Surface species investigation of Ni-Fe catalysts of CO2 hydrogenation by TD MS analysis

  • R. Meshkini Far Taras Shevchenko Kyiv National University
  • A. Dyachenko Taras Shevchenko Kyiv National University
  • O. Bieda Taras Shevchenko Kyiv National University
  • O. Ischenko Taras Shevchenko Kyiv National University
Keywords: Ni-Fe catalysts, CO2 hydrogenation, catalytic activity, TD-MS analysis


The condition of Ni-Fe catalysts’ surface was investigated by the method of thermally programmed desorption with mass spectral analysis of desorbed particles (TD MS). TD spectra indicated the desorption of CO2 (m/z = 44), CO (m/z = 28) and H2O (m/z = 18) particles from the surface of samples with high and low catalytic activity in the reaction of CO2 hydrogenation. Intermediate compounds CHO*, CH2O* were not observed in the TD profiles for all investigated catalysts. On the basis of catalytic performance results and thermal desorption data it can be suggested that process of CO2 hydrogenation over Ni-Fe catalysts proceeds via direct hydrogenation of CO2 to CH4.


1. Mikkelsen M., Jorgensen M., Krebs F.C. The teraton challenge. The review of fixation and transformation of carbon dioxide. Energy Environ. Sci. 2010. 3(1): 43.

2. Landau M.V., Vidruk R., Herskowitz M. Sustainable production of green feed from carbon dioxide and hydrogen. Chem. Sus. Chem. 2014. 7(3): 785.

3. Wang W., Wang S., Ma X., Gong J. Recent advances in catalytic hydrogenation of carbon dioxide. Chem. Soc. Rev. 2011. 40(7): 3703.

4. Brooks K.P., Hu J. L., Zhu H.Y., Kee R. J. Methanation of carbon dioxide by hydrogen reduction using the Sabatier process in microchannel reactors. Chem. Eng. Sci. 2007. 62(4): 1161.

5. Rodriguez J.A., Hanson J.C., Stacchiola D., Senanayake S.D. In situ/operando studies for the production of hydrogen through the water-gas shift on metal oxide catalysts. Phys. Chem. Chem. Phys. 2013. 15(29): 12004.

6. Janke C., Duyar M.S., Hoskins M. Catalytic and adsorption studies for the hydrogenation of CO2 to methane. Appl. Catal. B. 2014. 152-153: 184.

7. Aaron D., Tsouris C. Separation of CO2 from flue gas. Sep. Sci. Technol. 2005. 40(1–3): 321.

8. Lok M. Synthesis of Solid Catalysts. (WILEY-VCH, 2009).

9. Cubeiro M.L., Morales H., Goldwasser M.R., Perez-Zurita M.Z., Gonzales-Jimenez F., Urbina de N.C. Hydrogenation of carbon oxides over Fe/Al2O3 catalysts. Appl. Catal. A. 1999. 189(1): 87.

10. Andersson M.P., Bligaard T., Kustov A.L., Larsen K.E., Greeley J., Johannessen T., Christensen C.H. Toward computational screening in heterogeneous catalysis: Pareto-optimal methanation catalysts. J. Catal. 2006. 239(2): 501.

11. Meshkini Far R., Ischenko O., Zakharova T., Dyachenko A. Activity of Ni-Fe catalysts in the reaction of CO2 hydrogenation. Bulletin of Taras Shevchenko Kyiv National University. 2016. 52: 63.

12. Ischenko O.V, Meshkini Far R., Bieda O.A., Dyachenko A.G., Zakharova T.M., Filonenko M.M. Ni-Fe Catalytic Systems for reaction of CO2 methanation. Ukrainian Chemistry Journal. 2017. 83(3): 50.

13. Yang C.W., Williams D.B. A Revision of the Fe-Ni Phase Diagram at Low Temperatures. Journal of Phase Equilibria. 1996. 17(6): 522.

14. Tovbin M.V. Physical Chemistry. (Vyshcha shkola, 1975). [in Russian].

15. Roberts M., Mackie C. Chemistry of the Metal-Gas Interface. (Moscow: Mir, 1981). [in Russian].

How to Cite
Meshkini Far, R., Dyachenko, A., Bieda, O., & Ischenko, O. (2017). Surface species investigation of Ni-Fe catalysts of CO2 hydrogenation by TD MS analysis. Surface, (9(24), 104-110.
Physics and chemistry of surface phenomena