Porous structure of nano-dimensional boraso-graphenic powders

  • A. V. Petrova Institute for Problems of Materials Science. I. Frantsevich National Academy of Sciences of Ukraine
  • V. V. Garbuz Institute for Problems of Materials Science. I. Frantsevich National Academy of Sciences of Ukraine
  • T. F. Lobunets Institute for Problems of Materials Science. I. Frantsevich National Academy of Sciences of Ukraine
  • T. V. Tomila Institute for Problems of Materials Science. I. Frantsevich National Academy of Sciences of Ukraine
Keywords: surface structure, borazographene, impurity, boroxazole, dissolution


The structural features of surface of the nano-dimensional bor-azo-graphenic powders (t-BNg) after previous washing in boiling water were researched. The results showed that after process of purifier (washing) the powder’s surface of t-BNg characterized as slit-like micro-, mesoporous (monodispersed) structure with a narrow porous distribution in the range of 3.82 - 4.17 nm. The outer surface specific area of the powders of t-BNg according to “t - method” is 28.3 m2/g. The inner specific surface area of the mesopores is 141 m2/g (BJH method). The residues of boron oxonitride in the form of a purified sublimate, a white powder, extracted from a washed and dried sample of t-BNg at a temperature of 540 K and a pressure of ≤ 1.0 Pa. The sublimate, according to chemical analysis and infrared spectroscopy, was identified on the assumption of the cyclic dimer of di-hydro-di-hydroxo-di-bor-ox-azole of the composition of H(OH)[(BON)2](OH)H. The model of carbamide synthesis of boron nitride, as a sequence of chemical transformations of borate-carbamide precursors in a freely radical boron-pair (> B - N <), have proposed.


1. Dobrzhinetskaya L.F., Wirth R., Yang J., Green H.W., Hutcheon I.D., Weber P.K., Grew E.S. Qingsongit, natural cubic boron nitride: The first boron mineral from the Earth's mantle. Am. Mineral. 2014. 99: 764. https://doi.org/10.2138/am.2014.4714

2. Novoselov K.S., Jiang D., Schedin F., Booth T.J., Khotkevich V.V., Morozov S.V., Geim A.K. Two-dimensional atomic crystals. PNAS. 2005. 102(30): 10451. https://doi.org/10.1073/pnas.0502848102

3. Stankovich S., Dikin D.A., Dommett G.H.B., Kohlhaas K.M., Zimney E.J., Stach E.A., Piner R.D., Nguyen S.B.T., Ruoff R.S. Graphene-based composite materials. Nature. 2006. 442: 282. https://doi.org/10.1038/nature04969

4. Gaim A.K., Novoselov K.S. The rise of graphene. Nat. Mater. 2007. 6: 183. https://doi.org/10.1038/nmat1849

5. Hubacek M. Synthesis of Boron Nitride from Oxide Precursors. Archived from the original 2007. http://hubacek.jp/bn/bn.htm

6. Engler M. Hexagonal Boron Nitride (h-BN). Application from Metallurgy to Cosmetics. Ceram. Forum Int. 2007. 84(12): 25.

7. Kurdyumov A.V., Brittun V.F., Borimchuk N.I., Yarosh V.V. Martensitic and diffusion transformations in carbon and boron nitride under impact compression. (Kyiv: Kupriyanova O.O., 2005). [in Russian].

8. Soma T., Sawaoka A., Saito S. Characterization of wurtzite type boron nitride synthesized by shock compression. Mater. Res. Bull. 1974. 9(6): 755. https://doi.org/10.1016/0025-5408(74)90110-X

9. Rudolph S. Boron Nitride: Mineral Review. Am. Ceram. Soc. Bull. 2000. 79: 50.

10. Wentorf N.H. Cubic from of boron nitride. J. Chem. Phys. 1957. 26: 956. https://doi.org/10.1063/1.1745964

11. Vel L., Demazeau G., Etourneau J. Cubic boron nitride: synthesis, physicochemical properties and application. Mater. Sci. Eng. B. 1991. 10(2): 149. https://doi.org/10.1016/0921-5107(91)90121-B

12. Fukunaga O. Science and technology in the recent development of boron nitride materials. J. Phys. Condens. Matter. 2002. 14(44): 10979. https://doi.org/10.1088/0953-8984/14/44/413

13. Paine R.T., Narula Ch.K. Synthetic routes to boron nitride. Chem. Rev. 1990. 90(1): 73. https://doi.org/10.1021/cr00099a004

14. Bartnitskaya T.S., Ostrovskaya N.F., Ul'yanova T.M., Fenochka B.V. Preparation of boron nitride fibers with use of the hydrated cellulose. I. Decomposition of hydrated cellulose impregnated with boron-containing compounds. Powder Metall. Met. Ceram. 1999. 38(3–4): 152. https://doi.org/10.1007/BF02676041

15. Angel R., Jennifer C., Marvin C. Theory of graphitic boron nitride nanotubes. Phys. Rev. B. 49(7): 5081.

16. Goldberg D., Bando Y., Tang C.C., Zhi C.Y. Boron nitride nanotubes. Adv. Mater. 2007. 19: 2413. https://doi.org/10.1002/adma.200700179

17. Mirkarimi P.B., McCarty K., Medlin D. Review of advances in cubic boron nitride film synthesis. Mater. Sci. Eng. 1997. 21(2): 47. https://doi.org/10.1016/S0927-796X(97)00009-0

18. Komatsu T. Creation of super hard B-C-N hetero diamond using an advanced shock wave compression technology. J. Mater. Process. Technol. 1999. 85(1): 69. https://doi.org/10.1016/S0924-0136(98)00263-5

19. Kosolapova T.Ya., Andreeva T.V., Bartnitskaya T.S. Non-metallic refractory compounds. (Moscow: Metallurgy, 1985). [in Russian].

20. Methods of preparation, properties and application of nitrides. (Sat. Articles. Kyiv: ONTI IPM of the Ukrainian Academy of Sciences, 1972). [in Russian].

21. Corso M., Auwarter W., Muntwiller M., Tamai A., Greber T., Osterwalder J. Boron Nitride Nanomesh. Science. 2004. 303(5655): 217. https://doi.org/10.1126/science.1091979

22. Goriachko A., He Y., Knapp M., Over H., Corso M., Brugger T., Berner S., Osterwalder J., Greber T. Self-assembly of hexagonal boron nitride nanomesh on Ru(0001). Langmuir. 2007. 23(6): 2928. https://doi.org/10.1021/la062990t

23. Bank O., Corso M., Matroccia D., Herger R., Willmott P., Patterson B., Osterwalder J., Vanderveen J., Greber T. Surface X-ray diffraction study of boron-nitride nanomesh in air. Surf. Sci. 2007. 601(2): 7. https://doi.org/10.1016/j.susc.2006.11.018

24. Berner S., Corso M., Widmer R., Groening O., Laskowski R., Blaha P., Schwarz K., Goriachko A., Over H., Gsell S., Schreck M., Sachdev H., Greber T., Osterwalder J. Boron nitride nanomesh functionality from a corrugated monolayer. Angew. Chem. Int. Ed. 2007. 46(27): 5115. https://doi.org/10.1002/anie.200700234

25. Widmer R., Berner S., Groning O., Brugger T., Osterwalder J., Greber T. Electrolutic in sity STM investigation of h-BN-Nanomesh. Electrochem. Commun. 2007. 9: 2484. https://doi.org/10.1016/j.elecom.2007.07.019

26. The discovery of the nanomesh for everyone. 2009. http://www.nanomesh.ch/history.php

27. Kurdyumov A.V., Bartnitskaya T.S., Lyashenko V.I., Britun V.F., Balan T.R., Gromyko S.N., Danilenko A.I., Zelyavskii V.B. Structure formation patterns in carbamide synthesis of nanocrystalline graphite-like boron nitride. Powder Metall. Met. Ceram. 2005. 44(11/12): 590. https://doi.org/10.1007/s11106-006-0030-0

28. Kurdyumov A.V., Britun V.F., Garbuz V.V., Tomila T.V., Yarosh V.V., Lyashenko V.I., Zelyavsky V.B. On impurities in nanocrystalline powders of graphite-like boron nitride and their role in the process of phase transformations under impact compression. Nanostructural Materials Science. 2009. 2: 25. [in Russian].

29. Lei W., Portehault D., Liu D., Qin S., Chen Y. Porous boron nitride nanosheets for effective water cleaning. Nat. Commun. 2013. 4: 1777. https://doi.org/10.1038/ncomms2818

30. Qunhong W. Porosity Engineering of Boron Nitride Materials for Hydrogen Storage Doctoral. Program in Materials Science and Engineering. (University of Tsukuba). 2015. http://hdl.handle.net/2241/00128908

31. Greg S., Sing K. Adsorption, Specific Surface, Porosity. (Moscow: Mir. 1984). [in Russian]

32. Everett D.H. Manual of Symbols and Terminology for Physicochemical Quantities and Units, Appendix II: Definitions, Terminology and Symbols in Colloid and Surface. Pure Appl. Chem. 1972. 31(4): 577. https://doi.org/10.1351/pac197231040577

33. Brunauer S. Adsorption of gases and vapors. (Moscow: IL, 1948). [in Russian].

34. Poltorak O.M. Thermodynamics in Physical Chemistry. (Moscow: High School, 1991). [in Russian].

35. Karnaukhov A.P. Adsorption. Texture of dispersed and porous materials. (Novosibirsk: Science, 1999). [In Russian].

36. Barrett E.P., Joyner L.G., Halenda P.P. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 1951. 73(1): 373. https://doi.org/10.1021/ja01145a126

37. Aligizaki Kalliopi K. Pore Structure of Cement-Based Materials: Testing Interpretation and Requirements. (Modern Concrete Technology). (Taylor & Francis, 2005).

38. Dubinin M.V. Surface and porosity of adsorbents. Russ. Chem. Rev. 1982. 51(7): 1065. https://doi.org/10.1070/RC1982v051n07ABEH002876

39. Everett D.H., Powl J.C. Adsorption in slit-like and cylindrical micropores in the henry's law region. A model for the microporosity of carbons. J. Chem. Soc., Faraday Trans. 1. 1976. 72(1): 619. https://doi.org/10.1039/f19767200619

40. Horvath and Kawazoe. Method for calculation of effective pore size distribution in molecular sieve carbon. Journal of Chemical Engineering of Japan. 1983. 16(6): 470. https://doi.org/10.1252/jcej.16.470

41. Zhang, X., Lian, G., Zhang, S.J., Cui, D.L., Wang, Q.L. Boron nitride nanocarpets: controllable synthesis and their adsorption performance to organic pollutants. Cryst. Eng. Comm. 2012. 14(14): 4670. https://doi.org/10.1039/c2ce06748j

42. Weng, Q.H., Wang X., Zhi Ch., Bando Y., Golberg D. Boron nitride porous microbelts for hydrogen storage. ACS Nano. 2013. 7(2): 1558. https://doi.org/10.1021/nn305320v

43. Xue Y., Dai P., Jiang X., Wang X., Zhang Ch., Tang D., Weng Q., Wang Xi, Pakdel A., Tang Ch., Bandoa Y., Golberg D. Template-free synthesis of boron nitride foam-like porous monoliths and their high-end applications in water purification. J. Mater. Chem. A. 2016. 4: 1469. https://doi.org/10.1039/C5TA08134C

44. Li J., Lin J., Xu X., Zhang X., Xue Y., Mi J., Mo Z., Fan Y., Hu L., Yang X., Zhang J., Meng F., Yuan S., Tang C. Porous boron nitride with a high surface area: hydrogen storage and water treatment. Nanotechnology. 2013. 24(15): 155603. https://doi.org/10.1088/0957-4484/24/15/155603

45. Gautam Ch., Yadav A.K., Singh A.K. A review on infrared spectroscopy of borate glasses with effects of different additives. International Scholarly Research Network. 2012. 2012: 428497.

46. Hubacek M., Sato T., Ishii T. A coexistence of boron nitride and boric oxide. J. Solid. State Chem. 1994. 109(2): 384. https://doi.org/10.1006/jssc.1994.1117

47. Yuan S., Zhu L., Fan M., Wang X., Wan D., Peng Sh., Tang H. Fluffy-like boron nitride spheres synthesized by epitaxial growth. Mater. Chem. Phys. 2008. 112(3): 912. https://doi.org/10.1016/j.matchemphys.2008.07.006

48. Peak D., Luther G.W., Sparks D.L. ATR-FTIR spectroscopic studies of boric acid adsorption on hydrous ferric oxide. Geochim. Cosmochim. Acta. 2003. 67(14): 2551. https://doi.org/10.1016/S0016-7037(03)00096-6

How to Cite
Petrova, A. V., Garbuz, V. V., Lobunets, T. F., & Tomila, T. V. (2017). Porous structure of nano-dimensional boraso-graphenic powders. Surface, (9(24), 81-95. https://doi.org/10.15407/Surface.2017.09.081
Physics and chemistry of surface phenomena