Synthesis and properties of magnetosensitive polyfunctional nanocomposites for application in oncology

  • M. V. Abramov Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine
  • A. P. Kusyak Ivan Franko Zhytomyr State University
  • O. M. Kaminskiy Ivan Franko Zhytomyr State University
  • S. P. Turanska Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine
  • A. L. Petranovska Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine
  • N. V. Kusyak Ivan Franko Zhytomyr State University
  • P. P. Gorbyk Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine

Abstract

The investigation results are shown directed onto development of the concept of creation of magnetosensitive nanocomposites (NC) with multilevel hierarchical nanoarchitecture and functions of biomedical nanorobots. We synthesized nanosized magnetite in monodomain state and magnetosensitive NC based on that (Fe3O4/dimercaptosuccinic acid (DMSA), Fe3O4/γ-aminopropylsiloxane (γ-APS), Fe3O4/polyacrylamide (PAA), Fe3O4/hydroxyapatite (HA), Fe3O4/SiO2, Fe3O4/TiO2, Fe3O4/Al2О3). Isotherms and adsorption kinetics of cisplatin were studied depending on chemical nature of the surface of nanostructures. Adsorption of doxorubicin (DOX) onto the surface of Fe3O4/HА NC from solution in physiological liquid was studied. Magnetic fluids containing Fe3O4/HА/DOX NC were produced and investigated. Using an ensemble of Fe3O4 carriers as a superparamagnetic probe, Langeven’s paramagnetism theory, we appreciated size parameters of their shell, which was confirmed by independent measurements of specific surface area of the nanostructures and thermodynamic sedimentation stability of the corresponding magnetic fluids. The results obtained may be used in development of new forms of magnetocarried medical remedies for targeted delivery, and adsorbents based on NC of superparamagnetic core-shell type with multilevel nanoarchitecture, and for determination, control and optimization of size parameters of its components.

References

1. Levy L., Sahoo Y., Kyoung-Soo Kim, Earl Bergey J., Prasad P. Nanochemistry:  Synthesis and characterization of multifunctional nanoclinics for biological applications. Chem. Mater. 2002. 14(9): 3715. https://doi.org/10.1021/cm0203013

2. Shpak A.P., Gorbyk P.P. Nanomaterials and Supramolecular Structures: Physics, Chemistry, and Applications. (Springer, 2009).

3. Gorbyk P.P., Chekhun V.F. Nanocomposites of medicobiologic destination: reality and perspectives for oncology. Funct. Mater. 2012. 19(2): 145.

4. Gorbik P.P. Nanokompozyty z funktsiyamy medyko-biolohichnykh nanorobotiv: syntez, vlastyvosti, zastosuvannya. Nanosystems, Nanomaterials, Nanotechnologies. 2013. 11(2): 323. [in Ukrainian].

5. Gorbyk P.P., Lerman L.B., Petranovska A.L., Turanska S.P. Magnetosensitive nanocomposites with functions of medico-biological nanorobots: Synthesis and properties. In: Advances in Semiconductor Research: Physics of Nanosystems, Spintronics and Technological Applications. (New York: Nova Science Publishers, 2014).

6. Gorbyk P.P., Lerman L.B., Petranovska A.L., Turanska S.P., Pylypchuk Ie.V. Magnetosensitive nanocomposites with hierarchical nanoarchitecture as biomedical nanorobots: synthesis, properties, and application. In: Fabrication and Self-Assembly of Nanobiomaterials, Applications of Nanobiomaterials. (Elsevier, 2016). https://doi.org/10.1016/B978-0-323-41533-0.00010-6

7. Wahajuddin S.A. Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. Int. J. Nanomedicine. 2012. 7: 3445. https://doi.org/10.2147/IJN.S30320

8. Huang C., Zhou Y., Tang Z., Guo X., Qian Z., Zhou S. Synthesis of multifunctional Fe3O4 core/hydroxyapatite shell nanocomposites by biomineralization. Dalton Trans. 2011. 40(18): 5026. https://doi.org/10.1039/c0dt01824d

9. Mastai Y., Iwasaki T. Mechanochemical synthesis of magnetite/hydroxyapatite nanocomposites for hyperthermia. Materials Science - Advanced Topics. 2013. Chapter 8: 175.

10. Gopi D., Thameem Ansari M., Shinyjoy E., Kavitha L. Synthesis and spectroscopic characterization of magnetic hydroxyapatite nanocomposite using ultrasonic irradiation. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2012. 87: 245. https://doi.org/10.1016/j.saa.2011.11.047

11. Mir A., Mallik D., Bhattacharyya S., Mahata D., Sinha A., Nayar S. Aqueous ferrofluids as templates for magnetic hydroxyapatite nanocomposites. J. Mater. Sci.: Mater. Med. 2010. 21(8): 2365. https://doi.org/10.1007/s10856-010-4090-9

12. Feng C., Chao L., Ying-Jie Z., Xin-Yu Zhao, Bing-Qiang L., Jin W. Magnetic nanocomposite of hydroxyapatite ultrathin nanosheets/Fe3O4 nanoparticles: microwave-assisted rapid synthesis and application in pH-responsive drug release. Biomater. Sci. 2013. 1(10): 1074. https://doi.org/10.1039/c3bm60086f

13. Davaran S., Alimirzalu S., Nejati-Koshki K., Nasrabadi H.T., Akbarzadeh A., Khandaghi A.A., Abbasian M., Alimohammadi S. Physicochemical characteristics of Fe3O4 magnetic nanocomposites based on poly(N-isopropylacrylamide) for anti-cancer drug delivery. Asian. Pac. J. Cancer Prev. 2014. 15(1): 49. https://doi.org/10.7314/APJCP.2014.15.1.49

14. Petranovska A.L., Abramov N.V., Turanska S.P., Gorbyk P.P., Kaminskiy A.N., Kusyak N.V. Adsorption of cis-dichlorodiammineplatinum by nanostructures based on single-domain magnetite. J. Nanostruct. Chem. 2015. 5(3): 275. https://doi.org/10.1007/s40097-015-0159-9

15. Abramov N.V., Turanska S.P., Kusyak A.P., Petranovska A.L., Gorbyk P.P. Synthesis and properties of magnetite/hydroxyapatite/doxorubicin nanocomposites and magnetic fluids based on them. J. Nanostruct. Chem. 2016. 6(3): 223. https://doi.org/10.1007/s40097-016-0196-z

16. Anirudhan T.S., Sandeep S. Synthesis, characterization, cellular uptake and cytotoxicity of a multi-functional magnetic nanocomposite for the targeted delivery and controlled release of doxorubicin to cancer cells. J. Mater. Chem. 2012. 22(25): 12888. https://doi.org/10.1039/c2jm31794j

17. Sadighian S., Hosseini-Monfared H., Rostamizadeh K., Hamidi M. pH-Triggered magnetic-chitosan nanogels (MCNs) for doxorubicin delivery: physically vs. chemically cross linking approach. Adv. Pharm. Bull. 2015. 5(1): 115.

18. http://www.rlsnet.ru/mnn_index_id_512.htm

19. Doxorubicin hydrochloride. European Pharmacopoeia. 6th Edition. 2005. P. 1389.

20. Shuai-Jun Chen, Hong-Zheng Zhang, Liang-Cai Wan, Shan-Shan Jiang, Yi-Ming Xu, Fang Liu, Tao Zhang, Dong Ma, Min-Qiang Xie. Preparation and performance of a pH-sensitive cisplatin-loaded magnetic nanomedicine that targets tumor cells via folate receptor mediation. Mol. Med. Rep. 2016. 13(6): 5059. https://doi.org/10.3892/mmr.2016.5154

21. Sakellari D., Mathioudaki S., Kalpaxidou Z., Simeonidis K., Angelakeris M. Exploring multifunctional potential of commercial ferrofluids by magnetic particle hyperthermia. J. Magn. Magn. Mater. 2015. 380: 360. https://doi.org/10.1016/j.jmmm.2014.10.042

22. Ahmed R.M., Fadel M., Hanafy M.S., Ibrahim M.A. Characterization and dielectric properties of magnetic nanoparticles (Ferrofluid) conjugated with chemotherapy drug for medical application. IOSR J. Appl. Phys. 2014. 6(1): 38. https://doi.org/10.9790/4861-06123846

23. Dave P.N., Chopda L.V. Application of iron oxide nanomaterials for the removal of heavy metals. J. Nanotechnol. 2014. 2014: Article ID 398569.

24. Sadegh H., Ali G.A.M., Gupta V.K., Makhlouf A.S.H., Shahryari-Ghoshekandi R., Nadagouda M.N., Sillanpa M., Megiel E. The role of nanomaterials as effective adsorbents and their applications in wastewater treatment. J. Nanostruct. Chem. 2017. 7(1): 1. https://doi.org/10.1007/s40097-017-0219-4

25. Borisenko N.V., Bogatyrev V.M., Dubrovin I.V., Abramov N.V., Gaevaya M.V., Gorbik P.P. Sintez i svoystva magnitochuvstvitel'nykh nanokompozitov na osnove oksidov zheleza i kremniya. V. 1. In: Fiziko-khimiya nanomaterialov i supramolekulyarnykh struktur. (Kyiv: Naukova dumka, 2007). [in Russian].

26. Turanska S.P., Kusyak A.P., Petranovska A.L., Gorobez' S.V., Turov V.V., Gorbyk P.P. Cytotoxic activity of magnet-quided doxorubicin-based nanocomposites with Saccharomyces cerevisiae cells as an example. Him. Fiz. Tehnol. Poverhni. 2016. 7(2): 236. [in Ukrainian]. https://doi.org/10.15407/hftp07.02.236

27. Kusyak A.P., Petranovska A.L., Turanska S.P., Gorbyk P.P. Adsorbtsiya kompleksiv tsys-dykhlordiaminplatyny nanokompozytamy mahnetyt–oksyd kremniyu (tytanu, alyuminiyu). Nanosystems, Nanomaterials, Nanotechnologies. 2014. 12(3): 451. [in Ukrainian].

28. Semko L.S., Horbik P.P., Storozhuk L.P., Dzyubenko L.S., Dubrovin IV, Oranskaya O.I. Modyfikuvannya mahnetytu dioksydom kremniyu. Phys. Chem. Solid State. 2007. 8(3): 526. [in Ukrainian].

29. Semko L.S., Gorbik P.P., Chuiko O.O., Storozhuk L.P., Dubrovin IV, Oranskaya O.I., Revo S.L. Modyfikuvannya mahnetytu dioksydom tytanu ta vlastyvosti oderzhanykh nanokompozytiv. Reports of the National Academy of Sciences of Ukraine. 2007. 2: 150. [in Ukrainian].

30. Petranovskaya A.L., Usov D.G., Abramov N.V., Demchenko Yu.O., Korduban O.M. Modifitsirovaniye poverkhnosti nanokristallicheskogo magnetita izopropilatom alyuminiya. Collection "Chemistry, Physics and Surface Technology". 2007. 13: 310. [in Russian].

31. Turova N.Ya., Kozunov V.A. Russ. J. Coord. Chem. 1978. 4: 15. [in Russian].

32. Penkosʹ R. Alkogolyaty alyuminiya. Uspekhi Khimii. 1968. 37(4): 647. [in Russian].

33. Ivanova V.M., Kalinina V.N., Neshumova L.A., Reshetnikova I.O. Matematicheskaya statistika. (Moscow: Vysshaya shkola, 1975). [in Russian].

34. Abramov N.V., Gorbyk P.P. Properties of ensembles of nano particles of magnetite, which are part of magnetic fluid designed for use in cancer therapy. Surface. 2012. 4(19): 246. [in Russian].

35. Rosenzweig R. Ferrohydrodynamics. (Moscow: Mir, 1989). [in Russian].

36. Shtrikman S., Wohlfarth E.P. The theory of the Vogel–Fulcher law of spin glasses. Phys. Lett. A. 1981. 85(8–9): 467. https://doi.org/10.1016/0375-9601(81)90441-2

37. Kim T., Reis L., Rajan K., Shima M. Magnetic behavior of iron oxide nanoparticle–biomolecule assembly. J. Magn. Magn. Mater. 2005. 295(2): 132. https://doi.org/10.1016/j.jmmm.2005.01.004

38. Shliomis M.I. Magnetic fluids. Sov. Phys. Usp. 1974. 17: 153. https://doi.org/10.1070/PU1974v017n02ABEH004332

39. Fertman V.E. Magnetic fluids. (Minsk: Vysshaya shkola, 1988). [in Russian].

40. Kim T., Shima M. Reduced magnetization in magnetic oxide nanoparticles. J. Appl. Phys. 2007. 101: 09M516.

41. Chuiko O.O. Khimiya poverkhnosti kremnezema. V. 1. (Kyiv: UkrINTEI, 2001). [in Russian].

42. Yantasee W., Warner C.L., Sangvanich T., Addleman R.S., Carter T.G., Wiacek R.J., Fryxell G.E., Timchalk C., Warner M.G. Removal of heavy metals from aqueous systems with thiol functionalized superparamagnetic nanoparticles. Environ. Sci. Technol. 2007. 41(14): 5114. https://doi.org/10.1021/es0705238

43. Volkov V.A. Kolloidnaya khimiya. Poverkhnostnyye yavleniya i dispersnyye sistemy. (Moscow: Lan', 2015). [in Russian].

44. Goon I.Y., Zhang C., Lim M., Gooding J.J., Amal R. Controlled fabrication of polyethylenimine-functionalized magnetic nanoparticles for the sequestration and quantification of free Cu2+. Langmuir. 2010. 26(14): 12247. https://doi.org/10.1021/la101196r

45. Liang B. Adsorption characteristics of Hg2+ ions using Fe3O4/chitosan magnetic nanoparticles. Adv. Mater. Res. 2011. 291–294: 72.

46. Wang J., Zheng S., Shao Y., Liu J., Xu Z., Zhu D. Amino-functionalized Fe3O4@SiO2 core-shell magnetic nanomaterial as a novel adsorbent for aqueous heavy metals removal. J. Colloid Interface Sci. 2010. 349(1): 293. https://doi.org/10.1016/j.jcis.2010.05.010

47. Park M., Seo S., Lee I.S., Jung J.H. Ultraefficient separation and sensing of mercury and methylmercury ions in drinking water by using aminonaphthalimide-functionalized Fe3O4@SiO2 core/shell magnetic nanoparticles. Chem. Commun. 2010. 46(25): 4478. https://doi.org/10.1039/c002905j

48. Weng C.-H., Lin Y.-T., Yeh C.-L., Sharma Y.C. Magnetic Fe3O4 nanoparticles for adsorptive removal of acid dye (new coccine) from aqueous solutions. Water Sci. Technol. 2010. 62(4): 844. https://doi.org/10.2166/wst.2010.310

49. Thio B.J., Clark K.K., Keller A.A. Magnetic pollen grains as sorbents for facile removal of organic pollutants in aqueous media. J. Hazard. Mater. 2011. 194: 53. https://doi.org/10.1016/j.jhazmat.2011.07.070

50. Yu C.-J., Lin C.-Y., Liu C.H., Cheng T.L., Tseng W.L. Synthesis of poly(diallyldimethylammonium chloride)-coated Fe3O4 nanoparticles for colorimetric sensing of glucose and selective extraction of thiol. Biosens. Bioelectron. 2010. 26(2): 913. https://doi.org/10.1016/j.bios.2010.06.069

51. Qiu J.D., Peng H.P., Liang R.P., Xia X.H. Facile preparation of magnetic core-shell Fe3O4@Au nanoparticle/myoglobin biofilm for direct electrochemistry. Biosens. Bioelectron. 2010. 25(6): 1447. https://doi.org/10.1016/j.bios.2009.10.043

52. Gu L., Park J.H., Duong K.H., Ruoslahti E., Sailor M.J. Magnetic luminescent porous silicon microparticles for localized delivery of molecular drug payloads. Small. 2010. 6(22): 2546. https://doi.org/10.1002/smll.201000841

53. Ma Y., Manolache S., Denes F., Vail D., Thamm D., Kurzman I. Plasma synthesis of carbon-iron magnetic nanoparticles and immobilization of doxorubicin for targeted drug delivery. J. Mater. Eng. Perform. 2006. 15(3): 376. https://doi.org/10.1361/105994906X113705

54. Zhu A., Yuan L., Jin W., Dai S., Wang Q., Xue Z., Qin A. Polysaccharide surface modified Fe3O4 nanoparticles for camptothecin loading and release. Acta Biomater. 2009. 5(5): 1489. https://doi.org/10.1016/j.actbio.2008.10.022

55. Skvortsov A.N. Efficient method of analysis of optical spectra from kinetic studies. Tsitologiya. 2009. 51(3): 229. [in Russian].

56. Raghavan R., Cheriyamundath S., Madassery J. Dimethyl sulfoxide inactivates the anticancer effect of cisplatin against human myelogenous leukemia cell lines in in vitro assays. Indian J. Pharmacol. 2015. 47(3): 322. https://doi.org/10.4103/0253-7613.157132

57. Silva P.P., de Paula F.C.S., Guerra W., Silveira J.N., Botelho F.V., Vieira L.Q., Bortolotto T., Fischer F.L., Bussi G., Terenzi H., Pereira-Maia E.C. Platinum(II) compounds of tetracyclines as potential anticancer agents: cytotoxicity, uptake and interactions with DNA. J. Braz. Chem. Soc. 2010. 21(7). https://doi.org/10.1590/S0103-50532010000700011

58. Gorbik P.P., Turov V.V. Nanomaterialy i nanokompozity v meditsine, biologii, ekologii. (Kyiv: Naukova Dumka, 2011). [in Russian].

59. Bruijnincx P.C., Sadler P.J. New trends for metal complexes with anticancer activity. Curr. Opin. Chem. Biol. 2008. 12(2): 197. https://doi.org/10.1016/j.cbpa.2007.11.013

60. Biswanath Kundu, Debasree Ghosh, Mithlesh Kumar Sinha, Partha Sarathi Sen, Vamsi Krishna Balla, Nirmalendu Das, Debabrata Basu Doxorubicin-intercalated nano-hydroxyapatite drug-delivery system for liver cancer: An animal model. Ceram. Int. 2013. 39(8): 9557. https://doi.org/10.1016/j.ceramint.2013.05.074

61. Saenko Yu.V., Shutov A.M., Rastorgueva E.V. Doxorubicin and menadione reduce cell proliferation of Saccharomyces cerevisiae by different mechanisms. Tsitologiya. 2010. 52(5): 407. [in Russian].

62. Babaeva I.P., Chernov I.Yu. Biologiya drozhzhey. (T-vo Nauch. Izd. KMK, 2004). [in Russian].

63. Turov V.V., Gun'ko V.M. Klasterizovannaya voda i puti yeye ispol'zovaniya. (Kyiv: Naukova Dumka, 2011). [in Russian].

64. Sun S., Zeng H., Robinson D.B. Monodispersed MFe2O4 (M = Fe, Co, Mn) nanoparticles. J. Am. Chem. Soc. 2004. 126(1): 73. https://doi.org/10.1021/ja0380852

65. Berkovsky B.M., Medvedev V.F., Krakow M.S. Magnetic fluids. (Moscow: Khimiya, 1989). [in Russian].

66. Mornet S., Vasseur S., Grasset F., Veverka P., Goglio G., Demourgues A., Portier J., Pollert E., Duguet E. Magnetic nanoparticle design for medical applications. Prog. Solid State Chem. 2006. 34(2–4): 237. https://doi.org/10.1016/j.progsolidstchem.2005.11.010

67. Abramov N.V. Magnetic fluid doxorubicin-based for application in cancer therapy. Surface. 2014. 6(21): 241. [in Russian].

68. Frolov Yu.G. Course of Colloid Chemistry. (Moscow: Khimiya, 1989). [in Ukrainian].

69. Chen D.-X., Sun N., Gu H.-C. Size analysis of carboxydextran coated superparamagnetic iron oxide particles used as contrast agents of magnetic resonance imaging. J. Appl. Phys. 2009. 106: 063906. https://doi.org/10.1063/1.3211307

70. Patent UA 112490. Chekhun V.F., Luk'yanova N.Yu., Gorbik P.P., Todor I.M., Petranovska A.L., Boshitska N.V., Bozhko I.V. Protypukhlynnyy feromahnitnyy nanokompozyt. 2016. [in Ukrainian].

Published
2017-10-08
How to Cite
Abramov, M., Kusyak, A., Kaminskiy, O., Turanska, S., Petranovska, A., Kusyak, N., & Gorbyk, P. (2017). Synthesis and properties of magnetosensitive polyfunctional nanocomposites for application in oncology. Surface, (9(24), 165-198. https://doi.org/10.15407/Surface.2017.09.165
Section
Medical and biological problems of surface