Elementary acts of the reaction of molecular oxygen recovery over nitrogen-doped sp2-carbon cluster: quantum chemical study

  • E. N. Demyanenko Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine
  • O. S. Karpenko Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine
  • V. V. Lobanov Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine
  • N. T. Kartel Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine

Abstract

Density functional theory (B3LYP, 6-31 G**) was used to calculate the spatial and electronic structure of the oxygen molecule complexes with the coronene molecule and its nitrogen-containing analog, where two nitrogen atoms are in the para positions of the central hexagon. Within the framework of an assumption that the mentioned molecules mimic a pure carbon and nitrogen-containing graphene-like structures, the equilibrium structures and energis of formation of all the intermediate compounds arising when four electrons and four protons are sequentially added to the adsorption complex of the O2 molecule are determined. It has been shown that the catalytic activity of nitrogen-doped graphene in the oxygen reduction reaction can be explained by a combination of several factors, namely, a decrease in the band gap of the nitrogen-containing cluster as compared to the initial pure carbon cluster as well as the activation of carbon atoms adjacent to the interstitial N atoms. Calculation of the energies of the individual stages of addition of each of four electrons and protons testifies to the spontaneous flow of the oxygen reduction over the nitrogen-containing cluster.

References

1. Dai L., Xue Y., Qu L., Choi H.-J., Baek J.-B. Metal-free catalysts for oxygen reduction reaction. Chem. Rev. 2015. 115(11): 4823. https://doi.org/10.1021/cr5003563

2. Stamenkovic V.R., Mun B.S., Arenz M., Mayrhofer K.J.J., Lucas C.A., Wang G., Ross P.N., Markovic N.M. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat. Mater. 2007. 6: 241. https://doi.org/10.1038/nmat1840

3. Gasteiger H.A., Kocha S.S., Sompalli B.,Wagner F.T. Activity benchmarks and require-ments for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B. 2005. 56(1–2): 9. https://doi.org/10.1016/j.apcatb.2004.06.021

4. Winter M., Brodd R.J. What are batteries, fuel cells, and supercapacitors? Chem. Rev. 2004. 104(10): 4245. https://doi.org/10.1021/cr020730k

5. Gong K., Du F., Xia Z., Durstock M., Dai1 L. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science. 2009. 323(5915): 760. https://doi.org/10.1126/science.1168049

6. Qu L., Liu Y., Baek J-B., Dai L. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano. 2010. 4(3): 1321. https://doi.org/10.1021/nn901850u

7. Kim H., Lee K., Woo S.I., Jung Y. On the mechanism of enhanced oxygen reduction reaction in nitrogen-doped graphene nanoribbons. Phys. Chem. Chem. Phys. 2011. 13: 17505. https://doi.org/10.1039/c1cp21665a

8. Qu L., Liu Y., Baek J.B., Baek J.-B., Dai L. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano. 2010. 4(3): 1321. https://doi.org/10.1021/nn901850u

9. Kumar M.P., Raju M.M., Arunchander A., Selvaraj S., Kalita G., Narayanan T.N., Sahu A.K., Pattanayaka D.K. Nitrogen doped graphene as metal free electrocatalyst for efficient oxygen reduction reaction in alkaline media and its application in anion exchange membrane fuel cells. J. Electrochem. Soc. 2016. 163(8): F848. https://doi.org/10.1149/2.0541608jes

10. Huang S.F., Terakura K., Ozaki T., Ikeda T., Boero M., Oshima M., Ozaki J., Miyata S. First-principles calculation of the electronic properties of graphene clusters doped with nitrogen and boron: analysis of catalytic activity for the oxygen reduction reaction. Phys. Rev. B. 2009. 80(23): 235410. https://doi.org/10.1103/PhysRevB.80.235410

11. Wang Y., Zhang B., Xu M., He X. Tunable ternary (P, S, N)-doped graphene as an efficient electrocatalyst for oxygen reduction reaction in an alkaline medium. RSC Adv. 2015. 5(105): 86746. https://doi.org/10.1039/C5RA18251D

12. Jiao Y., Zheng Y., Jaroniec M., Qiao S.Z. Origin of the electrocatalytic oxygen reduction activity of graphene-based catalysts: a roadmap to achieve the best performance. J. Am. Chem. Soc. 2014. 136(11): 4394. https://doi.org/10.1021/ja500432h

13. Chai G.-L., Hou Z., Da-Jun Shu D.-J., Ikeda T., Terakura K. Active sites and mechanisms for oxygen reduction reaction on nitrogen-doped carbon alloy catalysts: Stone–Wales defect and curvature effect. J. Am. Chem. Soc. 2014. 136(39): 13629. https://doi.org/10.1021/ja502646c

14. Choi C.H., Lim H.-K., Chung M.W., Park J.C., Shin H., Kim H., Woo S.I. Long-range electron transfer over graphene-based catalyst for high-performing oxygen reduction reactions: importance of size, N-doping, and metallic impurities. J. Am. Chem. Soc. 2014. 136(39) 9070. https://doi.org/10.1021/ja5033474

15. Lujie Cao L., Yang M., Lu Z., Pan H. Exploring an effective oxygen reduction reaction catalyst via 4e− process based on waved-graphene. Sci. China Mater. 2017. 60(8): 739. https://doi.org/10.1007/s40843-017-9070-1

16. Reyimjan A., Sidik R.A., Alfred B., Anderson A.B., Subramanian N.P., Swaminatha P., Kumaraguru S.P., Popov B.N. O2 reduction on graphite and nitrogen-doped graphite:  experiment and theory. J. Phys. Chem. B. 2006. 110(4): 1787. https://doi.org/10.1021/jp055150g

17. Li F., Shu H., Hu C., Shi Zh., Liu X., Liang P., Chen X. Atomic mechanism of electrocatalytically active Co–N complexes in graphene basal plane for oxygen reduction reaction. ACS Appl. Mater. Interfaces. 2015. 7(49): 27405. https://doi.org/10.1021/acsami.5b09169

18. Huda M.N., Ray A.K. A density functional study of molecular oxygen adsorption and reaction barrier on Pu(100) surface. Eur. Phys. J. B. 2005. 43(1): 131. https://doi.org/10.1140/epjb/e2005-00036-4

19. Maldonado S., Morin S., Stevenson K.J. Structure, composition, and chemical reactivity of carbon nanotubes by selective nitrogen doping. Carbon. 2006. 44(8): 1429. https://doi.org/10.1016/j.carbon.2005.11.027

20. Shemella P., Zhang Y., Mailman M. Energy gaps in zero-dimensional graphene nanoribbons. Appl. Phys. Lett. 2007. 91: 042101. https://doi.org/10.1063/1.2761531

21. Zheng H., Duley W. Field effects on the electronic and spin properties of undoped and doped graphene nanodots. Phys. Rev. B. 2008. 78: 155118. https://doi.org/10.1103/PhysRevB.78.155118

22. Alexeyeva N., Shulga E., Kisand V., Kink I., Tammeveski K. Electroreduction of oxygen on nitrogen-doped carbon nanotube modified glassy carbon electrodes in acid and alkaline solutions. J. Electroanal. Chem. 2010. 648(2): 169. https://doi.org/10.1016/j.jelechem.2010.07.014

23. Li Y., Zhong G., Yu H., Wang H. Peng F. O2 and H2O2 transformation steps for oxygen reduction reaction catalyzed by graphitic nitrogen-doped carbon nanotubes in acidic electrolyte from first principles calculations. Phys. Chem. Chem. Phys. 2015. 17(34): 21950. https://doi.org/10.1039/C5CP02167G

24. Schmidt M.W., Baldridge K.K., Boatz J.A., Elbert S.T., Gordon M.S., Jensen J.H., Koseki Sh., Matsunaga N., Nguyen K.A., Su Sh., Windus T.L., Dupuis M., Montgomery J.A. Jr. General atomic and molecular electronic structure system. J. Comput. Chem. 1993. 14(11): 1347. https://doi.org/10.1002/jcc.540141112

25. Kohn W., Sham L.S. Self-consistent equation including exchange and correlation effect. Phys. Rev. A. 1965. 140(4): 1133. https://doi.org/10.1103/PhysRev.140.A1133

26. Parr R.G., Yang W. Density-functional theory of atoms and molecules. (Oxford: Oxford Univ. Press, 1989).

27. Becke A.D. Density-functional thermochemistry. III. The role of exchange. J. Chem. Phys. 1993. 98(7): 5648. https://doi.org/10.1063/1.464913

28. Lee C., Yang W., Parr R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of theelectron density. Phys. Rev. B. 1988. 37(2): 785. https://doi.org/10.1103/PhysRevB.37.785

29. Grimme S., Ehrlich S., Goerigk L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011. 32(7): 1456. https://doi.org/10.1002/jcc.21759

30. Yan H.J., Xu B., Shi S.Q., Ouyang C.Y. First-principles study of the oxygen adsorption and dissociation on graphene and nitrogen doped graphene for Li-air batteries. J. Appl. Phys. 2012. 112(10): 104316. https://doi.org/10.1063/1.4766919

31. Zhang L., Xia Z. Mechanisms of oxygen reduction reaction on nitrogen-doped graphene for fuel cells. J. Phys. Chem. C. 2011. 115(22): 11170. https://doi.org/10.1021/jp201991j

32. Liao Y., Gao Y., Zhu S., Zheng J., Chen Z., Yin C., Lou X., Zhang D. Facile fabrication of N-doped graphene as efficient electrocatalyst for oxygen reduction reaction. ACS Appl. Mater. Interfaces. 2015. 7(35): 19619. https://doi.org/10.1021/acsami.5b05649

Published
2017-10-08
How to Cite
Demyanenko, E., Karpenko, O., Lobanov, V., & Kartel, N. (2017). Elementary acts of the reaction of molecular oxygen recovery over nitrogen-doped sp2-carbon cluster: quantum chemical study. Surface, (9(24), 14-27. https://doi.org/10.15407/Surface.2017.09.014
Section
Theory of surface chemical structure and reactivity.