Titanium dioxide defect structures as catalytic sites

  • O. S. Smirnova Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine
  • A. G. Grebenyuk Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine
  • V. V. Lobanov Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine


The spatial and electronic structures of defect and admixture sites of titania polymorphs have been analysed in the article as well as their manifestations in adsorption, catalysis, and photocatalytic processes. The role has been examined of the various forms of adsorbed oxygen in the redox reactions involving TiO2 surfaces. The results of experimental studies known from the literature are compared the properties of molecular and periodic models for the titania bulk and surface evaluated by means of quantum chemical methods.


1. Zavodinsky V.G., Chibisov A.N. Influence of impurities on the stability and electronic states of titanium dioxide in the form of anatase. Physics of Solid State. 2009. 51(3): 507. https://doi.org/10.1134/S1063783409030123

2. Zhukov V.P., Shein I.R. Ab initio thermodynamic characteristics of the formation of oxygen vacancies, and boron, carbon, and nitrogen impurity centers in anatase. Physics of Solid State. 2018. 60(1): 37. https://doi.org/10.1134/S1063783418010304

3. Cromer D., Herrington K. The structures of anatase and rutile. J. Am. Chem. Soc. 1955. 77(18): 4708. https://doi.org/10.1021/ja01623a004

4. Mo S., Ching W. Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase and brookite. Phys. Rev. B. 1995. 51(19): 13023. https://doi.org/10.1103/PhysRevB.51.13023

5. Ganguly A., Mondal A., Dhar J.Ch., Singh N.K., Choudhury S. Enhanced visible light absorption by TiO2 film patterned with Ag nanoparticles arrays. Physica E: Low-dimensional Systems and Nanostructures. 2013. 54: 326. https://doi.org/10.1016/j.physe.2013.07.019

6. Asahi R., Taga Y., Mannstadt W., Freeman A. Electronic and optical properties of anatase TiO2. Phys. Rev. B. 2000. 61(11): 7459. https://doi.org/10.1103/PhysRevB.61.7459

7. Landmann M., Rauls E., Schmidt W. The electronic structure and optical response of rutile, anatase and brookite TiO2. J. Phys. Condens. Matter. 2012. 24(19): 1. https://doi.org/10.1088/0953-8984/24/19/195503

8. Thompson T.L., Yates J.T. Surface Science Studies of the Photoactivation of TiO2 –New Photochemical Processes. Chem. Rev. 2006. 106(10): 4428. https://doi.org/10.1021/cr050172k

9. Tang H., Prasad K., Sanjines R., Schmid P., Levy F. Electrical and optical properties of TiO2 anatase thin films. J. Appl. Phys. 1994. 75(4): 2042. https://doi.org/10.1063/1.356306

10. Wang X., Feng Z., Shi J., Jia G. Trap states and carrier dynamics of TiO2 studied by photoluminescence spectroscopy under weak excitation condition. Phys. Chem. Chem. Phys. 2010. 12(26): 7083. https://doi.org/10.1039/b925277k

11. Anpo M., Shima T., Kodama S., Kubokawa Y. Photocatalytic hydrogenation of propyne with water on small–particle titania: size quantization effects and reaction. J. Phys. Chem. 1987. 91(16): 4305. https://doi.org/10.1021/j100300a021

12. Krylov O.V., Kiselev V.F. Adsorbtsiya i kataliz na perekhodnykh metallakh i ikh oksidakh. (Moscow: Khimiya, 1981). [in Russian].

13. Dalidchik F.I., Kovalevskiį S.A. On the observation of a single paramagnetic center in experiments with a scanning tunneling microscope. JETP Letters. 1998. 67(11): 965. https://doi.org/10.1134/1.567775

14. Krylov O.V., Shub B.R. Neravnovesnyye protsessy v katalize. (Moscow: Khimiya, 1990). [in Russian].

15. Pyryaeva A.P. Ph.D. (Phys.-math.) Thesis. (Novosibirsk, 2014). [in Russian].

16. Serikov T.M. Ph.D. (Phys.) Thesis. (Karaganda, 2017). [in Russian].

17. Serpone N., Lawless D., Khairutdinov R. Size effects on the photophysical properties of colloidal anatase TiO2 particles: size quantization or direct transitions in this indirect semiconductor. J. Phys. Chem. 1995. 99(45): 16646. https://doi.org/10.1021/j100045a026

18. Tang H., Berger H., Schmid P., Levy F. Optical properties of anatase (TiO2). Solid State Commun. 1994. 92(3): 267. https://doi.org/10.1016/0038-1098(94)90889-3

19. Kokorin A., Bahnemann D. Electron spin resonance of nanostructured oxide of nanostructured semicontuctors. In: Chemical Physics of Nanostructured Semiconductors. Chapter 8. (CRC Press, 2003). https://doi.org/10.1201/9781498708630

20. Becke A. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A. Gen. Phys. 1988. 38(6): 3098. https://doi.org/10.1103/PhysRevA.38.3098

21. Becke A. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993. 98(7): 5648. https://doi.org/10.1063/1.464913

22. Lee C., Yang W., Parr R. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 1988. 37: 785. https://doi.org/10.1103/PhysRevB.37.785

23. Weigend F., Ahlrichs R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005. 7(18): 3297. https://doi.org/10.1039/b508541a

24. Tyo E., Nossler M., Mitric R., Bonacic-Koutecky V., Castleman A. Reactivity of stoichiometric titanium oxide cations. Phys. Chem. Chem. Phys. 2011. 13(10): 4243. https://doi.org/10.1039/c0cp02170a

25. Janssens E., Santambrogio G., Brümmer M., Wöste L., Lievens P., Sauer J., Meijer G., Asmis K.R. Isomorphous substitution in bimetallic oxide clusters. Phys. Rev. Lett. 2006. 96(23): 233401. https://doi.org/10.1103/PhysRevLett.96.233401

26. Rassolov V., Pople J., Ratner M., Windus T. 6-31G* basis set for atoms K through Zn. J. Chem. Phys. 1998. 109: 1223. https://doi.org/10.1063/1.476673

27. Yin S., Bernstein E.R. Experimental and theoretical studies of H2O oxidation by neutral Ti2O4,5 clusters under visible light irradiation. Phys. Chem. Chem. Phys. 2014. 16(27): 13900. https://doi.org/10.1039/C4CP00097H

28. Zavodinsky V.G., Chibisov A.N. Influence of impurities on the stability and electronic states of titanium dioxide in the form of anatase. Physics of Solid State. 2009. 51(3): 507. https://doi.org/10.1134/S1063783409030123

29. Stashans A., Lunell S., Grimes R. Theoretical study of perfect and defective TiO2 crystals. J. Phys. Chem. Solids. 1996. 57(9): 1293. https://doi.org/10.1016/0022-3697(95)00321-5

30. Bockstedte M., Kley A., Neugebauer J., Scheffler M. Density-functional theory calculations for poly-atomic systems: electronic structure, static and elastic properties and ab initio molecular dynamics. Comput. Phys. Commun. 1997. 107(1–3): 187. https://doi.org/10.1016/S0010-4655(97)00117-3

31. Dabrowski J., Zavodinsky V.G., Mussig H.-J., Baierle R., Caldas M.J. Mechanism of dopant segregation to SiO2/Si (001) intertfaces. Phys. Rev. B. 2002. 65(24): 245305. https://doi.org/10.1103/PhysRevB.65.245305

32. Zavodinsky V.G. The mechanism of ionic conductivity in stabilized cubic zirconia. Physics of Solid State. 2004. 46(3): 453. https://doi.org/10.1134/1.1687859

33. Zavodinsky V.G., Chibisov A.N. Zirconia nanoparticles and nanostructured systems. Journal of Physics: Conference Series. 2006. 29: 173. https://doi.org/10.1088/1742-6596/29/1/033

34. Na-Phattalung S., Smith M.F., Kim K., Du M.H., Wie Se-Hu., Zhang S.B., Limpijumnong S. First-principles study of native defects in anatase TiO2. Phys. Rev. B. 2006. 73(12): 125205. https://doi.org/10.1103/PhysRevB.73.125205

35. Smirnova O.V., Grebenyuk A.G., Lobanov V.V. Quantum chemical calculatio ns on adsorption of O2 molecules on the anatase (001) surface. Surface. 2016. 8(23): 73. [in Ukrainian].

36. Smirnova O.V., Grebenyuk A.G., Linnik O.P., Chorna N.O., Lobanov V.V. Effect of nitrogen doping on the spatial and electronic structure of TiO2 thin films and on the efficiency of water molecules adsorption onto their surfaces. Scientific papers of NAUKMA. 2016. 183: 67.

37. Schmidt M.W., Baldridge K.K., Boatz J.A., Elbert S.T., Gordon M.S., Jensen J.H., Koseki Sh., Matsunaga N., Nguyen K.A., Su Sh., Windus T.L., Dupuis M., Montgomery J.A. Jr. General atomic and molecular electronic-structure system: Review. J. Comput. Chem. 1993. 14(11): 1347. https://doi.org/10.1002/jcc.540141112

38. Berger H., Tang H., Levy F. Growth and Raman spectroscopic characterization of TiO2 anatase single crystals. J. Cryst. Growth. 1993. 130(1–2): 108. https://doi.org/10.1016/0022-0248(93)90842-K

How to Cite
Smirnova, O. S., Grebenyuk, A. G., & Lobanov, V. V. (2017). Titanium dioxide defect structures as catalytic sites. Surface, (9(24), 44-56. https://doi.org/10.15407/Surface.2017.09.044
Theory of surface chemical structure and reactivity.