Interaction of magnetic accumulation nanomaterials and nanocomposites with cells, viruses, bioacactic molecules, ions of hard metals

  • A. P. Kusyak Zhytomyr State University named after. Ivan Franko
  • S. P. Turanska Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine
  • Мi Khan National Technical University of Ukraine "Igor Sikorsky Kiev Polytechnic Institute"
  • P. P. Gorbyk Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine

Abstract

The review is given of scientific works made in the past decade concerning development, research of properties, operational parameters, directions of practical use of magnetic susceptible nanomaterials and nanocomposites promising for creation of new forms of complex medicinal preparations with cytotoxic, immunotherapeutic and hyperthermal action, immunomagnetic sorbents, means for decontamination viruses from plasma and serum of human donor blood and the like. Their analysis testifies to the relevance of the outlined topics and the promising application in various fields of medicine, biology, and biotechnology.

References

1. Shpak A.P., Gorbik P.P. Fiziko-khimiya nanomaterialov i supramolekulyarnykh struktur. V. 1. (Kyiv: Naukova dumka, 2007). [in Russian].

2. Patent UA 86322. Gorbik P.P., Petranovska A.L., Usov D.G., Storozhuk L.P. Nanokapsula z funktsiyamy nanorobota. 2009. [in Ukrainian].

3. Shpak A.P., Gorbyk P.P. Nanomaterials and Supramolecular Structures: Physics Chemistry and Applications. (Springer, 2009).

4. Gorbik P.P., Turov V.V. Nanomaterialy i nanokompozity v meditsine, biologii, ekologii. (Kyiv: Naukova dumka, 2011). [in Russian].

5. Gorbik P.P., Gorobets S.V., Turelik M.P. Biofunktsionalizatsiya nanomaterialiv i nanokompozytiv. Navchal'nyy posibnyk. (Kyiv: Naukova dumka, 2011). [in Ukrainian].

6. Patent UA 99211. Gorbik P.P., Korduban A., Shpak A.P., Vasilieva A.A., Turanska S., Lukyanova N., Petanovskaya A., Chekhun V.F., Turelyk M.P. Nanokapsula z funktsiyamy nanorobota. 2012. [in Ukrainian].

7. Turelik M.P. Ph.D. (Chem.) Thesis. (Kyiv, 2012). [in Ukrainian].

8. Gorbik P.P. Nanokompozyty z funktsiyamy medyko-biolohichnykh nanorobotiv: syntez, vlastyvosti, zastosuvannya. Nanosistemi, Nanomateriali, Nanotehnologii. 2013. 11(2): 323. [in Ukrainian].

9. Uvarova I.V., Gorbik P.P., Gorobets S.V., Ivaschenko O.A., Ulyanchenko N.V. Nanomaterialy medychnoho pryznachennya. (Kyiv: Naukova dumka, 2014). [in Ukrainian].

10. Gorbyk P.P., Lerman L.B., Petranovska A.L., Turanska S.P. Advances in Semiconductor Research: Physics of Nanosystems, Spintronics and Technological Applications.Magnetosensitive Nanocomposites with Functions of Medico-Biological Nanorobots: Synthesis and Properties. Chapter 9. (New York: Nova Science Publishers, 2014).

11. Gorbyk P.P., Lerman L.B., Petranovska A.L., Turanska S.P., Pylypchuk le.V. Magnetosensitive nanocomposites with hierarchical nanoarchitecture as biomedical nanorobots: Synthesis, properties, and application. Chapter 10. Fabrication and Self-Assembly of Nanobiomaterials. Applications of Nanobiomaterials. 2016. 1: 289.

12. Patent UA 112490. Chekhun V.F., Lukyanova N.Yu., Gorbik P.P., Todor I.M., Petranovskaya A.L., Boshitskaya N.V., Bozhko I.V. Protypukhlynnyy feromahnitnyy nanokompozyt. 2016. [in Ukrainian].

13. Levy L. SahooY., KimK.-S., Bergey J.E. Nanochemistry:  Synthesis and characterization of multifunctional nanoclinics for biological applications. Chem. Mater. 2002. 14(9): 3715. https://doi.org/10.1021/cm0203013

14. http://www.nas.gov.ua/text/pdfDocumentsMeetingPresidiumNASU/150429.pdf [in Ukrainian].

15. http://iepor.org.ua/electronic-library/feroplat.html [in Ukrainian].

16. http://reporter.vesti-ukr.com/tolkovo/33188--my-razrabotali-lekarstvo-protiv-raka-analogov-kotoromu-net-.html [in Russian].

17. Turanska S.P., Kusyak A.P., Turov V.V., Gorbyk P.P. Interaction of magnetic nanoparticles with cells. Surface. 2013. 5(20) 227. [in Ukrainian].

18. Vol'ter E.R. Ph.D. (Biolog.) Thesis. (Sukhumi, 2005). [in Russian].

19. Rivière C., Boudghène F.P., Gazeau F., Roger J., Pons J.N., Laissy J.P., Allaire E., Michel J.B., Letourneur D., Deux J.F. Iron oxide nanoparticle-labeled rat smooth muscle cells: cardiac MR imaging for cell graft monitoring and quantitation. Radiology. 2005. 235(3): 959. https://doi.org/10.1148/radiol.2353032057

20. Leeper N.J., Hunter A.L., Cooke J.P. Stem cell therapy for vascular regeneration: Adult, embryonic, and induced pluripotent stem cells. Circulation. 2010. 122(5): 517. https://doi.org/10.1161/CIRCULATIONAHA.109.881441

21. Loebinger M.R., Kyrtatos P.G., Turmaine M., Price A.N., Pankhurst Q., Lythgoe M.F., Janes S.M. Magnetic resonance imaging of mesenchymal stem cells homing to pulmonary metastases using biocompatible magnetic nanoparticles. Cancer Res. 2009. 69(23): 8862. https://doi.org/10.1158/0008-5472.CAN-09-1912

22. Heymer A., Haddad D., Weber M., Gbureck U., Jakob P.M., Eulert J., Nöth U. Iron oxide labelling of human mesenchymal stem cells in collagen hydrogels for articular cartilage repair. Biomaterials. 2008. 29(10): 1473. https://doi.org/10.1016/j.biomaterials.2007.12.003

23. Singh N., Jenkins G.J.S., Asadi R., Doak S.H. Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nano Rev. 2010. 1: 1. https://doi.org/10.3402/nano.v1i0.5358

24. Auffan M., Rose J., Wiesner M.R., Bottero J.-Y. Chemical stability of metallic nanoparticles: A parameter controlling their potential cellular toxicity in vitro. Environ. Pollut. 2009. 157(4): 1127. https://doi.org/10.1016/j.envpol.2008.10.002

25. Auffan M., Achouak W., Rose J., Roncato M.A., Chanéac C., Waite D.T., Masion A., Woicik J.C., Wiesner M.R., Bottero J.Y. Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia coli. Environ. Sci. Technol. 2008. 42(17): 6730. https://doi.org/10.1021/es800086f

26. Houdy P., Lahmani M., Marano F. Nanoethics and Nanotoxicology. 1st Edition. (Paris: Éditions Bélin, 2010).

27. Polikarpov D.M., Gabbasov R.R., Cherepanov V.M., Chuev M.A., Korshunov V.A., Nikitin M.P., Deyev S.M., Panchenko V.Y. Biodegradation of magnetic nanoparticles in rat brain studied by mössbauer spectroscopy. IEEE Trans. Magn. 2013. 49(1): 1. https://doi.org/10.1109/TMAG.2012.2222875

28. Freyria F.S., Bonelli B., Tomatis M., Ghiazza M., Gazzano E., Ghigo D., Garrone E., Fubini B. Hematite nanoparticles larger than 90 nm show no sign of toxicity in terms of lactate dehydrogenase release, nitric oxide generation, apoptosis, and comet assay in murine alveolar macrophages and human lung epithelial cells. Chem. Res. Toxicol. 2012. 25(4): 850. https://doi.org/10.1021/tx2004294

29. Karlsson H.L., Gustafsson J., Cronholm P., Möller L. Size-dependent toxicity of metal oxide particles-a comparison between nano- and micrometer size. Toxicol. Lett. 2009. 188(2): 112. https://doi.org/10.1016/j.toxlet.2009.03.014

30. Könczöl M., Ebeling S., Goldenberg E., Treude F., Gminski R., Giere R., Grobéty B., Rothen-Rutishauser B., Merfort I., Mersch-Sundermann V. Cytotoxicity and genotoxicity of size-fractionated iron oxide (magnetite) in A549 human lung epithelial cells: Role of ROS, JNK and NF-κappa B. Chem. Res. Toxicol. 2011. 24(9): 1460. https://doi.org/10.1021/tx200051s

31. Lunov O., Syrovets T., Büchele B., Jiang X., Röcker C., Tron K., Nienhaus G.U., Walther P., Mailänder V., Landfester K., Simmet T. The effect of carboxydextran-coated superparamagnetic iron oxide nanoparticles on c-Jun N-terminal kinase-mediated apoptosis in human macrophages. Biomaterials. 2010. 31(19): 5063. https://doi.org/10.1016/j.biomaterials.2010.03.023

32. Berry C.C., Wells S., Charles S., Aitchison G., Curtis A.S.G. Cell response to dextran-derivatised iron oxide nanoparticles post internalization. Biomaterials. 2004. 25(23): 5405. https://doi.org/10.1016/j.biomaterials.2003.12.046

33. Vazhnichaya Ye.M., Devyatkina T.A., Moklyak Ye.V. Pharmacological properties of magnetite nano-particles. Visnyk Ukrayins'koyi Medychnoyi Stomatolohichnoyi Akademiyi "Aktual'ni Problemy Suchasnoyi Medytsyny". 2016. 16(1(53)): 291. [in Ukrainian].

34. Simberg D., Park J.H., Karmali P.P. Differential proteomics analysis of the surface heterogeneity of dextran iron oxide nanoparticles and the implications for their in vivo clearance. Biomaterials. 2009. 30(23–24): 3926. https://doi.org/10.1016/j.biomaterials.2009.03.056

35. Ni F., Jiang L., Yang R. Effects of PEG length and iron oxide nanoparticles size on reduced protein adsorption and non-specific uptake by macrophage cells. J. Nanosci. Nanotechnol. 2012. 12(3): 2094. https://doi.org/10.1166/jnn.2012.5753

36. Häfeli U.O., Riffle J.S., Harris-Shekhawat L. Cell uptake and in vitro toxicity of magnetic nanoparticles suitable for drug delivery. Mol. Pharm. 2009. 6(5): 1417. https://doi.org/10.1021/mp900083m

37. Roohi F., Lohrke J., Ide A. Studying the effect of particle size and coating type on the blood kinetics of superparamagnetic iron oxide nanoparticles. Int. J. Nanomedicine. 2012. 7: 4447.

38. López-Castro J.D., Maraloiu A.V., Delgado J.J. From synthetic to natural nanoparticles: monitoring the biodegradation of SPIO (P904) into ferritin by electron microscopy. Nanoscale. 2011. 3(11): 4597. https://doi.org/10.1039/c1nr10980d

39. Dai L., LiuY., Wang Z. One-pot facile synthesis of PEGylated superparamagnetic iron oxide nanoparticles for MRI contrast enhancement. Mater. Sci. Eng. C. Mater. Biol. Appl. 2014. 41: 161. https://doi.org/10.1016/j.msec.2014.04.041

40. Biggar P., Hahn K.M. Importance of the different i.v. iron generations for everyday medical practice. MMW Fortschr. Med. 2013. 155(1): 18. https://doi.org/10.1007/s15006-013-0732-4

41. Vadhan-Raj S., StraussW., Ford D. Efficacy and safety of IV ferumoxytol for adults with iron deficiency anemia previously unresponsive to or unable to tolerate oral iron. Am. J. Hematol. 2014. 89(1): 7. https://doi.org/10.1002/ajh.23582

42. Scialabba C., Licciardi M., Mauro N. Inulin-based polymer coated SPIONs as potential drug delivery systems for targeted cancer therapy. Eur. J. Pharm. Biopharm. 2014. 88(3): 695. https://doi.org/10.1016/j.ejpb.2014.09.008

43. Choi W.I., Lee J.H., Kim J.Y. Targeted anti-tumor efficacy and imaging via multifunctional nano-carrier conjugated with anti-HER2 trastuzumab. Nanomedicine. 2015. 11(2): 359. https://doi.org/10.1016/j.nano.2014.09.009

44. Saxena V., Naguib Y., Hussain M.D. Folate receptor targeted 17- allylamino-17-demethoxygeldanamycin (17-AAG) loaded polymeric nanoparticles for breast cancer. Colloids Surf. B. Biointerfaces. 2012. 94: 274. https://doi.org/10.1016/j.colsurfb.2012.02.001

45. Yang R., An Y., Miao F. Preparation of folic acid-conjugated, doxorubicin-loaded, magnetic bovine serum albumin nanospheres and their antitumor effects in vitro and in vivo. Int. J. Nanomedicine. 2014. 9: 4231. https://doi.org/10.2147/IJN.S67210

46. Kalinichenko E.A. Effect of form and dimensions of magnetite nanoparticles on relaxation time of the magnetic moment. Mineralogical Journal. 2011. 33(2): 42. [in Russian].

47. Béalle G., Di Corato R., Kolosnjaj-Tabi J. Ultra magnetic liposomes for MR imaging, targeting, and hyperthermia. Langmuir. 2012. 28(32): 11834. https://doi.org/10.1021/la3024716

48. Hayashi K., Nakamura M., Sakamoto W. Superparamagnetic nanoparticle clusters for cancer theranostics combining magnetic resonance imaging and hyperthermia treatment. Theranostics. 2013. 3(6): 366. https://doi.org/10.7150/thno.5860

49. Naqvi S., Samim M., Abdin M.Z., Ahmed F.J., Maitra A.N., Prashant C.K., Dinda A.K. Concentration-dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress. Int. J. Nanomedicine. 2010. 5: 983. https://doi.org/10.2147/IJN.S13244

50. Ankamwar B., Lai T.C., Huang J.H., Liu R.S., Hsiao M., Chen C.H., Hwu Y.K. Biocompatibility of Fe3O4 nanoparticles evaluated by in vitro cytotoxicity assays using normal, glia and breast cancer cells. Nanotechnology. 2010. 21(7): 075102. https://doi.org/10.1088/0957-4484/21/7/075102

51. Villanueva A., Ca-ete M., Roca A.G., Calero M., Veintemillas-Verdaguer S., Serna C.J., Morales M. del Puerto, Miranda R. The influence of surface functionalization on the enhanced internalization of magnetic nanoparticles in cancer cells. Nanotechnology. 2009. 20(11): 115103. https://doi.org/10.1088/0957-4484/20/11/115103

52. Liu Y.X., Chen Z.P., Wang J.K. Internalization of DMSA-coated Fe3O4 magnetic nanoparticles into mouse macrophage cells. Adv. Mater. Res. 2012. 455–456: 1221.

53. Auffan M., Decome L., Rose J., Orsiere T., De Meo M., Briois V., Chaneac C., Olivi L., Berge-Lefranc J.-L., Botta A., Wiesner M.R., Bottero J.-Y. In vitro interactions between DMSA-coated maghemite nanoparticles and human fibroblasts:  A physicochemical and cyto-genotoxical study. Environ. Sci. Technol. 2006. 40(14): 4367. https://doi.org/10.1021/es060691k

54. Monge-Fuentes V., Garcia M.P., Tavares M.C.H., Valois C.R.A., Lima E.C.D., Teixeira D.S., Morais P.C., Tomaz C., Azevedo R.B. Biodistribution and biocompatibility of DMSA-stabilized maghemite magnetic nanoparticles in nonhuman primates (Cebus spp.). Nanomedicine. 2011. 6(9): 1529. https://doi.org/10.2217/nnm.11.47

55. De Freitas E.R.L., Soares P.R.O., de Paula Santos R., dos Santos R.L., da Silva J.R., Porfirio E.P., Báo S.N., de Oliveira Lima E.C., Morais P.C., Guillo L.A. In vitro biological activities of anionic γ-Fe2O3 nanoparticles on human melanoma cells. J. Nanosci. Nanotechnol. 2008. 8(5): 2385. https://doi.org/10.1166/jnn.2008.275

56. Pradhan P., Giri J., Banerjee R., Bellare J., Bahadur D. Cellular interactions of lauric acid and dextran-coated magnetite nanoparticles. J. Magn. Magn. Mater. 2007. 311(1): 282. https://doi.org/10.1016/j.jmmm.2006.10.1181

57. Pushkar' V.G., Efremenko V.I., Klimov I.M., Gavenskiĭ S.D., Trofimov E.N. Preparation and use of magnetic sorbents for studying microorganism antigens. Zh. Mikrobiol. Epidemiol. Immunobiol. 1985. 12: 30.

58. Honda H., Kawabe A., Shinkai M., Kobayashi T. Development of chitosan-conjugated magnetite for magnetic cell separation. J. Ferment. Bioeng. 1998. 86(2): 191. https://doi.org/10.1016/S0922-338X(98)80060-3

59. Azevedo R.B., Silva L.P., Lemos A.P.C., Bao S.N., Lacava Z.G.M., Safarik I., Safarikova M., Morais P.C. Morphological study of Saccharomyces cerevisiae cells treated with magnetic fluid. IEEE Trans. Magn. 2003. 39(5): 2660. https://doi.org/10.1109/TMAG.2003.815547

60. Geppert M., Hohnholt M.C., Thiel K., Nürnberger S., Grunwald I., Rezwan K., Dringen R. Uptake of dimercaptosuccinate-coated magnetic iron oxide nanoparticles by cultured brain astrocytes. Nanotechnology. 2011. 22(14): 145101. https://doi.org/10.1088/0957-4484/22/14/145101

61. Neal A.L., Bank T.L., Hochella M.F., Rosso K.M. Cell adhesion of Shewanella oneidensis to iron oxide minerals: Effect of different single crystal faces. Geochem. Trans. 2005. 6(4): 77. https://doi.org/10.1186/1467-4866-6-77

62. Van Oss C.J. Interfacial Forces in Aqueous Media. (New York: Marcel Dekker, 1994).

63. Roberts J.A., Fowle D.A., Hughes B.T., Kulczycki E. Attachment behavior of Shewanella putrefaciens onto magnetite under aerobic and anaerobic conditions. Geomicrobiol. J. 2006. 23(8): 631. https://doi.org/10.1080/01490450600964441

64. Ström V., Hultenby K., Grüttner C., Teller J., Xu B., Holgersson J. A novel and rapid method for quantification of magnetic nanoparticle–cell interactions using a desktop susceptometer. Nanotechnology. 2004. 15(5): 457. https://doi.org/10.1088/0957-4484/15/5/009

65. Gabbasov R.R., Cherepanov V.M., Chuev M.A., Polikarpov D.M., Panchenko V.Y. Study of interparticle interaction in conjugates of magnetic nanoparticles injected into mice. Hyperfine Interact. 2012. 206(1–3): 71. https://doi.org/10.1007/s10751-011-0530-2

66. Gabbasov R.R., Cherepanov V.M., Chuev M.A., Polikarpov D.M., Nikitin M.P., Deyev S.M., Panchenko V.Y. Biodegradation of magnetic nanoparticles in mouse liver from combined analysis of mössbauer and magnetization data. IEEE Trans. Magn. 2013. 49(1): 1. https://doi.org/10.1109/TMAG.2012.2226148

67. Singh N., Jenkins G.J.S., Nelson B.C., Marquis B.J., Maffeis T.G.G., Brown A.P., Williams P.M., Wright C.J., Doak S.H. The role of iron redox state in the genotoxicity of ultrafine superparamagnetic iron oxide nanoparticles. Biomaterials. 2012. 33(1): 163. https://doi.org/10.1016/j.biomaterials.2011.09.087

68. Kruszewski M., Iwaneńko T. Labile iron pool correlates with iron content in the nucleus and the formation of oxidative DNA damage in mouse lymphoma L5178Y cell lines. Acta Biochim. Pol. 2003. 50(1): 211.

69. Gorbik P.P. Nanokompozyty z funktsiyamy medyko-biolohichnykh nanorobotiv: syntez, vlastyvosti, zastosuvannya. Nanosystems, Nanomaterials, Nanotechnologies. 2013. 11(2): 323. [in Ukrainian].

70. Shpak AP, Gorbik P.P. Fiziko-khimiya nanomaterialov i supramolekulyarnykh struktur. V. 1. (Kyiv: Naukova dumka, 2007). [in Russian].

71. Luria S., Darnell J., Baltimore D., Cempbell E. Obshchaya virusologiya. (Moscow: Mir, 1981). [in Russian].

72. Chuiko O.O. Meditsinskaya khimiya i klinicheskoye primeneniye dioksida kremniya. (Kyiv: Naukova dumka, 2003). [in Russian].

73. Skoups R. Metody ochistki belkov. (Moscow: Mir, 1985). [in Russian].

74. Semko L.S., Storozhuk L.P., Gorbik P.P. Mahnitni nanokompozyty Fe3O4/SiO2 ta imunosorbenty na yikh osnovi. Chemistry, Physics and Surface Technology. 2009. 15: 311. [in Ukrainian].

75. Vergun L.Yu., Klimchuk D.A., Gorbik P.P. Sintez immunomagnitnykh sorbentov dlya separatsii virusov gepatitov V i S. Mykrobyolohycheskyy Zhurnal. 2009. 71: 65. [in Russian].

76. http://magneticliquid.narod.ru/medicine/015.htm [in Russian].

77. Dao V.Q., Nguyen M.H., Pham T.T., Nguyen H.N. Synthesis of silica-coated magnetic nanoparticles and application in the detection of pathogenic viruses. J. Nanomater. 2013. 2013: Article ID 603940.

78. Mohammad H.M., Rasoul P.T. Synergistic effect of magnetite and gold nanoparticles onto the response of a label-free impedimetric hepatitis B virusDNA biosensor. Mater. Sci. Eng. C. 2016. 59: 773. https://doi.org/10.1016/j.msec.2015.10.082

79. Bitton G., Pancorbo O., Gifford G.E. Factors affecting the adsorption of polio virus to magnetite in water and wastewater. Water Res. 1976. 10(11): 973. https://doi.org/10.1016/0043-1354(76)90075-0

80. Nieto-Juarez JI, Kohn T. Virus removal and inactivation by iron (hydr)oxide-mediated Fenton-like processes under sunlight and in the dark. Photochem. Photobiol. Sci. 2013. 2(9): 1596. https://doi.org/10.1039/c3pp25314g

81. Liu D., Ma L., Liu L., Wang L., Liu Y., Jia Q. Guo Q., Zhang G., Zhou J.Polydopamine-Encapsulated Fe3O4 with an Adsorbed HSP70 Inhibitor for Improved Photothermal Inactivation of Bacteria. ACS Appl. Mater. Interfaces. 2016. 8(37): 24455. https://doi.org/10.1021/acsami.6b08119

82. Sun Q., Zhao G., Dou W. An optical and rapid sandwich immunoassay method for detection of Salmonella pullorum and Salmonella gallinarum based on immune blue silica nanoparticles and magnetic nanoparticles. Sens. Actuators B. 2016. 226: 69. https://doi.org/10.1016/j.snb.2015.11.117

83. Wu J., Chen Y., Wang Y., Yin H., Zhao Zh. Poly-L-lysine brushes on magnetic nanoparticles for ultrasensitive detection of Escherichia coli O157: H7. Talanta. 2017. 172: 53. https://doi.org/10.1016/j.talanta.2017.05.035

84. Pitek A.S., Jameson S.A., Veliz F.A., Shukla S., Steinmetz N.F. Serum albumin 'camouflage' of plant virus based nanoparticles prevents their antibody recognition and enhances pharmacokinetics. Biomaterials. 2016. 89: 89. https://doi.org/10.1016/j.biomaterials.2016.02.032

85. Zhan S., Yang Y., Shen Z., Shan J., Li Y., Yang S., Zhu D. Efficient removal of pathogenic bacteria and viruses by multifunctional amine-modified magnetic nanoparticles. J. Hazard. Mater. 2014. 274: 115. https://doi.org/10.1016/j.jhazmat.2014.03.067

86. Augustine R., Abraham A.R., Kalarikkal N., Thomas S. Monitoring and separation of food-borne pathogens using magnetic nanoparticles. Novel Approaches of Nanotechnology in Food. 2016. 1: 271. https://doi.org/10.1016/B978-0-12-804308-0.00009-1

87. Gao Y., Pallister J., Lapierre F., Crameri G., Wang L.-F., Zhu Y. A rapid assay for Hendra virus IgG antibody detection and its titre estimation using magnetic nanoparticles and phycoerythrin. J. Virol. Methods. 2015. 222: 170. https://doi.org/10.1016/j.jviromet.2015.05.008

88. Qian L., Sun J., Hou C., Yang J., Li Y., Lei D., Yang M., Zhang S. Immobilization of BSA on ionic liquid functionalized magnetic Fe3O4 nanoparticles for use in surface imprinting strategy. Talanta. 2017. 168: 174. https://doi.org/10.1016/j.talanta.2017.03.044

89. Yang S.Y., Wang W.C., Lan C.B., Chen C.H., Chieh J.J., Horng H.E., Hong C.-Y., Yang H.C., Tsai C.P., Yang C.Y., Cheng I.C. Magnetically enhanced high-specificity virus detection using bio-activated magnetic nanoparticles with antibodies as labeling markers. J. Virol. Methods. 2010. 164(1–2): 14. https://doi.org/10.1016/j.jviromet.2009.11.016

90. Kurena B., Vežāne A., Skrastiņa D., Trofimova O., Zajakina A. Magnetic nanoparticles for efficient cell transduction with Semliki Forest virus. J. Virol. Methods. 2017. 245: 28. https://doi.org/10.1016/j.jviromet.2017.03.008

91. Kumar S.R., Paulpandi M., ManivelRaja M., Mangalaraj D., Viswanathan C., Kannanb S., Ponpandian N. An in vitro analysis of H1N1 viral inhibition using polymer coated superparamagnetic Fe3O4 nanoparticles. RSC Adv. 2014. 26: 21506.

92. Zheng L., Wei J., Lv X., Bi Y., Wu P., Zhang Z., Wang P., Liu R. Detection and differentiation of influenza viruses with glycan-functionalized gold nanoparticles. Biosens. Bioelectron. 2017. 91: 46. https://doi.org/10.1016/j.bios.2016.12.037

93. Sun Y., Xu L., Zhang F., Song Z., Hu Y., Ji Y., Shen J., Li B., Lu H., Yang H.A promising magnetic SERS i mmunosensor for sensitive detection of avian influenza virus. Biosens. Bioelectron. 2017. 89(2): 906. https://doi.org/10.1016/j.bios.2016.09.100

94. Tartaj P., Morales M.P., Gonzalez-Carre-o T., Veintemillas-Verdaguer S., Bomati-Miguel O. Biomedical Applications of Magnetic Nanoparticles. Reference Module in Materials Science and Materials Engineering. 2016. https://doi.org/10.1016/B978-0-12-803581-8.02251-7

95. Petranovska A.L., Mishchenko V.N., Turelyk M.P., Gun'a G.M., Gorbyk P.P. The features of immunoglobulin immobilization processes on the surface of magnetite/hydroxyapatite magnetosensitive nanocomposite. Him. Fiz. Tehnol. Poverhni. 2010. 1(2): 182. [in Ukrainian].

96. Uvarova I.V., Gorbik P.P., Gorobets S.V. Nanomaterialy medychnoho pryznachennya. (Kyiv: Naukova dumka, 2014). [in Ukrainian].

97. Pan B.-F., Gao F., Ao L.-M. Investigation of interactions between dendrimer-coated magnetite nanoparticles and bovine serum albumin. J. Magn. Magn. Mater. 2005. 293(1): 252. https://doi.org/10.1016/j.jmmm.2005.02.018

98. Sarnatskaya V.V. Interaction of magnetite Fe3O4 nanoparticles functionalized with oleic acid and polyethylene glycol with albumin. Reports of the National Academy of Sciences of Ukraine. 2013. 9: 164. [in Russian].

99. Shao D., Xu K., Song X., Hu J., Yang W., Wang C. Effective adsorption and separation of lysozyme with PAA-modified Fe3O4@silica core/shell microspheres. J. Colloid Interface Sci. 2009. 336(2): 526. https://doi.org/10.1016/j.jcis.2009.02.061

100. Huang J., Liu C., Xiao H., Wang J., JiangD., Gu E. Zinc tetraaminophthalocyanine-Fe3O4 nanoparticle composite for laccase immobilization. Int. J. Nanomedicine. 2007. 2(4): 775.

101. Qiu J.D., Peng H.P., Liang R.P., Xia X.H. Facile preparation of magnetic core-shell Fe3O4@Au nanoparticle/myoglobin biofilm for direct electrochemistry. Biosens. Bioelectron. 2010. 25(6): 1447. https://doi.org/10.1016/j.bios.2009.10.043

102. Wu Y., Wang Y., Luo G., Dai Y. In situ preparation of magnetic Fe3O4-chitosan nanoparticles for lipase immobilization by cross-linking and oxidation in aqueous solution. Bioresour. Technol. 2009. 100(14): 3459. https://doi.org/10.1016/j.biortech.2009.02.018

103. Kolotilov S.V., Pavlishchuk V.V., Boltovets P.N., Snopok B.A. Nanosized magnetic composite for extraction of γ-immunoglobulins from biological media. Theor. Exp. Chem. 2006. 42(4): 211. https://doi.org/10.1007/s11237-006-0041-4

104. Semko L.S., Hutornyy S.V., Storozhuk L.P., Dzyubenko L.S., Abramov N.V., Gorbyk P.P. Chemical engineering and research the properties of magnetically operated adsorbents for the extraction of nucleic acids. Surface. 2010. 2(17): 330. [in Ukrainian].

105. Gu L., Park J.H., Duong K.H., RuoslahtiE., Sailor M.J. Magnetic luminescent porous silicon microparticles for localized delivery of molecular drug payloads. Small. 2010. 6(22): 2546. https://doi.org/10.1002/smll.201000841

106. Ma Y., Manolache S., Denes F., Vail D., Thamm D., Kurzman I. Plasma synthesis of carbon-iron magnetic nanoparticles and immobilization of doxorubicin for targeted drug delivery. J. Mater. Eng. Perform. 2006. 15(3): 376. https://doi.org/10.1361/105994906X113705

107. Zhu A., Yuan L., Jin W., Dai S., Wang Q., Xue Z., Qin A. Polysaccharide surface modified Fe3O4 nanoparticles for camptothecin loading and release. Acta Biomater. 2009. 5(5): 1489. https://doi.org/10.1016/j.actbio.2008.10.022

108. Zhu X., Gu J., Li Y., Zhao W., Shi J. Magnetic core-mesoporous shell nanocarriers with drug anchorages suspended in mesopore interior for cisplatin delivery. Microporous Mesoporous Mater. 2014. 196(15): 115. https://doi.org/10.1016/j.micromeso.2014.04.057

109. Palyvoda O.M., Chernishov V.I., Chekhun V.F., Todor I.N., Kuzmenko O.I. Colloidally stable surface-modified iron oxide nanoparticles: preparation, characterization and anti-tumor activity. J. Magn. Magn. Mater. 2015. 380(15): 125.

110. Tseng Ch.-L., Su W.-Y., Yen K.-Ch., Yang K.-Ch., Lin F.-H. The use of biotinylated-EGF-modified gelatin nanoparticle carrier to enhance cisplatin accumulation in cancerous lungs via inhalation. Biomaterials. 2009. 30(20): 3476. https://doi.org/10.1016/j.biomaterials.2009.03.010

111. Yallapu M.M., Othman Sh.F., Curtis E.T., Gupta B.K., Jaggi M., Chauhan S.C. Multi-functional magnetic nanoparticles for magnetic resonance imaging and cancer therapy. Biomaterials. 2011. 32(7): 1890. https://doi.org/10.1016/j.biomaterials.2010.11.028

112. Maldonado C.R., Salassa L., Gomez-Blanco N., Mareque-Rivas J.C. Nano-functionalization of metal complexes for molecular imaging and anticancer therapy. Coord. Chem. Rev. 2013. 257(19–20): 2668. https://doi.org/10.1016/j.ccr.2013.04.014

113. Murakami T., Yudasaka M., Iijima S., Tsuchida K. Characterization of inorganic nanomaterials as therapeutic vehicles. Recent Adv. Med. Chem. 2014. 1: 73. https://doi.org/10.1016/B978-0-12-803961-8.50003-8

114. Jhaveri, A., Deshpande P., Torchilin V. Stimuli-sensitive nanopreparations for combination cancer therapy. J. Control. Release. 2014. 190(28): 352. https://doi.org/10.1016/j.jconrel.2014.05.002

115. Lee J.H., Yeo Y. Controlled drug release from pharmaceutical nanocarriers. Chem. Eng. Sci. 2015. 125(24): 75. https://doi.org/10.1016/j.ces.2014.08.046

116. Ma P., Xiao H., Li Ch., Dai Y., Cheng Z., Hou Z., Lin, J. Inorganic nanocarriers for platinum drug delivery. Mater. Today. 2015. 18(10): 554. https://doi.org/10.1016/j.mattod.2015.05.017

117. Wani W.A., Prashar S., Shreaz Sh., Gómez-Ruiz S. Nanostructured materials functionalized with metal complexes: in search of aalternatives for administering anticancer metallodrugs. Coord. Chem. Rev. 2016. 312(1): 67. https://doi.org/10.1016/j.ccr.2016.01.001

118. Vyas N., Turner A., Sewell G. Platinum-based anticancer drugs in waste waters of a major UK hospital and predicted concentrations in recipient surface waters. Sci. Total Environ. 2014. 493(15): 324. https://doi.org/10.1016/j.scitotenv.2014.05.127

119. Turner A., Mascorda L. Particle–water interactions of platinum-based anticancer drugs in river water and estuarine water. Chemosphere. 2015. 119: 415. https://doi.org/10.1016/j.chemosphere.2014.06.074

120. Shpak A.P., Gorbyk P.P. Nanomaterials and Supramolecular Structures. Physics Chemistry, and Applications. (Springer Nederlands, 2009).

121. Gorbik P.P., Chekhun V.F., Shpak A.P. Nanostrukturnyye materialy – polucheniye, svoystva, primeneniye. (Minsk: Bielaruskaja navuka, 2009). [in Russian].

122. Patent UA 86322. Gorbik P.P., Petranovska A.L., Usov D.G., Storozhuk L.P. Nanokapsula z funktsiyamy nanorobota. 2009. [in Ukrainian].

123. Gorbik P.P., Turov V.V. Nanomaterialy i nanokompozity v meditsine, biologii, ekologii. (Kyiv: Naukova dumka, 2011). [in Russian].

124. Gorbik P.P., Gorobets S.V., Turelyk M.P., Chekhun V.F., Shpak A.P. Biofunktsionalizatsiya nanomaterialiv i nanokompozytiv. Navchal'nyy posibnyk. (Kyiv: Naukova dumka, 2011). [in Ukrainian].

125. Patent UA 99211. Gorbik P.P., Korduban A., Shpak A.P., Vasilieva A.A., Turanska S., Lukyanova N., Petanovskaya A., Chekhun V.F., Turelyk M.P. Nanokapsula z funktsiyamy nanorobota. 2012. [in Ukrainian].

126. Gorbik P.P., Abramov M.V., Petranovskaya A.L., Turelyk M.P., Vasilieva O.A. Svidotstvo pro reyestratsiyu avtors'koho prava 46056. State Intellectual Property Service of Ukraine. 2012. [in Ukrainian].

127. Patent UA 78473. Abramov N.V., Gorbyk P.P., Petranovskaya A.L., Vasilieva A.A., Turelyk M.P., Chekhun V.F., Paton B.E., Lukyanova N.Yu. Mahnitna protypukhlynna ridyna. 2013. [in Ukrainian].

128. Patent UA 78448. Gorbik P.P., Abramov N.V., Pylypchuk Ye.V., Petranovskaya A.L., Vasilieva A.A., Turelyk M.P. Mahnitna ridyna. 2013. [in Ukrainian].

129. Gorbik P.P., Turelyk M.P., Gorobets S.V., Gorobets O.Yu., Demyanenko I.V. Biofunktsionalizovani nanomaterialy i nanokompozyty: naukovi osnovy ta napryamy zastosuvannya. Navchal'nyy posibnyk. (Kyiv: NTTU (KPI), 2013). [in Ukrainian].

130. Tereshchenko V.P., Kartel M.T. Mediko-biologicheskiye effekty nanochastits: realii i prognozy. (Kyiv: Naukova dumka, 2010). [in Russian].

131. Chekman I.S. Nanofarmakolohiya. (Kyiv: Zadruha, 2011). [in Ukrainian].

132. Turanska S.P., Kaminsky A.N., Kusjak N.V., Turov V.V., Gorbyk P.P. Synthesis, properties and application of magnetodirected adsorbents. Surface. 2012. 4(19): 266. [in Russian].

133. Afkhami A., Norooz-Asl R. Removal, Preconcentration and Determination of Mo(VI) from Water and Wastewater Samples Using Maghemite Nanoparticles. Colloids Surf. A. 2009. 346(1–3): 52. https://doi.org/10.1016/j.colsurfa.2009.05.024

134. Erdemoğlu M., Sarıkaya M. Effects of heavy metals and oxalate on the zeta potential of magnetite. J. Colloid Interface Sci. 2006. 300(2): 795. https://doi.org/10.1016/j.jcis.2006.04.004

135. Bozhenko O.M., Omel'chuk Yu.A., Gomelya M.D. Otrymannya vysoko selektyvnykh sorbentiv dlya vyluchennya midi z vod system okholodzhennya AES. Zbirnyk naukovykh prats' Sevastopol's'koho natsional'noho universytetu yadernoyi enerhiyi ta promyslovosti. 2009. 148. [in Ukrainian].

136. Goon I.Y., Zhang C., Lim M., Gooding J.J., Amal R. Controlled fabrication of polyethylenimine-functionalized magnetic nanoparticles for the sequestration and quantification of free Cu2+. Langmuir. 2010. 26(14): 12247. https://doi.org/10.1021/la101196r

137. Yantasee W., Warner C.L., Sangvanich T., Addleman R.S., Carter T.G., Wiacek R.J., Fryxell G.E., Timchalk C., Warner M.G. Removal of heavy metals from aqueous systems with thiol functionalized superparamagnetic nanoparticles. Environ. Sci. Technol. 2007. 41(14): 5114. https://doi.org/10.1021/es0705238

138. Usov D.G., Petranovskaya A.L., Turelyk M.P., Korduban O.M., Gorbik P.P. Syntez ta fizyko-khimichni vlastyvosti nanokompozytiv na osnovi mahnetytu, modyfikovanoho mezo-2-3-dymerkaptosuktsynovoyu kyslotoyu. Chemistry, Physics and Surface Technology. 2009. 15: 320. [in Ukrainian].

139. Hong S., Chen H., Wang L. Luminescent and Magnetic Fe3O4/Py/PAM nanocomposites for the chromium(VI) determination. Spectrochim. Acta, Part A. 2008. 70(2): 449. https://doi.org/10.1016/j.saa.2007.12.042

140. Chang Y.C., Chen D.H. Preparation and adsorption properties of monodisperse chitosan-bound Fe3O4 magnetic nanoparticles for removal of Cu(II) ions. J. Colloid Interface Sci. 2005. 283(2): 446. https://doi.org/10.1016/j.jcis.2004.09.010

141. Liang B. Adsorption characteristics of Hg2+ ions using Fe3O4/chitosan magnetic nanoparticles. Adv. Mater. Res. 2011. 291–294: 72.

142. Park M., Seo S., Lee I.S., Jung J.H. Ultraefficient separation and sensing of mercury and methylmercury ions in drinking water by using aminonaphthalimide-functionalized Fe3O4@SiO2 core/shell magnetic nanoparticles. Chem. Commun. 2010. 46(25): 4478. https://doi.org/10.1039/c002905j

143. Wang J., Zheng S., Shao Y., Liu J., Xu Z., Zhu D. Amino-functionalized Fe3O4@SiO2 core-shell magnetic nanomaterial as a novel adsorbent for aqueous heavy metals removal. J. Colloid Interface Sci. 2010. 349(1): 293. https://doi.org/10.1016/j.jcis.2010.05.010

144. Yang S., Guo Y., Yan N., Wu D., He H., Qu Z., Yang Ch., Zhou Q., Jia J. Nanosized cation-deficient Fe−Ti spinel: a novel magnetic sorbent for elemental mercury capture from flue gas. ACS Appl. Mater. Interfaces. 2011. 3(2): 209. https://doi.org/10.1021/am100835c

145. Huang S.-H., Chen D.-H. Rapid removal of heavy metal cations and anions from aqueous solutions by an amino-functionalized magnetic nano-adsorbent. J. Hazard. Mater. 2009. 163(1): 174. https://doi.org/10.1016/j.jhazmat.2008.06.075

146. Mishchenko V.N., Kartel M.T., Lucenko V.A., Nikolaychuk A.D., Kusyak N.V., Korduban O.M., Gorbyk P.P. Magnetosensitive adsorbents based on activated carbon: synthesis and properties. Surface. 2010. 2(17): 276. [in Ukrainian].

147. Chen Ch., Hu J., Shao D., Li J., Wang X. Adsorption behavior of multiwall carbon nanotube/iron oxide magnetic composites for Ni(II) and Sr(II). J. Hazard. Mater. 2009. 164(2–3): 923. https://doi.org/10.1016/j.jhazmat.2008.08.089

148. Peng X., Zhang W., Gai L., Jiang H., Wang Y., Zhao L. Dedoped Fe3O4/PPy nanocomposite with high anti-interfering ability for effective separation of Ag(I) from mixed metal-ion solution. Chem. Eng. J. 2015. 280: 197. https://doi.org/10.1016/j.cej.2015.05.118

149. Karimi M.A., Mohammadi S.Z., Mohadesi A., Hatefi-Mehrjardi A., Mazloum-Ardakani M., Sotudehnia Korani L., Askarpour Kabir A. Determination of silver(I) by flame atomic absorption spectrometry after separation/preconcentration using modified magnetite nanoparticles. Scientia Iranica. 2011. 18(3): 790. https://doi.org/10.1016/j.scient.2011.06.008

150. Pyrzynska K. Sorbent materials for separation and preconcentration of gold in environmental and geological samples. Anal. Chim. Acta. 2012. 741: 9. https://doi.org/10.1016/j.aca.2012.06.044

151. Kazemi E., Dadfarnia Sh., Shabani Haji A.M. Dispersive solid phase microextraction with magnetic graphene oxide as the sorbent for separation and preconcentration of ultra-trace amounts of gold ions. Talanta. 2015. 141: 273. https://doi.org/10.1016/j.talanta.2015.04.024

152. Bayat M., Beyki M.H., Shemirani F. One-step and biogenic synthesis of magnetic Fe3O4–Fir sawdust composite: application for selective preconcentration and determination of gold ions. J. Ind. Eng. Chem. 2015. 21: 912. https://doi.org/10.1016/j.jiec.2014.04.032

153. Zhang Y., Xu Q., Zhang S., Liu, J., Zhou, J., Xu H., Xiao H., Li J. Preparation of thiol-modified Fe3O4@SiO2 nanoparticles and their application for gold recovery from dilute solution. Sep. Purif. Technol. 2013. 116: 391. https://doi.org/10.1016/j.seppur.2013.06.018

154. Roto R., Yusran Y., Kuncaka A. Magnetic adsorbent of Fe3O4@SiO2 core-shell nanoparticles modified with thiol group for chloroauric ion adsorption. Appl. Surf. Sci. 2016. 337: 30. https://doi.org/10.1016/j.apsusc.2016.03.099

155. Ranjbar R., Naderi M., Omidvar H., Amoabediny Ch. Gold recovery from copper anode slime by means of magnetite nanoparticles (MNPs). Hydrometallurgy. 2014. 143: 54. https://doi.org/10.1016/j.hydromet.2014.01.007

156. Zhou L., Xu J., Liang X., Liu Zh. Adsorption of platinum(IV) and palladium(II) from aqueous solution by magnetic cross-linking chitosan nanoparticles modified with ethylenediamine. J. Hazard. Mater. 2010. 182(1–3): 518. https://doi.org/10.1016/j.jhazmat.2010.06.062

157. Uheida A., Iglesias M., Fontàs C., Hidalgo M., Salvado V., Zhang Y., Muhammed M. Sorption of palladium(II), rhodium(III), and platinum(IV) on Fe3O4 nanoparticles. J. Colloid Interface Sci. 2006. 301(2): 402. https://doi.org/10.1016/j.jcis.2006.05.015

158. Yen Ch.-H., Lien H.-L., Chung J.-Sh., Yeha H.-D. Adsorption of precious metals in water by dendrimer modified magnetic nanoparticles. J. Hazard. Mater. 2017. 322: 215. https://doi.org/10.1016/j.jhazmat.2016.02.029

159. Gorbik P.P., Abramov M.V., Petranovskaya A.L., Turelyk M.P., Vasilieva O.A. Svidotstvo pro reyestratsiyu avtors'koho prava 46056. State Intellectual Property Service of Ukraine. 2012. [in Ukrainian].

160. Semko L.S., Gorbik P.P., Storozhuk L.P., Dzyubenko L.S., Dubrovin I.V., Oranskaya O.I. Modyfikuvannya mahnetytu dyoksydom kremniyu. Physics and Chemistry of Solid State. 2007. 8(3): 526. [in Ukrainian].

161. Semko L.S., Gorbik P.P., Chuyko O.O., Storozhuk L.P., Dubrovin I.V., Oranska O.I., Revo S.L. Modyfikuvannya mahnetytu dioksydom tytanu ta vlastyvosti oderzhannya nanokompozytiv. Reports of the National Academy of Sciences of Ukraine. 2007. 2: 150. [in Ukrainian].

162. Petranovskaya A.L., Usov D.G., Abramov M.V., Demchenko Yu.O., Korduban O.M. Modifitsirovaniye poverkhnosti nanokristallicheskogo magnetita izopropilatom alyuminiya. Chemistry, Physics and Surface Technology. 2007. 13: 310. [in Russian].

163. Gorbik P.P., Mishchenko V.N., Petranovska A.L., Demchenko Yu.O., Korduban O.M., Karbovskiy V.L., Shpak A.P. Syntez nanokompozytiv mahnetyt/hidroksoapatyt ta doslidzhennya yikh vlastyvostey. Nanosistemi, Nanomateriali, Nanotehnologii. 2008. 6(4): 1273. [in Ukrainian].

164. Solonenko A.P., Golovanova O.A. Hydroxyapatite–brushite mixtures: synthesis and physicochemical characterization. Russ. J. Inorg. Chem. 2013. 58(12): 1420. https://doi.org/10.1134/S0036023614010173

165. Chuiko A.A., Gorlov Yu.I., Lobanov V.V. Stroyeniye i khimiya poverkhnosti kremnezema. (Kyiv: Naukova dumka, 2007). [in Russian].

166. Semko L.S., Hutornyy S.V., Abramov N.V., Gorbyk P.P., Dzyubenko L.S., Oranska O.I. Magnetic fluids and nanocomposites based on Fe3O4. Surface. 2011. 3(18): 265. [in Russian].

167. Kuzmenko M.Yu., Kuzmenko S.M., Scrinnik O.V. Synthesis and properties [(butoxy)titanium]borates. Voprosy Khimii i Khimicheskoi Tekhnologii. 2014. 1: 53. [in Russian].

168. Sathyaseelan B., Baskaran I., Sivakumar K. Phase transition behavior of nanocrystalline Al2O3 powders. Soft Nanoscience Letters. 2013. 3(4): 69. https://doi.org/10.4236/snl.2013.34012

169. Mironyuk I.F., Gumenyak V.V., Mandzyuk V.I., Bezruka N.A. Budova ta morfolohiya chastynok Al2O3, oderzhanykh za riznykh umov hazofaznoho syntezu. Physics and Chemistry of Solid State. 2013. 13(3(201)): 715. [in Ukrainian].

170. Nakamoto K. IK-spektry i spektry neorganicheskikh i koordinatsionnykh soyedineniy. (Moscow: Mir, 1991). [in Russian].

Published
2017-10-08
How to Cite
Kusyak, A. P., Turanska, S. P., KhanМ., & Gorbyk, P. P. (2017). Interaction of magnetic accumulation nanomaterials and nanocomposites with cells, viruses, bioacactic molecules, ions of hard metals. Surface, (9(24), 211-247. https://doi.org/10.15407/Surface.2017.09.211
Section
Medical and biological problems of surface