Interaction of magnetic accumulation nanomaterials and nanocomposites with cells, viruses, bioacactic molecules, ions of hard metals

  • A. P. Kusyak Zhytomyr State University named after. Ivan Franko
  • S. P. Turanska Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine
  • Мi Khan National Technical University of Ukraine "Igor Sikorsky Kiev Polytechnic Institute"
  • P. P. Gorbyk Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine


The review is given of scientific works made in the past decade concerning development, research of properties, operational parameters, directions of practical use of magnetic susceptible nanomaterials and nanocomposites promising for creation of new forms of complex medicinal preparations with cytotoxic, immunotherapeutic and hyperthermal action, immunomagnetic sorbents, means for decontamination viruses from plasma and serum of human donor blood and the like. Their analysis testifies to the relevance of the outlined topics and the promising application in various fields of medicine, biology, and biotechnology.


1. Shpak A.P., Gorbik P.P. Fiziko-khimiya nanomaterialov i supramolekulyarnykh struktur. V. 1. (Kyiv: Naukova dumka, 2007). [in Russian].

2. Patent UA 86322. Gorbik P.P., Petranovska A.L., Usov D.G., Storozhuk L.P. Nanokapsula z funktsiyamy nanorobota. 2009. [in Ukrainian].

3. Shpak A.P., Gorbyk P.P. Nanomaterials and Supramolecular Structures: Physics Chemistry and Applications. (Springer, 2009).

4. Gorbik P.P., Turov V.V. Nanomaterialy i nanokompozity v meditsine, biologii, ekologii. (Kyiv: Naukova dumka, 2011). [in Russian].

5. Gorbik P.P., Gorobets S.V., Turelik M.P. Biofunktsionalizatsiya nanomaterialiv i nanokompozytiv. Navchal'nyy posibnyk. (Kyiv: Naukova dumka, 2011). [in Ukrainian].

6. Patent UA 99211. Gorbik P.P., Korduban A., Shpak A.P., Vasilieva A.A., Turanska S., Lukyanova N., Petanovskaya A., Chekhun V.F., Turelyk M.P. Nanokapsula z funktsiyamy nanorobota. 2012. [in Ukrainian].

7. Turelik M.P. Ph.D. (Chem.) Thesis. (Kyiv, 2012). [in Ukrainian].

8. Gorbik P.P. Nanokompozyty z funktsiyamy medyko-biolohichnykh nanorobotiv: syntez, vlastyvosti, zastosuvannya. Nanosistemi, Nanomateriali, Nanotehnologii. 2013. 11(2): 323. [in Ukrainian].

9. Uvarova I.V., Gorbik P.P., Gorobets S.V., Ivaschenko O.A., Ulyanchenko N.V. Nanomaterialy medychnoho pryznachennya. (Kyiv: Naukova dumka, 2014). [in Ukrainian].

10. Gorbyk P.P., Lerman L.B., Petranovska A.L., Turanska S.P. Advances in Semiconductor Research: Physics of Nanosystems, Spintronics and Technological Applications.Magnetosensitive Nanocomposites with Functions of Medico-Biological Nanorobots: Synthesis and Properties. Chapter 9. (New York: Nova Science Publishers, 2014).

11. Gorbyk P.P., Lerman L.B., Petranovska A.L., Turanska S.P., Pylypchuk le.V. Magnetosensitive nanocomposites with hierarchical nanoarchitecture as biomedical nanorobots: Synthesis, properties, and application. Chapter 10. Fabrication and Self-Assembly of Nanobiomaterials. Applications of Nanobiomaterials. 2016. 1: 289.

12. Patent UA 112490. Chekhun V.F., Lukyanova N.Yu., Gorbik P.P., Todor I.M., Petranovskaya A.L., Boshitskaya N.V., Bozhko I.V. Protypukhlynnyy feromahnitnyy nanokompozyt. 2016. [in Ukrainian].

13. Levy L. SahooY., KimK.-S., Bergey J.E. Nanochemistry:  Synthesis and characterization of multifunctional nanoclinics for biological applications. Chem. Mater. 2002. 14(9): 3715.

14. [in Ukrainian].

15. [in Ukrainian].

16. [in Russian].

17. Turanska S.P., Kusyak A.P., Turov V.V., Gorbyk P.P. Interaction of magnetic nanoparticles with cells. Surface. 2013. 5(20) 227. [in Ukrainian].

18. Vol'ter E.R. Ph.D. (Biolog.) Thesis. (Sukhumi, 2005). [in Russian].

19. Rivière C., Boudghène F.P., Gazeau F., Roger J., Pons J.N., Laissy J.P., Allaire E., Michel J.B., Letourneur D., Deux J.F. Iron oxide nanoparticle-labeled rat smooth muscle cells: cardiac MR imaging for cell graft monitoring and quantitation. Radiology. 2005. 235(3): 959.

20. Leeper N.J., Hunter A.L., Cooke J.P. Stem cell therapy for vascular regeneration: Adult, embryonic, and induced pluripotent stem cells. Circulation. 2010. 122(5): 517.

21. Loebinger M.R., Kyrtatos P.G., Turmaine M., Price A.N., Pankhurst Q., Lythgoe M.F., Janes S.M. Magnetic resonance imaging of mesenchymal stem cells homing to pulmonary metastases using biocompatible magnetic nanoparticles. Cancer Res. 2009. 69(23): 8862.

22. Heymer A., Haddad D., Weber M., Gbureck U., Jakob P.M., Eulert J., Nöth U. Iron oxide labelling of human mesenchymal stem cells in collagen hydrogels for articular cartilage repair. Biomaterials. 2008. 29(10): 1473.

23. Singh N., Jenkins G.J.S., Asadi R., Doak S.H. Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nano Rev. 2010. 1: 1.

24. Auffan M., Rose J., Wiesner M.R., Bottero J.-Y. Chemical stability of metallic nanoparticles: A parameter controlling their potential cellular toxicity in vitro. Environ. Pollut. 2009. 157(4): 1127.

25. Auffan M., Achouak W., Rose J., Roncato M.A., Chanéac C., Waite D.T., Masion A., Woicik J.C., Wiesner M.R., Bottero J.Y. Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia coli. Environ. Sci. Technol. 2008. 42(17): 6730.

26. Houdy P., Lahmani M., Marano F. Nanoethics and Nanotoxicology. 1st Edition. (Paris: Éditions Bélin, 2010).

27. Polikarpov D.M., Gabbasov R.R., Cherepanov V.M., Chuev M.A., Korshunov V.A., Nikitin M.P., Deyev S.M., Panchenko V.Y. Biodegradation of magnetic nanoparticles in rat brain studied by mössbauer spectroscopy. IEEE Trans. Magn. 2013. 49(1): 1.

28. Freyria F.S., Bonelli B., Tomatis M., Ghiazza M., Gazzano E., Ghigo D., Garrone E., Fubini B. Hematite nanoparticles larger than 90 nm show no sign of toxicity in terms of lactate dehydrogenase release, nitric oxide generation, apoptosis, and comet assay in murine alveolar macrophages and human lung epithelial cells. Chem. Res. Toxicol. 2012. 25(4): 850.

29. Karlsson H.L., Gustafsson J., Cronholm P., Möller L. Size-dependent toxicity of metal oxide particles-a comparison between nano- and micrometer size. Toxicol. Lett. 2009. 188(2): 112.

30. Könczöl M., Ebeling S., Goldenberg E., Treude F., Gminski R., Giere R., Grobéty B., Rothen-Rutishauser B., Merfort I., Mersch-Sundermann V. Cytotoxicity and genotoxicity of size-fractionated iron oxide (magnetite) in A549 human lung epithelial cells: Role of ROS, JNK and NF-κappa B. Chem. Res. Toxicol. 2011. 24(9): 1460.

31. Lunov O., Syrovets T., Büchele B., Jiang X., Röcker C., Tron K., Nienhaus G.U., Walther P., Mailänder V., Landfester K., Simmet T. The effect of carboxydextran-coated superparamagnetic iron oxide nanoparticles on c-Jun N-terminal kinase-mediated apoptosis in human macrophages. Biomaterials. 2010. 31(19): 5063.

32. Berry C.C., Wells S., Charles S., Aitchison G., Curtis A.S.G. Cell response to dextran-derivatised iron oxide nanoparticles post internalization. Biomaterials. 2004. 25(23): 5405.

33. Vazhnichaya Ye.M., Devyatkina T.A., Moklyak Ye.V. Pharmacological properties of magnetite nano-particles. Visnyk Ukrayins'koyi Medychnoyi Stomatolohichnoyi Akademiyi "Aktual'ni Problemy Suchasnoyi Medytsyny". 2016. 16(1(53)): 291. [in Ukrainian].

34. Simberg D., Park J.H., Karmali P.P. Differential proteomics analysis of the surface heterogeneity of dextran iron oxide nanoparticles and the implications for their in vivo clearance. Biomaterials. 2009. 30(23–24): 3926.

35. Ni F., Jiang L., Yang R. Effects of PEG length and iron oxide nanoparticles size on reduced protein adsorption and non-specific uptake by macrophage cells. J. Nanosci. Nanotechnol. 2012. 12(3): 2094.

36. Häfeli U.O., Riffle J.S., Harris-Shekhawat L. Cell uptake and in vitro toxicity of magnetic nanoparticles suitable for drug delivery. Mol. Pharm. 2009. 6(5): 1417.

37. Roohi F., Lohrke J., Ide A. Studying the effect of particle size and coating type on the blood kinetics of superparamagnetic iron oxide nanoparticles. Int. J. Nanomedicine. 2012. 7: 4447.

38. López-Castro J.D., Maraloiu A.V., Delgado J.J. From synthetic to natural nanoparticles: monitoring the biodegradation of SPIO (P904) into ferritin by electron microscopy. Nanoscale. 2011. 3(11): 4597.

39. Dai L., LiuY., Wang Z. One-pot facile synthesis of PEGylated superparamagnetic iron oxide nanoparticles for MRI contrast enhancement. Mater. Sci. Eng. C. Mater. Biol. Appl. 2014. 41: 161.

40. Biggar P., Hahn K.M. Importance of the different i.v. iron generations for everyday medical practice. MMW Fortschr. Med. 2013. 155(1): 18.

41. Vadhan-Raj S., StraussW., Ford D. Efficacy and safety of IV ferumoxytol for adults with iron deficiency anemia previously unresponsive to or unable to tolerate oral iron. Am. J. Hematol. 2014. 89(1): 7.

42. Scialabba C., Licciardi M., Mauro N. Inulin-based polymer coated SPIONs as potential drug delivery systems for targeted cancer therapy. Eur. J. Pharm. Biopharm. 2014. 88(3): 695.

43. Choi W.I., Lee J.H., Kim J.Y. Targeted anti-tumor efficacy and imaging via multifunctional nano-carrier conjugated with anti-HER2 trastuzumab. Nanomedicine. 2015. 11(2): 359.

44. Saxena V., Naguib Y., Hussain M.D. Folate receptor targeted 17- allylamino-17-demethoxygeldanamycin (17-AAG) loaded polymeric nanoparticles for breast cancer. Colloids Surf. B. Biointerfaces. 2012. 94: 274.

45. Yang R., An Y., Miao F. Preparation of folic acid-conjugated, doxorubicin-loaded, magnetic bovine serum albumin nanospheres and their antitumor effects in vitro and in vivo. Int. J. Nanomedicine. 2014. 9: 4231.

46. Kalinichenko E.A. Effect of form and dimensions of magnetite nanoparticles on relaxation time of the magnetic moment. Mineralogical Journal. 2011. 33(2): 42. [in Russian].

47. Béalle G., Di Corato R., Kolosnjaj-Tabi J. Ultra magnetic liposomes for MR imaging, targeting, and hyperthermia. Langmuir. 2012. 28(32): 11834.

48. Hayashi K., Nakamura M., Sakamoto W. Superparamagnetic nanoparticle clusters for cancer theranostics combining magnetic resonance imaging and hyperthermia treatment. Theranostics. 2013. 3(6): 366.

49. Naqvi S., Samim M., Abdin M.Z., Ahmed F.J., Maitra A.N., Prashant C.K., Dinda A.K. Concentration-dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress. Int. J. Nanomedicine. 2010. 5: 983.

50. Ankamwar B., Lai T.C., Huang J.H., Liu R.S., Hsiao M., Chen C.H., Hwu Y.K. Biocompatibility of Fe3O4 nanoparticles evaluated by in vitro cytotoxicity assays using normal, glia and breast cancer cells. Nanotechnology. 2010. 21(7): 075102.

51. Villanueva A., Ca-ete M., Roca A.G., Calero M., Veintemillas-Verdaguer S., Serna C.J., Morales M. del Puerto, Miranda R. The influence of surface functionalization on the enhanced internalization of magnetic nanoparticles in cancer cells. Nanotechnology. 2009. 20(11): 115103.

52. Liu Y.X., Chen Z.P., Wang J.K. Internalization of DMSA-coated Fe3O4 magnetic nanoparticles into mouse macrophage cells. Adv. Mater. Res. 2012. 455–456: 1221.

53. Auffan M., Decome L., Rose J., Orsiere T., De Meo M., Briois V., Chaneac C., Olivi L., Berge-Lefranc J.-L., Botta A., Wiesner M.R., Bottero J.-Y. In vitro interactions between DMSA-coated maghemite nanoparticles and human fibroblasts:  A physicochemical and cyto-genotoxical study. Environ. Sci. Technol. 2006. 40(14): 4367.

54. Monge-Fuentes V., Garcia M.P., Tavares M.C.H., Valois C.R.A., Lima E.C.D., Teixeira D.S., Morais P.C., Tomaz C., Azevedo R.B. Biodistribution and biocompatibility of DMSA-stabilized maghemite magnetic nanoparticles in nonhuman primates (Cebus spp.). Nanomedicine. 2011. 6(9): 1529.

55. De Freitas E.R.L., Soares P.R.O., de Paula Santos R., dos Santos R.L., da Silva J.R., Porfirio E.P., Báo S.N., de Oliveira Lima E.C., Morais P.C., Guillo L.A. In vitro biological activities of anionic γ-Fe2O3 nanoparticles on human melanoma cells. J. Nanosci. Nanotechnol. 2008. 8(5): 2385.

56. Pradhan P., Giri J., Banerjee R., Bellare J., Bahadur D. Cellular interactions of lauric acid and dextran-coated magnetite nanoparticles. J. Magn. Magn. Mater. 2007. 311(1): 282.

57. Pushkar' V.G., Efremenko V.I., Klimov I.M., Gavenskiĭ S.D., Trofimov E.N. Preparation and use of magnetic sorbents for studying microorganism antigens. Zh. Mikrobiol. Epidemiol. Immunobiol. 1985. 12: 30.

58. Honda H., Kawabe A., Shinkai M., Kobayashi T. Development of chitosan-conjugated magnetite for magnetic cell separation. J. Ferment. Bioeng. 1998. 86(2): 191.

59. Azevedo R.B., Silva L.P., Lemos A.P.C., Bao S.N., Lacava Z.G.M., Safarik I., Safarikova M., Morais P.C. Morphological study of Saccharomyces cerevisiae cells treated with magnetic fluid. IEEE Trans. Magn. 2003. 39(5): 2660.

60. Geppert M., Hohnholt M.C., Thiel K., Nürnberger S., Grunwald I., Rezwan K., Dringen R. Uptake of dimercaptosuccinate-coated magnetic iron oxide nanoparticles by cultured brain astrocytes. Nanotechnology. 2011. 22(14): 145101.

61. Neal A.L., Bank T.L., Hochella M.F., Rosso K.M. Cell adhesion of Shewanella oneidensis to iron oxide minerals: Effect of different single crystal faces. Geochem. Trans. 2005. 6(4): 77.

62. Van Oss C.J. Interfacial Forces in Aqueous Media. (New York: Marcel Dekker, 1994).

63. Roberts J.A., Fowle D.A., Hughes B.T., Kulczycki E. Attachment behavior of Shewanella putrefaciens onto magnetite under aerobic and anaerobic conditions. Geomicrobiol. J. 2006. 23(8): 631.

64. Ström V., Hultenby K., Grüttner C., Teller J., Xu B., Holgersson J. A novel and rapid method for quantification of magnetic nanoparticle–cell interactions using a desktop susceptometer. Nanotechnology. 2004. 15(5): 457.

65. Gabbasov R.R., Cherepanov V.M., Chuev M.A., Polikarpov D.M., Panchenko V.Y. Study of interparticle interaction in conjugates of magnetic nanoparticles injected into mice. Hyperfine Interact. 2012. 206(1–3): 71.

66. Gabbasov R.R., Cherepanov V.M., Chuev M.A., Polikarpov D.M., Nikitin M.P., Deyev S.M., Panchenko V.Y. Biodegradation of magnetic nanoparticles in mouse liver from combined analysis of mössbauer and magnetization data. IEEE Trans. Magn. 2013. 49(1): 1.

67. Singh N., Jenkins G.J.S., Nelson B.C., Marquis B.J., Maffeis T.G.G., Brown A.P., Williams P.M., Wright C.J., Doak S.H. The role of iron redox state in the genotoxicity of ultrafine superparamagnetic iron oxide nanoparticles. Biomaterials. 2012. 33(1): 163.

68. Kruszewski M., Iwaneńko T. Labile iron pool correlates with iron content in the nucleus and the formation of oxidative DNA damage in mouse lymphoma L5178Y cell lines. Acta Biochim. Pol. 2003. 50(1): 211.

69. Gorbik P.P. Nanokompozyty z funktsiyamy medyko-biolohichnykh nanorobotiv: syntez, vlastyvosti, zastosuvannya. Nanosystems, Nanomaterials, Nanotechnologies. 2013. 11(2): 323. [in Ukrainian].

70. Shpak AP, Gorbik P.P. Fiziko-khimiya nanomaterialov i supramolekulyarnykh struktur. V. 1. (Kyiv: Naukova dumka, 2007). [in Russian].

71. Luria S., Darnell J., Baltimore D., Cempbell E. Obshchaya virusologiya. (Moscow: Mir, 1981). [in Russian].

72. Chuiko O.O. Meditsinskaya khimiya i klinicheskoye primeneniye dioksida kremniya. (Kyiv: Naukova dumka, 2003). [in Russian].

73. Skoups R. Metody ochistki belkov. (Moscow: Mir, 1985). [in Russian].

74. Semko L.S., Storozhuk L.P., Gorbik P.P. Mahnitni nanokompozyty Fe3O4/SiO2 ta imunosorbenty na yikh osnovi. Chemistry, Physics and Surface Technology. 2009. 15: 311. [in Ukrainian].

75. Vergun L.Yu., Klimchuk D.A., Gorbik P.P. Sintez immunomagnitnykh sorbentov dlya separatsii virusov gepatitov V i S. Mykrobyolohycheskyy Zhurnal. 2009. 71: 65. [in Russian].

76. [in Russian].

77. Dao V.Q., Nguyen M.H., Pham T.T., Nguyen H.N. Synthesis of silica-coated magnetic nanoparticles and application in the detection of pathogenic viruses. J. Nanomater. 2013. 2013: Article ID 603940.

78. Mohammad H.M., Rasoul P.T. Synergistic effect of magnetite and gold nanoparticles onto the response of a label-free impedimetric hepatitis B virusDNA biosensor. Mater. Sci. Eng. C. 2016. 59: 773.

79. Bitton G., Pancorbo O., Gifford G.E. Factors affecting the adsorption of polio virus to magnetite in water and wastewater. Water Res. 1976. 10(11): 973.

80. Nieto-Juarez JI, Kohn T. Virus removal and inactivation by iron (hydr)oxide-mediated Fenton-like processes under sunlight and in the dark. Photochem. Photobiol. Sci. 2013. 2(9): 1596.

81. Liu D., Ma L., Liu L., Wang L., Liu Y., Jia Q. Guo Q., Zhang G., Zhou J.Polydopamine-Encapsulated Fe3O4 with an Adsorbed HSP70 Inhibitor for Improved Photothermal Inactivation of Bacteria. ACS Appl. Mater. Interfaces. 2016. 8(37): 24455.

82. Sun Q., Zhao G., Dou W. An optical and rapid sandwich immunoassay method for detection of Salmonella pullorum and Salmonella gallinarum based on immune blue silica nanoparticles and magnetic nanoparticles. Sens. Actuators B. 2016. 226: 69.

83. Wu J., Chen Y., Wang Y., Yin H., Zhao Zh. Poly-L-lysine brushes on magnetic nanoparticles for ultrasensitive detection of Escherichia coli O157: H7. Talanta. 2017. 172: 53.

84. Pitek A.S., Jameson S.A., Veliz F.A., Shukla S., Steinmetz N.F. Serum albumin 'camouflage' of plant virus based nanoparticles prevents their antibody recognition and enhances pharmacokinetics. Biomaterials. 2016. 89: 89.

85. Zhan S., Yang Y., Shen Z., Shan J., Li Y., Yang S., Zhu D. Efficient removal of pathogenic bacteria and viruses by multifunctional amine-modified magnetic nanoparticles. J. Hazard. Mater. 2014. 274: 115.

86. Augustine R., Abraham A.R., Kalarikkal N., Thomas S. Monitoring and separation of food-borne pathogens using magnetic nanoparticles. Novel Approaches of Nanotechnology in Food. 2016. 1: 271.

87. Gao Y., Pallister J., Lapierre F., Crameri G., Wang L.-F., Zhu Y. A rapid assay for Hendra virus IgG antibody detection and its titre estimation using magnetic nanoparticles and phycoerythrin. J. Virol. Methods. 2015. 222: 170.

88. Qian L., Sun J., Hou C., Yang J., Li Y., Lei D., Yang M., Zhang S. Immobilization of BSA on ionic liquid functionalized magnetic Fe3O4 nanoparticles for use in surface imprinting strategy. Talanta. 2017. 168: 174.

89. Yang S.Y., Wang W.C., Lan C.B., Chen C.H., Chieh J.J., Horng H.E., Hong C.-Y., Yang H.C., Tsai C.P., Yang C.Y., Cheng I.C. Magnetically enhanced high-specificity virus detection using bio-activated magnetic nanoparticles with antibodies as labeling markers. J. Virol. Methods. 2010. 164(1–2): 14.

90. Kurena B., Vežāne A., Skrastiņa D., Trofimova O., Zajakina A. Magnetic nanoparticles for efficient cell transduction with Semliki Forest virus. J. Virol. Methods. 2017. 245: 28.

91. Kumar S.R., Paulpandi M., ManivelRaja M., Mangalaraj D., Viswanathan C., Kannanb S., Ponpandian N. An in vitro analysis of H1N1 viral inhibition using polymer coated superparamagnetic Fe3O4 nanoparticles. RSC Adv. 2014. 26: 21506.

92. Zheng L., Wei J., Lv X., Bi Y., Wu P., Zhang Z., Wang P., Liu R. Detection and differentiation of influenza viruses with glycan-functionalized gold nanoparticles. Biosens. Bioelectron. 2017. 91: 46.

93. Sun Y., Xu L., Zhang F., Song Z., Hu Y., Ji Y., Shen J., Li B., Lu H., Yang H.A promising magnetic SERS i mmunosensor for sensitive detection of avian influenza virus. Biosens. Bioelectron. 2017. 89(2): 906.

94. Tartaj P., Morales M.P., Gonzalez-Carre-o T., Veintemillas-Verdaguer S., Bomati-Miguel O. Biomedical Applications of Magnetic Nanoparticles. Reference Module in Materials Science and Materials Engineering. 2016.

95. Petranovska A.L., Mishchenko V.N., Turelyk M.P., Gun'a G.M., Gorbyk P.P. The features of immunoglobulin immobilization processes on the surface of magnetite/hydroxyapatite magnetosensitive nanocomposite. Him. Fiz. Tehnol. Poverhni. 2010. 1(2): 182. [in Ukrainian].

96. Uvarova I.V., Gorbik P.P., Gorobets S.V. Nanomaterialy medychnoho pryznachennya. (Kyiv: Naukova dumka, 2014). [in Ukrainian].

97. Pan B.-F., Gao F., Ao L.-M. Investigation of interactions between dendrimer-coated magnetite nanoparticles and bovine serum albumin. J. Magn. Magn. Mater. 2005. 293(1): 252.

98. Sarnatskaya V.V. Interaction of magnetite Fe3O4 nanoparticles functionalized with oleic acid and polyethylene glycol with albumin. Reports of the National Academy of Sciences of Ukraine. 2013. 9: 164. [in Russian].

99. Shao D., Xu K., Song X., Hu J., Yang W., Wang C. Effective adsorption and separation of lysozyme with PAA-modified Fe3O4@silica core/shell microspheres. J. Colloid Interface Sci. 2009. 336(2): 526.

100. Huang J., Liu C., Xiao H., Wang J., JiangD., Gu E. Zinc tetraaminophthalocyanine-Fe3O4 nanoparticle composite for laccase immobilization. Int. J. Nanomedicine. 2007. 2(4): 775.

101. Qiu J.D., Peng H.P., Liang R.P., Xia X.H. Facile preparation of magnetic core-shell Fe3O4@Au nanoparticle/myoglobin biofilm for direct electrochemistry. Biosens. Bioelectron. 2010. 25(6): 1447.

102. Wu Y., Wang Y., Luo G., Dai Y. In situ preparation of magnetic Fe3O4-chitosan nanoparticles for lipase immobilization by cross-linking and oxidation in aqueous solution. Bioresour. Technol. 2009. 100(14): 3459.

103. Kolotilov S.V., Pavlishchuk V.V., Boltovets P.N., Snopok B.A. Nanosized magnetic composite for extraction of γ-immunoglobulins from biological media. Theor. Exp. Chem. 2006. 42(4): 211.

104. Semko L.S., Hutornyy S.V., Storozhuk L.P., Dzyubenko L.S., Abramov N.V., Gorbyk P.P. Chemical engineering and research the properties of magnetically operated adsorbents for the extraction of nucleic acids. Surface. 2010. 2(17): 330. [in Ukrainian].

105. Gu L., Park J.H., Duong K.H., RuoslahtiE., Sailor M.J. Magnetic luminescent porous silicon microparticles for localized delivery of molecular drug payloads. Small. 2010. 6(22): 2546.

106. Ma Y., Manolache S., Denes F., Vail D., Thamm D., Kurzman I. Plasma synthesis of carbon-iron magnetic nanoparticles and immobilization of doxorubicin for targeted drug delivery. J. Mater. Eng. Perform. 2006. 15(3): 376.

107. Zhu A., Yuan L., Jin W., Dai S., Wang Q., Xue Z., Qin A. Polysaccharide surface modified Fe3O4 nanoparticles for camptothecin loading and release. Acta Biomater. 2009. 5(5): 1489.

108. Zhu X., Gu J., Li Y., Zhao W., Shi J. Magnetic core-mesoporous shell nanocarriers with drug anchorages suspended in mesopore interior for cisplatin delivery. Microporous Mesoporous Mater. 2014. 196(15): 115.

109. Palyvoda O.M., Chernishov V.I., Chekhun V.F., Todor I.N., Kuzmenko O.I. Colloidally stable surface-modified iron oxide nanoparticles: preparation, characterization and anti-tumor activity. J. Magn. Magn. Mater. 2015. 380(15): 125.

110. Tseng Ch.-L., Su W.-Y., Yen K.-Ch., Yang K.-Ch., Lin F.-H. The use of biotinylated-EGF-modified gelatin nanoparticle carrier to enhance cisplatin accumulation in cancerous lungs via inhalation. Biomaterials. 2009. 30(20): 3476.

111. Yallapu M.M., Othman Sh.F., Curtis E.T., Gupta B.K., Jaggi M., Chauhan S.C. Multi-functional magnetic nanoparticles for magnetic resonance imaging and cancer therapy. Biomaterials. 2011. 32(7): 1890.

112. Maldonado C.R., Salassa L., Gomez-Blanco N., Mareque-Rivas J.C. Nano-functionalization of metal complexes for molecular imaging and anticancer therapy. Coord. Chem. Rev. 2013. 257(19–20): 2668.

113. Murakami T., Yudasaka M., Iijima S., Tsuchida K. Characterization of inorganic nanomaterials as therapeutic vehicles. Recent Adv. Med. Chem. 2014. 1: 73.

114. Jhaveri, A., Deshpande P., Torchilin V. Stimuli-sensitive nanopreparations for combination cancer therapy. J. Control. Release. 2014. 190(28): 352.

115. Lee J.H., Yeo Y. Controlled drug release from pharmaceutical nanocarriers. Chem. Eng. Sci. 2015. 125(24): 75.

116. Ma P., Xiao H., Li Ch., Dai Y., Cheng Z., Hou Z., Lin, J. Inorganic nanocarriers for platinum drug delivery. Mater. Today. 2015. 18(10): 554.

117. Wani W.A., Prashar S., Shreaz Sh., Gómez-Ruiz S. Nanostructured materials functionalized with metal complexes: in search of aalternatives for administering anticancer metallodrugs. Coord. Chem. Rev. 2016. 312(1): 67.

118. Vyas N., Turner A., Sewell G. Platinum-based anticancer drugs in waste waters of a major UK hospital and predicted concentrations in recipient surface waters. Sci. Total Environ. 2014. 493(15): 324.

119. Turner A., Mascorda L. Particle–water interactions of platinum-based anticancer drugs in river water and estuarine water. Chemosphere. 2015. 119: 415.

120. Shpak A.P., Gorbyk P.P. Nanomaterials and Supramolecular Structures. Physics Chemistry, and Applications. (Springer Nederlands, 2009).

121. Gorbik P.P., Chekhun V.F., Shpak A.P. Nanostrukturnyye materialy – polucheniye, svoystva, primeneniye. (Minsk: Bielaruskaja navuka, 2009). [in Russian].

122. Patent UA 86322. Gorbik P.P., Petranovska A.L., Usov D.G., Storozhuk L.P. Nanokapsula z funktsiyamy nanorobota. 2009. [in Ukrainian].

123. Gorbik P.P., Turov V.V. Nanomaterialy i nanokompozity v meditsine, biologii, ekologii. (Kyiv: Naukova dumka, 2011). [in Russian].

124. Gorbik P.P., Gorobets S.V., Turelyk M.P., Chekhun V.F., Shpak A.P. Biofunktsionalizatsiya nanomaterialiv i nanokompozytiv. Navchal'nyy posibnyk. (Kyiv: Naukova dumka, 2011). [in Ukrainian].

125. Patent UA 99211. Gorbik P.P., Korduban A., Shpak A.P., Vasilieva A.A., Turanska S., Lukyanova N., Petanovskaya A., Chekhun V.F., Turelyk M.P. Nanokapsula z funktsiyamy nanorobota. 2012. [in Ukrainian].

126. Gorbik P.P., Abramov M.V., Petranovskaya A.L., Turelyk M.P., Vasilieva O.A. Svidotstvo pro reyestratsiyu avtors'koho prava 46056. State Intellectual Property Service of Ukraine. 2012. [in Ukrainian].

127. Patent UA 78473. Abramov N.V., Gorbyk P.P., Petranovskaya A.L., Vasilieva A.A., Turelyk M.P., Chekhun V.F., Paton B.E., Lukyanova N.Yu. Mahnitna protypukhlynna ridyna. 2013. [in Ukrainian].

128. Patent UA 78448. Gorbik P.P., Abramov N.V., Pylypchuk Ye.V., Petranovskaya A.L., Vasilieva A.A., Turelyk M.P. Mahnitna ridyna. 2013. [in Ukrainian].

129. Gorbik P.P., Turelyk M.P., Gorobets S.V., Gorobets O.Yu., Demyanenko I.V. Biofunktsionalizovani nanomaterialy i nanokompozyty: naukovi osnovy ta napryamy zastosuvannya. Navchal'nyy posibnyk. (Kyiv: NTTU (KPI), 2013). [in Ukrainian].

130. Tereshchenko V.P., Kartel M.T. Mediko-biologicheskiye effekty nanochastits: realii i prognozy. (Kyiv: Naukova dumka, 2010). [in Russian].

131. Chekman I.S. Nanofarmakolohiya. (Kyiv: Zadruha, 2011). [in Ukrainian].

132. Turanska S.P., Kaminsky A.N., Kusjak N.V., Turov V.V., Gorbyk P.P. Synthesis, properties and application of magnetodirected adsorbents. Surface. 2012. 4(19): 266. [in Russian].

133. Afkhami A., Norooz-Asl R. Removal, Preconcentration and Determination of Mo(VI) from Water and Wastewater Samples Using Maghemite Nanoparticles. Colloids Surf. A. 2009. 346(1–3): 52.

134. Erdemoğlu M., Sarıkaya M. Effects of heavy metals and oxalate on the zeta potential of magnetite. J. Colloid Interface Sci. 2006. 300(2): 795.

135. Bozhenko O.M., Omel'chuk Yu.A., Gomelya M.D. Otrymannya vysoko selektyvnykh sorbentiv dlya vyluchennya midi z vod system okholodzhennya AES. Zbirnyk naukovykh prats' Sevastopol's'koho natsional'noho universytetu yadernoyi enerhiyi ta promyslovosti. 2009. 148. [in Ukrainian].

136. Goon I.Y., Zhang C., Lim M., Gooding J.J., Amal R. Controlled fabrication of polyethylenimine-functionalized magnetic nanoparticles for the sequestration and quantification of free Cu2+. Langmuir. 2010. 26(14): 12247.

137. Yantasee W., Warner C.L., Sangvanich T., Addleman R.S., Carter T.G., Wiacek R.J., Fryxell G.E., Timchalk C., Warner M.G. Removal of heavy metals from aqueous systems with thiol functionalized superparamagnetic nanoparticles. Environ. Sci. Technol. 2007. 41(14): 5114.

138. Usov D.G., Petranovskaya A.L., Turelyk M.P., Korduban O.M., Gorbik P.P. Syntez ta fizyko-khimichni vlastyvosti nanokompozytiv na osnovi mahnetytu, modyfikovanoho mezo-2-3-dymerkaptosuktsynovoyu kyslotoyu. Chemistry, Physics and Surface Technology. 2009. 15: 320. [in Ukrainian].

139. Hong S., Chen H., Wang L. Luminescent and Magnetic Fe3O4/Py/PAM nanocomposites for the chromium(VI) determination. Spectrochim. Acta, Part A. 2008. 70(2): 449.

140. Chang Y.C., Chen D.H. Preparation and adsorption properties of monodisperse chitosan-bound Fe3O4 magnetic nanoparticles for removal of Cu(II) ions. J. Colloid Interface Sci. 2005. 283(2): 446.

141. Liang B. Adsorption characteristics of Hg2+ ions using Fe3O4/chitosan magnetic nanoparticles. Adv. Mater. Res. 2011. 291–294: 72.

142. Park M., Seo S., Lee I.S., Jung J.H. Ultraefficient separation and sensing of mercury and methylmercury ions in drinking water by using aminonaphthalimide-functionalized Fe3O4@SiO2 core/shell magnetic nanoparticles. Chem. Commun. 2010. 46(25): 4478.

143. Wang J., Zheng S., Shao Y., Liu J., Xu Z., Zhu D. Amino-functionalized Fe3O4@SiO2 core-shell magnetic nanomaterial as a novel adsorbent for aqueous heavy metals removal. J. Colloid Interface Sci. 2010. 349(1): 293.

144. Yang S., Guo Y., Yan N., Wu D., He H., Qu Z., Yang Ch., Zhou Q., Jia J. Nanosized cation-deficient Fe−Ti spinel: a novel magnetic sorbent for elemental mercury capture from flue gas. ACS Appl. Mater. Interfaces. 2011. 3(2): 209.

145. Huang S.-H., Chen D.-H. Rapid removal of heavy metal cations and anions from aqueous solutions by an amino-functionalized magnetic nano-adsorbent. J. Hazard. Mater. 2009. 163(1): 174.

146. Mishchenko V.N., Kartel M.T., Lucenko V.A., Nikolaychuk A.D., Kusyak N.V., Korduban O.M., Gorbyk P.P. Magnetosensitive adsorbents based on activated carbon: synthesis and properties. Surface. 2010. 2(17): 276. [in Ukrainian].

147. Chen Ch., Hu J., Shao D., Li J., Wang X. Adsorption behavior of multiwall carbon nanotube/iron oxide magnetic composites for Ni(II) and Sr(II). J. Hazard. Mater. 2009. 164(2–3): 923.

148. Peng X., Zhang W., Gai L., Jiang H., Wang Y., Zhao L. Dedoped Fe3O4/PPy nanocomposite with high anti-interfering ability for effective separation of Ag(I) from mixed metal-ion solution. Chem. Eng. J. 2015. 280: 197.

149. Karimi M.A., Mohammadi S.Z., Mohadesi A., Hatefi-Mehrjardi A., Mazloum-Ardakani M., Sotudehnia Korani L., Askarpour Kabir A. Determination of silver(I) by flame atomic absorption spectrometry after separation/preconcentration using modified magnetite nanoparticles. Scientia Iranica. 2011. 18(3): 790.

150. Pyrzynska K. Sorbent materials for separation and preconcentration of gold in environmental and geological samples. Anal. Chim. Acta. 2012. 741: 9.

151. Kazemi E., Dadfarnia Sh., Shabani Haji A.M. Dispersive solid phase microextraction with magnetic graphene oxide as the sorbent for separation and preconcentration of ultra-trace amounts of gold ions. Talanta. 2015. 141: 273.

152. Bayat M., Beyki M.H., Shemirani F. One-step and biogenic synthesis of magnetic Fe3O4–Fir sawdust composite: application for selective preconcentration and determination of gold ions. J. Ind. Eng. Chem. 2015. 21: 912.

153. Zhang Y., Xu Q., Zhang S., Liu, J., Zhou, J., Xu H., Xiao H., Li J. Preparation of thiol-modified Fe3O4@SiO2 nanoparticles and their application for gold recovery from dilute solution. Sep. Purif. Technol. 2013. 116: 391.

154. Roto R., Yusran Y., Kuncaka A. Magnetic adsorbent of Fe3O4@SiO2 core-shell nanoparticles modified with thiol group for chloroauric ion adsorption. Appl. Surf. Sci. 2016. 337: 30.

155. Ranjbar R., Naderi M., Omidvar H., Amoabediny Ch. Gold recovery from copper anode slime by means of magnetite nanoparticles (MNPs). Hydrometallurgy. 2014. 143: 54.

156. Zhou L., Xu J., Liang X., Liu Zh. Adsorption of platinum(IV) and palladium(II) from aqueous solution by magnetic cross-linking chitosan nanoparticles modified with ethylenediamine. J. Hazard. Mater. 2010. 182(1–3): 518.

157. Uheida A., Iglesias M., Fontàs C., Hidalgo M., Salvado V., Zhang Y., Muhammed M. Sorption of palladium(II), rhodium(III), and platinum(IV) on Fe3O4 nanoparticles. J. Colloid Interface Sci. 2006. 301(2): 402.

158. Yen Ch.-H., Lien H.-L., Chung J.-Sh., Yeha H.-D. Adsorption of precious metals in water by dendrimer modified magnetic nanoparticles. J. Hazard. Mater. 2017. 322: 215.

159. Gorbik P.P., Abramov M.V., Petranovskaya A.L., Turelyk M.P., Vasilieva O.A. Svidotstvo pro reyestratsiyu avtors'koho prava 46056. State Intellectual Property Service of Ukraine. 2012. [in Ukrainian].

160. Semko L.S., Gorbik P.P., Storozhuk L.P., Dzyubenko L.S., Dubrovin I.V., Oranskaya O.I. Modyfikuvannya mahnetytu dyoksydom kremniyu. Physics and Chemistry of Solid State. 2007. 8(3): 526. [in Ukrainian].

161. Semko L.S., Gorbik P.P., Chuyko O.O., Storozhuk L.P., Dubrovin I.V., Oranska O.I., Revo S.L. Modyfikuvannya mahnetytu dioksydom tytanu ta vlastyvosti oderzhannya nanokompozytiv. Reports of the National Academy of Sciences of Ukraine. 2007. 2: 150. [in Ukrainian].

162. Petranovskaya A.L., Usov D.G., Abramov M.V., Demchenko Yu.O., Korduban O.M. Modifitsirovaniye poverkhnosti nanokristallicheskogo magnetita izopropilatom alyuminiya. Chemistry, Physics and Surface Technology. 2007. 13: 310. [in Russian].

163. Gorbik P.P., Mishchenko V.N., Petranovska A.L., Demchenko Yu.O., Korduban O.M., Karbovskiy V.L., Shpak A.P. Syntez nanokompozytiv mahnetyt/hidroksoapatyt ta doslidzhennya yikh vlastyvostey. Nanosistemi, Nanomateriali, Nanotehnologii. 2008. 6(4): 1273. [in Ukrainian].

164. Solonenko A.P., Golovanova O.A. Hydroxyapatite–brushite mixtures: synthesis and physicochemical characterization. Russ. J. Inorg. Chem. 2013. 58(12): 1420.

165. Chuiko A.A., Gorlov Yu.I., Lobanov V.V. Stroyeniye i khimiya poverkhnosti kremnezema. (Kyiv: Naukova dumka, 2007). [in Russian].

166. Semko L.S., Hutornyy S.V., Abramov N.V., Gorbyk P.P., Dzyubenko L.S., Oranska O.I. Magnetic fluids and nanocomposites based on Fe3O4. Surface. 2011. 3(18): 265. [in Russian].

167. Kuzmenko M.Yu., Kuzmenko S.M., Scrinnik O.V. Synthesis and properties [(butoxy)titanium]borates. Voprosy Khimii i Khimicheskoi Tekhnologii. 2014. 1: 53. [in Russian].

168. Sathyaseelan B., Baskaran I., Sivakumar K. Phase transition behavior of nanocrystalline Al2O3 powders. Soft Nanoscience Letters. 2013. 3(4): 69.

169. Mironyuk I.F., Gumenyak V.V., Mandzyuk V.I., Bezruka N.A. Budova ta morfolohiya chastynok Al2O3, oderzhanykh za riznykh umov hazofaznoho syntezu. Physics and Chemistry of Solid State. 2013. 13(3(201)): 715. [in Ukrainian].

170. Nakamoto K. IK-spektry i spektry neorganicheskikh i koordinatsionnykh soyedineniy. (Moscow: Mir, 1991). [in Russian].

How to Cite
Kusyak, A. P., Turanska, S. P., KhanМ., & Gorbyk, P. P. (2017). Interaction of magnetic accumulation nanomaterials and nanocomposites with cells, viruses, bioacactic molecules, ions of hard metals. Surface, (9(24), 211-247.
Medical and biological problems of surface