Effect of manganese doping on the structure, optical and photocatalytic properties of mesoporous TiO2 films

  • I. Petrik Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine
  • N. Smirnova Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine
  • A. Eremenko Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine
  • O. Frolova Institute of Physics of National Academy of Sciences of Ukraine
  • O. Fesenko Institute of Physics of National Academy of Sciences of Ukraine
  • S. Kovalchuk Institute of Physics of National Academy of Sciences of Ukraine


Homogeneous, optically transparent mesoporous titania films modified with Mnn+ ions have been produced by templated sol-gel method and characterized by optical, XRD and Raman spectroscopy. Catalytic activity of prepared films have been tested in the Cr(VI) anion photoreduction. Dopant amount  was varied from 0.5 to 20 atomic%. Doping with Mn ions leads to bathochromic shift of the absorption edge and to the band gap decrease from 3.3eV (TiO2), 3.0 (5%Mn/TiO2) up to 2.6 eV for 20 % Mn/TiO2. The increase of the dopant concentration up to 20 % resulted in refractive index growing to a value of 2.6, which can be caused by the formation of a new phase in the coverage structure, or reducing the film porosity. Also, the Mn2+ content affects the crystalline structure of TiO2 lowering the anatase-rutile phase transition temperature of the films.


1. Patil R.A., Devan R., Liou Y., Ma Y.-R. Efficient electrochromic smart windows of one-dimensional pure brookite TiO2 nanoneedles. Sol. Energy Mater. Sol. Cells. 2016. 147: 240. https://doi.org/10.1016/j.solmat.2015.12.024

2. Burns G.P. Titanium dioxide dielectric films formed by rapid thermal oxidation. J. Appl. Phys. 1989. 65: 2095. https://doi.org/10.1063/1.342856

3. Hoffmann M.R., Martin S.T., Choi W., Bahnemann D.W. Environmental Applications of Semiconductor Photocatalysis. Chem. Rev. 1995. 95(1): 69. https://doi.org/10.1021/cr00033a004

4. Fan J., Li Z., Zhou W., Miao Y., Zhang Y., Hu J. Dye-sensitized solar cells based on TiO2 nanoparticles/nanobelts double-layered film with improved photovoltaic performance. Appl. Surf. Sci. 2014. 319: 75. https://doi.org/10.1016/j.apsusc.2014.07.054

5. Vimbela G.V., Ngo S.M., Fraze C., Yang L., Stout D.A. Antibacterial properties and toxicity from metallic nanomaterials. Int. J. Nanomedicine. 2017. 12: 3941. https://doi.org/10.2147/IJN.S134526

6. Petryk I.S., Smirnova N.P., Yeremenko A.M., Frolova O.K., Oranska O.I. Synthesis of nanoscale mesoporous films TiO2/Cu2+ and their photocatalytic activity in the reaction of ions Cr(VI). Physics and Chemistry of Solid State. 2012. 13(2): 242.

7. Zuo Zh., Huang W., Han P., Li Zh. Theoretical and experimental investigation of the influence of Co content on the titanium dioxide phase transition. Solid State Commun. 2009. 149(47–48): 2139. https://doi.org/10.1016/j.ssc.2009.09.027

8. Xu J.P., Shi S.B., Li L., Wang J.F., Lv L.Y., Zhang F.M., Du Y.W. Effect of manganese ions concentration on the anatase – rutile phase transformation of TiO2 films. J. Phys. Chem Solids. 2009. 70(3–4): 511. https://doi.org/10.1016/j.jpcs.2008.06.113

9. Kuncewicz J., Ząbek P., Kruczała K., Szaciłowski K., Macyk W. Photocatalysis Involving a Visible Light-Induced Hole Injection in a Chromate(VI)–TiO2 System. J. Phys. Chem. C. 2012. 116(41): 21762. https://doi.org/10.1021/jp3040715

10. Buchalska M., Kuncewicz J., Świętek E., Łabuz P., Baran T., Stochel G., Macyk W. Photoinduced hole injection in semiconductor-coordination compound systems. Coord. Chem. Rev. 2013. 257(3–4): 767. https://doi.org/10.1016/j.ccr.2012.09.017

11. Ohno T., Sarukawa K., Tokieda K., Matsumura M. Morphology of a TiO2 photocatalyst (Degussa, P-25) consisting of anatase and rutile crystalline phases. J. Catal. 2001. 203(1): 82. https://doi.org/10.1006/jcat.2001.3316

12. Buchalska M., Kobielusz M., Matuszek A., Pacia M., Wojtyła S., Macyk W. On Oxygen Activation at Rutile- and Anatase-TiO2. ACS Catal. 2015. 5(12): 7424. https://doi.org/10.1021/acscatal.5b01562

13. Arroyo R., Córdoba G., Padilla J., Hlara V. Influence of manganese ions on the anatase–rutile phase transition of TiO2 prepared by the sol–gel process. Mater. Lett. 2002. 54(5–6): 397. https://doi.org/10.1016/S0167-577X(01)00600-0

14. Uvarov N.F., Boldyrev V.V. Size effects in chemistry of heterogeneous systems. Russ. Chem. Rev. 2001. 70(4): 265. https://doi.org/10.1070/RC2001v070n04ABEH000638

15. Gribb A.A., Banfield J.F. Particle size effects on transformation kinetics and phase stability in nanocrystalline TiO2. Am. Mineral. 1997. 82(7): 717. https://doi.org/10.2138/am-1997-7-809

16. Smith S.J., Stevens R., Liu S., Li G., Navrotsky A., Boerio-Goates J., Woodfield B.F. Heat capacities and thermodynamic functions of TiO2 anatase and rutile: analysis of phase stability. Am. Mineral. 2009. 94(2–3): 236. https://doi.org/10.2138/am.2009.3050

17. Yeremenko G. M., Smirnova N.P., Petryk I.S. Syntez ta vlastyvosti porystykh nanostrukturnykh plivok, aktyvnykh v ekolohichnomu fotokatalizi. Nanosystems, Nanomaterials, Nanotechnologies. 2004. 2(2): 477. [in Ukrainian].

18. Chauhana R., Kumarb A., Chaudharya Pal R. Structural and photocatalytic studies of Mn doped TiO2 nanoparticles. Spectrochim. Acta, Part A. 2012. 98: 256. https://doi.org/10.1016/j.saa.2012.08.009

19. Iida Y., Ozaki S., Grain J. Growth and phase transformation of titanium oxide during calcination. Am. Ceram. Soc. 1961. 44(3): 120. https://doi.org/10.1111/j.1151-2916.1961.tb13725.x

20. Ghasemi S., Rahimnejada S., Rahman Setayesha S., Rohani S., Gholami M.R. Transition metal ions effect on the properties and photocatalytic activity of nanocrystalline TiO2 prepared in an ionic liquid. J. Hazard. Mater. 2009. 172(2–3): 1573. https://doi.org/10.1016/j.jhazmat.2009.08.029

21. Braginsky L., Shklover V. Light absorption in TiO2 nanoparticles. The European Physical Journal D. 1999. 9(1–4): 627. https://doi.org/10.1007/s100530050514

22. Serpone N., Lawless D., Khairutdinov R. Size Effects on the photophysical properties of colloidal anatase TiO2 particles: size quantization or direct transitions in this indirect semiconductor. J. Phys. Chem. 1995. 99(45): 16646. https://doi.org/10.1021/j100045a026

23. Zhang J., Zhou P., Liu J., Yu J. New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. Phys. Chem. Chem. Phys. 2014. 16(38): 20382. https://doi.org/10.1039/C4CP02201G

24. Rocquefelte X., Goubin F., Koo H.-J., Hhangbo M., Jobic S. Investigation of the origin of the empirical relationship between refractive index and density on the basis of first principles calculations for the refractive indices of various TiO2 phases. Inorg. Chem. 2004. 43(7): 2246. https://doi.org/10.1021/ic035383r

How to Cite
Petrik, I., Smirnova, N., Eremenko, A., Frolova, O., Fesenko, O., & Kovalchuk, S. (2017). Effect of manganese doping on the structure, optical and photocatalytic properties of mesoporous TiO2 films. Surface, (9(24), 156-164. https://doi.org/10.15407/Surface.2017.09.156
Nanomaterials and nanotechnologies