 2011). [in Russian].

33. Trachuk L.A. Ph.D (Phys.-Math.) Thesis. (Saratov, 2007). [in Russian].

34. Alphandéry E., Chebbi I., Guyot F., Durand-Dubief M. Use of bacterial magnetosomes in the magnetic hyperthermia treatment of tumours: a review. Int. J. Hyperthermia. 2013. 29(8): 801. https://doi.org/10.3109/02656736.2013.821527

35. Bazylinski D.A. Synthesis of the bacterial magnetosome: the making of a magnetic personality. Int. Microbiol. 1999. 2(2): 71.

36. Govorov A.O., Zhang W. Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances. Nanoscale Res Lett. 2006. 1(1): 84. https://doi.org/10.1007/s11671-006-9015-7

37. Cherenkov V.S., Ivanitskiy A.M. Tekhnicheskaya elektrodinamika: Konspekt lektsiy. (Odessa: ONAZ im. A.S. Popova, 2006). [in Russian].

38. Bohren C.F., Huffman D.R. Abssorption and Scattering of Light by Small Particles. (New York: Wiley-Interscience, 1983).

39. Porod'ko L.V., Lerman L.B. Electrodynamic energy in spherical nanoparticles layered. Technology Audit and Production Reserves. 2013. 6(1/14): 41. [in Russian].

40. Grechko L.G., Lerman L.B., Vodop'yanov D.L., Shostak S.V. Polyaryzovnistʹ strukturno-neodnoridnykh kulʹovykh chastynok. Visnyk Kyyivsʹkoho natsionalʹnoho universytetu imeni Tarasa Shevchenka. Seriya: Fizyko-matematychni nauky. 2007. 1: 207. [in Ukrainian].

41. Khorasani S., Adibi A. Analytial solution of linear ordinary differential equations by differential transfer matrix method. Electronic Journal of Differential Equations. 2003. 2003(79): 1.

42. Tricarico S., Bilotti F., Vegni L. Scattering cancellation by metamateral cylindrical multilayers. Journal of the European Optical Society - Rapid publications. 2009. 4: 09021.

43. Abramovitz A., Stecun I.A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. (Washington, DC: National Bureau of Standards. NBS Applied Mathematical Series 55, 1964).

44. Stratton J.A. Electromagnetic theory. (McGraw-Hill, New-York, 1941).

45. Bohren C.F., Huffman D.R. Abssorption and Scattering of Light by Small Particles. (New York: Wiley-Interscience, 1983).

46. Roth J., Digman M.J. Scattering and extinction sections fof a spherical particles coated with an oriented molecular layer. J. Opt. Soc. Am. A. 1973. 63(3): 308. https://doi.org/10.1364/JOSA.63.000308

47. Lopatin V.N., Sid'ko F.Ya. Vvedeniye v optiku vzvesey kletok. (Novosibirsk: Nauka, 1988). [in Russian].

48. Mischenko M.I., Hovenier I.V., Travis L.D. Light Scatterring by Nonspherical Particles. (Academic press, 2004).

49. Barber P.W. Light Scattering by Particles: Computational Methods. V.4. (Singapore, New Jersy, London, Hong Kong: World Scientific, 1990). https://doi.org/10.1142/0784

50. Aden A.L., Kerker M. Scattering of Electromagnetic Waves from Two Concentric Spheres. J. Appl. Phys. 1951. 22(10): 1242. https://doi.org/10.1063/1.1699834

51. Wu Z.S., Wang Y.P. Electromagnetic scattering for multi-layered sphere: recursive algorithm. Radio. Sci. 1991. 26(6): 1393. https://doi.org/10.1029/91RS01192

52. Moroz A. A recursive transfer-matrix solution for a dipole radiating and outside a stratified sphere. Ann. Phys. 2005. 315(2): 352. https://doi.org/10.1016/j.aop.2004.07.002

53. Gurwich I., Kleiman M., Shiloah N., Cohen A. Scattering of electromagnetic radiation by multilayered spheroidal particles: recursive procedure. Appl. Opt. 2000. 39(3): 470. https://doi.org/10.1364/AO.39.000470

54. Lerman L.B. Occurrence of additional plasma resonances in layered small particles. Nanosistemi, Nanomateriali, Nanotehnologii. 2009. 7(1): 37. [in Ukrainian].

55. Lerman L.B. Vozniknoveniye dopolnitel'nykh plazmonnykh rezonansov v malykh chastitsakh s obolochkoy. Chemistry, Physics and Surface Technology. 2008. 14: 91. [in Russian].

56. Grechko L.H., Lerman L.B., Shkoda N.H. Bahatosharovyy elipsoyid v elektrostatychnomu poli. Visnyk Kyyivsʹkoho natsionalʹnoho universytetu imeni Tarasa Shevchenka. Seriya: Fizyko-matematychni nauky. 2004. 1: 386. [in Ukrainian].

57. Grechko L.G., Lerman L.B., Shkoda N.G. Efektyvna dielektrychna pronyknistʹ matrychnykh dyspersnykh system z bahatosharovymy vklyuchennyamy: pryama ta obernena zadachi. Visnyk Kyyivsʹkoho natsionalʹnoho universytetu imeni Tarasa Shevchenka. Seriya: Fizyko-matematychni nauky. 2004. 4: 474. [in Ukrainian].

58. Lioushechenko M.O., Lerman L.B., Krivoruchko Ya.S. Electromagnetic waves interaction with a multi-layered spherical lens. Visnyk NTUU KPI Seriia - Radiotekhnika Radioaparatobuduvannia. 2007. 34: 54. [in Ukrainian].

59. Grechko L.G., Lerman L.B., Vodop'yanov D.L., Shostak S.V. Polyaryzovnistʹ strukturno neodnoridnykh kulʹovykh chastynok. Visnyk Kyyivsʹkoho natsionalʹnoho universytetu imeni Tarasa Shevchenka. Seriya: Fizyko-matematychni nauky. 2007. 1: 416. [in Ukrainian].

60. L.B. Lerman, E.Yu. Grishchuk, N.G. Shkoda, S.V. Shostak Osobennosti vzaimodeystviya elektromagnitnogo izlucheniya s malymi chastitsami i ikh ansamblyami: teoreticheskiye aspekty. Uspekhi fiziki metallov. 2012. 13(1): 71. [in Ukrainian].

61. Porod'ko L.V., Lerman L.B. Electrodynamic energy in spherical nanoparticles layered. Technology Audit and Production Reserves. 2013. 6(1/14): 41. [in Russian].

62. Grechko L.G., Lerman L.B., Shkoda N.G. Rozsiyuvannya elektromahnitnoho vyprominyuvannya na bahatosharoviy kuli. Visnyk Kyyivsʹkoho natsionalʹnoho universytetu imeni Tarasa Shevchenka. Seriya: Fizyko-matematychni nauky. 2004. 3: 376. [in Ukrainian].

63. Grechko L.G., Bila R.V., Semchuk O.Yu., Willander M., Karlsteen M. Features of transport phenomenas in magnetic semiconductors with laser-induced periodic nanostructures. Mater. Sci. Eng. C. 2007. 27(5–8): 1360.

64. Semchuk O.Yu., Grechko L.G., Lerman L.B., Willander M., Karlsteen M. Thermal effects caused interaction of powerful laser radiation of condensed matter. J. Optoelectron. Adv. Mater. 2010. 12(3): 586.

65. Shpak A.P., Grechko L.G., Kunitskaya L.Yu., Lerman L.B., Semchuk O.Yu. Periodychni struktury, indukovani na poverkhni tverdykh til interferentsiyeyu lazernykh puchkiv. Teplovi efekty. Nanosistemi, Nanomateriali, Nanotehnologii. 2007. 5(3): 683. [in Ukrainian].

66. Grechko LG, Lerman LB, Semchuk O.Yu., Lushchenko M.O., Kunitskaya L.Yu. Indukovani lazernymy puchkamy poverkhnevi periodychni struktury. Visnyk Kyyivsʹkoho natsionalʹnoho universytetu imeni Tarasa Shevchenka. Seriya: Fizyko-matematychni nauky. 2007. 3: 282. [in Ukrainian].

67. Gorbik P.P., Grechko L.G., Semchuk A.Yu., Lerman L.B., Kunitskaya L.Yu. Lazer – indutsirovannyye periodicheskiye poverkhnostnyye struktury v tverdykh telakh. Chemistry, Physics and Surface Technology. 2007. 13: 34. [in Russian].

68. Grechko L.H., Semchuk A.YU, Lerman L.B., Porodʹko L.V. Prostorovyy ta chasovyy rozpodil temperatury na poverkhni tverdoho tila, vyklykanyy odnomirnoyu lazerinterferentsiynoyu kartynkoyu. Visnyk Kyyivsʹkoho natsionalʹnoho universytetu imeni Tarasa Shevchenka. Seriya: Fizyko-matematychni nauky. 2011. 1: 227. [in Ukrainian].

69. Demchishin A.B., Porodko L.V. Formy otoplennya poverkhni tverdoho tila pid diyeyu impulʹsnoho lazernoho vyprominyuvannya. Uspekhi Fiziki Metallov. 2012. 13: 1. [in Ukrainian].

70. Porodko L., Lerman L., Semshuk O. On Counting Limited Speed of Heat Expansion for Laser Heating of Solid Surface. Him. Fiz. Tehnol. Poverhni. 2011. 2(3): 343. [in Ukrainian].

71. Lykov A.V. Teoriya teploprovodnosti. (Moscow: Gos. Izdatel'stvo tekhniko-teoreticheskoy literatury, 1952). [in Russian].

72. Koshlyakov N.S., Gliner E.B., Smirnov M.M. Uravneniya v chastnykh proizvodnykh matematicheskoy fiziki. (Moskva: Vysshaya Shkola, 1970). [in Russian].

73. Tugolukov Ye.N. Resheniye zadach teploprovodnosti metodom konechnykh integral'nykh preobrazovaniy: Uchebnoye posobiye. (Tambov: Yzd-vo Tamb. Hos. Tekhn. Un-ta, 2005). [in Russian].

74. Kartashov E.M., Lyubov B.Ya. Analiticheskiye metody resheniya krayevykh zadach uravneniya teploprovodnosti v oblasti s dvizhushchimisya granitsami: Obzor. Izvestiya AN SSSR. Energetika i transport. 1974. 6: 83. [in Russian].

75. Kartashov E.M. Metod integral'nykh preobrazovaniy v analiticheskoy teorii. Izvestiya AN SSSR. Energetika i transport. 1976. 14(5): 85. [in Russian].

76. Kartashov E.M., Belousov V.P. Raschety temperaturnykh poley v tverdykh telakh. Izvestiya AN SSSR. Energetika i transport. 1983. 21(5): 112. [in Russian].

77. Kartashov E.M. Analiticheskiye metody resheniya resheniya krayevykh zadach teploprovodnosti s raznorodnymi granichnymi usloviyami na liniyakh: Obzor. Izvestiya AN SSSR. Energetika i transport. 1986. 5: 125. [in Russian].

78. Kartashov E.M. Analiticheskiye metody smeshannykh granichnykh zadach teploprovodnosti: Obzor. Izvestiya AN SSSR. Energetika i transport. 1986. 6: 116. [in Russian].

79. Kartashov E.M. Metod obobshchennogo integral'nogo preobrazovanich pri reshenii uravneniya teploprovodnosti v oblasti s dvizhushchimisya granitsami: Obzor. Inzhenerno-fizicheskiy zhurnal. 1987. 52(3): 495. [in Russian].

80. Kartashov E.M. Metod integral'nykh preobrazovaniy v analiticheskoy teorii teploprovodnosti tverdykh tel. «Proceedings of the Russian Academy of Sciences. Power Engineering» Journal. 1993. 2: 99. [in Russian].

81. Kartashov E.M. Raschety temperaturnykh poley v tverdykh telakh na osnove uluchshennoy skhodimosti ryadov Fur'ye-Khankelya. «Proceedings of the Russian Academy of Sciences. Power Engineering» Journal. 1993. 3: 106. [in Russian].

82. Tikhonov A.N., Samarskiy A.A. Uravneniya matematicheskoy fiziki. (Moscow: Nauka, 1972). [in Russian].

83. Kamke E. Spravochnik po obyknovennym differentsial'nym uravneniyam. (Moscow: Nauka, 1976). [in Russian].

84. Korn G., Korn T. Spravochnik po matematike. (Moscow: Nauka, 1973). [in Russian].

85. Vladimirov V.S. Uravneniya matematicheskoy fiziki. (Moscow: Nauka, 1971). [in Russian].

86. Akhiezer A.I. Obshchaya fizika. Elektricheskiye i magnitnyye yavleniya. (Kyiv: Naukova dumka, 1981). [in Russian].

87. Parsell E. Kurs fiziki. V. 2. Elektrichestvo i magnetizm. (Moscow: Nauka, 1971). [in Russian].

88. Borovik E.S., Eremenko V.V., Milner A.S. Lektsii po magnetizmu. (Moscow: Fizmatlit, 2005). [in Russian].

89. Montgomery D.B. Magnetic Forces for Medical Applications. J. Appl. Phys. 1969. 40(3): 1039. https://doi.org/10.1063/1.1657523

90. Lacava L.M., Lacava B.M., Azevedo R.B., Lacava Z.G.M., Buske N., Tronconi A.L., Morais P.C. Nanoparticle sizing: a comparative study using atomic force microscopy, transmission electron microscopy, and ferromagnetic resonance. J. Magn. Magn. Mater. 2001. 225(1–2): 79. https://doi.org/10.1016/S0304-8853(00)01231-2

91. Samoylenko N.I., Kuznetsov A.I., Kostenko A.B. Teoriya veroyatnostey: Uchebnik. (Kharkov: Izd-vo «NTMT», 2009). [in Russian].

92. Forsyth J., Malcolm M., Moler K. Mashinnyye metody matematicheskikh vychisleniy. (Moscow: Mir, 1980). [in Russian].

93. Dvayt G.B. Tablitsy integralov i drugiye matematicheskiye formuly. (Moscow: Nauka, 1978). [in Russian].

94. Grechko L.G., Gorbik P.P., Lerman L.B., Chuiko O.O. Mozhlyvistʹ vykorystannya mahnitnykh nanochastok yak zasobiv transportu i utrymannya likarsʹkykh preparativ v orhanomisheni. Reports of the National Academy of Sciences of Ukraine. 2006. 4: 181. [in Ukrainian].

95. Gorbik P.P., Lerman L.B., Grechko L.G., Galata M.L. Nekotoryye fizicheskiye aspekty problemy ispol'zovaniya magnitnykh nanochastits v kachestve sredstv transporta lekarstvennykh preparatov. In: Konferentsiya "Meditsinskaya fizika 2005", MGU-Onkologicheskiy tsentr, II Yevraziyskiy kongress po meditsinskoy fizike i inzhenerii. Sbornik materialov. (Moscow, 2005). [in Russian].

96. Shpak A.P., Gorbik P.P., Chekhun V.F., Grechko L.G., Dubrovin I.V., Petranovskaya A.L., Vergun L.Yu., Korduban O.M., Lerman L.B. Nanokompozity mediko-biologicheskogo naznacheniya na osnove ul'tradispersnogo magnetita. V. 1. (Kyiv: Naukova Dumka, 2007). P. 45. [in Russian].

97. Oshima M., Takagi K., Torii R. Experimental and Numerical investigation of blood flow in cerebral artery. V. 1. In: 2nd European Conference on Computational Mechanics : abstracts : Solids, structures and coupled problems in engineering. (June 26-29, 2001, Cracow, Poland). P. 100.

98. Fiziologiya krovoobrashcheniya. Fiziologiya sosudistoy sistemy. (Leningrad: Nauka, 1984). [in Russian].

99. Pavlovsky Yu.N., Regirerer S.A., Skobeleva I.M. Gidrodinamika krovi. Itogi nauki i tekhniki. Mekhanika. (Moscow: VINITI, 1970). P. 7. [in Russian].

100. Karo K., Pedli T., Shroter R., Sid U. Mekhanika krovoobrashcheniya. (Moscow: Mir, 1981). [in Russian].

101. McDonald, D.A. Blood Flow in Arteries. (Baltimore: Williams, Wilkins, 1974).

102. Lehninger A.L. The metabolism of the arterial wall. In the Arterial Wall. (Baltimore: Williams, Wilkins, 1959).

103. http://meduniver.com/Physiology/356.html MedUniver

104. Tishina E. Magnity i sovremennaya meditsina. http://www.amtc.ru/publications/articles/2055/ [in Russian].

105. Haik, Y., Pai V., Chen C.J. Apparent viscosity of human blood in a high statics magnetic field. J. Magn. Magn. Mater. 2001. 225(1–2): 180. https://doi.org/10.1016/S0304-8853(00)01249-X

106. Caro C.G., Pedley T.J., Seed W.A. Mechanics of the circulation, Chapter 1 of Cardiovascular physiology. (London: Medical and Technical Publishers, 1974).

107. Lightfoot E.N. Transport phenomena in living systems. Biomedical aspects of momentum and mass transport. (New York: Lohn Willey and Sons, 1974).

108. Yuan F., Salehi H.A., Boucher Y., Vasthare U.S., Tuma R.F., Jain R.K. Vascular permeability and microcirculation of gliomas and mammary carcinomas transplanted in rat and mous cranial windows. Cancer Res. 1994. 54(17): 4564.

Опубліковано
2016-10-06
Як цитувати
Lerman, L. B. (2016). Деякі фізичні аспекти застосування наночастинок при діагностиці і лікуванні онкологічних захворювань. Поверхня, (8(23), 284-358. https://doi.org/10.15407/Surface.2016.08.284
Розділ
Медико-біологічні проблеми поверхні