Non-stoichiometric silicon oxides SiOx (x < 2)

  • O. V. Filonenko Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine
  • V. V. Lobanov Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine
Keywords: non-stoichiometric silicon oxide, silicon nanoclusters, random bond model, random mixture model, photoelectron and IR-spectra, quantum chemical methods of calculation

Abstract

The review is devoted to the analysis of experimentally and theoretically obtained data on the methods of synthesis, structure and properties of non-stoichiometric silicon oxide SiOx (x <2) in a wide range of the oxygen content. The main areas of application of silicon suboxide in micro- and optoelectronics, in particular, in the manufacture of solar cells are described. The advantages and disadvantages of the basic theoretical models used in the consideration of the properties of SiOx – the random bond model and the random mixture model are considered. It has been shown that none of these models makes it possible to reproduce the position of the Si2p line – the core level of SiOx samples at different x values in the experimentally obtained photoelectron spectrum. The so-called intermediate model is also described, the result of its use gives a clear two-dimensional picture of the elemental composition of the surface and the dependence of the positions of the bottom of the conduction band and the top level of the valence band of SiOx samples. The IR spectra of various SiOx samples have been obtained and analyzed, what makes it possible to use vibrational spectroscopy to elucidate their structural features and to determine the oxygen concentration in them. The energy effects of Si2+ + Si2+ → Si+ + Si3+ and  Si+–Si3+ → Si0–Si4+ disproportionation reactions are analyzed, purposeful to explain the mechanism of formation of silicon nanoclusters in the bulk SiOx phase. The results of calculations by the density functional theory method have shown that the tetrahedral environment of the silicon atom by Si atoms can occur only when the humber of these atoms in the cluster is more than 5.

References

1. Dabrowski J., Mussig H.-J. Silicon Surfaces and Formation of Interfaces: Basic Science in the Industrial World. (Singapore: World Scientific, 2000). https://doi.org/10.1142/3615

2. Philipp H. Optical properties of non-crystalline Si, SiO, SiOx and SiO2. J. Phys. Chem. Solids. 1971. 32(8): 1935. https://doi.org/10.1016/S0022-3697(71)80159-2

3. Novikov Yu.N., Gritsenko V.A. Large-scale potential fluctuations caused by SiOx compositional inhomogeneity. Phys. Solid State. 2012. 54(3): 493. [in Russian]. https://doi.org/10.1134/S1063783412030201

4. King S.W., Bielefeld J., Xu G., Lanford W.A., Matsuda Y., Dauskardt R.H., Kim N., Hondongwa D., Olasov L., Daly B., Stan G., Liu M., Dutta D., Gidley D. Influence of network bond percolation on the thermal, mechanical, electrical and optical properties of high and low-k a-SiC:H thin films. J. Non-Cryst. Solids. 2013. 279: 67. https://doi.org/10.1016/j.jnoncrysol.2013.07.028

5. Fujiwara H., Kaneko T., Kondo M. Application of hydrogenated amorphous silicon oxide layers to c-Si heterojunction solar cells. Appl. Phys. Lett. 2007. 91(13): 133508. https://doi.org/10.1063/1.2790815

6. Ding K., Aeberhard U., Finger F., Rau U. Silicon heterojunction solar cell with amorphous silicon oxide buffer and microcrystalline silicon oxide contact layers. Phys. Status. Solidi. RRL. 2012. 6(5): 193. https://doi.org/10.1002/pssr.201206030

7. Nakada K., Miyajima S., Konagai M. Amorphous silicon oxide passivation films for silicon heterojunction solar cells studied by hydrogen evolution. Jpn. J. Appl. Phys. 2014. 53(4S): 04ER13. https://doi.org/10.7567/JJAP.53.04ER13

8. Sriprapha K., Piromjit C., Limmanee A., Sritharathikhun J. Development of thin film amorphous silicon oxide/microcrystalline silicon double-junction solar cells and their temperature dependence. Sol. Energy Mater. Sol. Cells. 2011. 95: 115. https://doi.org/10.1016/j.solmat.2010.05.010

9. Hishida M., Sekimoto T., Terakawa A. Designing band offset of a-SiO:H solar cells for very high open-circuit voltage (1.06 V) by adjusting band gap of p–i–n junction. Jpn. J. Appl. Phys. 2014. 53(9): 092301. https://doi.org/10.7567/JJAP.53.092301

10. Wang S., Smirnov V., Chen T., Holländer B., Zhang X., Xiong S., Zhao Y., Finger F. Effects of oxygen incorporation in solar cells with a-SiOx:H absorber layer. Jpn. J. Appl. Phys. 2015. 54(1): 011401. https://doi.org/10.7567/JJAP.54.011401

11. Gavryliuk O.O., Semchuk O.Yu., Lytovchenko B.V. Theoretical and experimental investigations of laser annealing non-stoichiometric SiOx films. Physics and Chemistry of Solid State. 2015. 16(4): 675.

12. Khriachtchev L., Rasanen M., Novikov S., Sinkkonen J. Optical gain in Si/SiO2 lattice: Experimental evidence with nanosecond pulses. Appl. Phys. Lett. 2001. 79(9): 1249. https://doi.org/10.1063/1.1391406

13. Ng C.Y., Chen T.P., Tse M.S., Lim V.S.W., Fung S., Tseng A.A. Influence of silicon-nanocrystal distribution in SiO2 matrix on charge injection and charge decay. Appl. Phys. Lett. 2005. 86(15): 152110. https://doi.org/10.1063/1.1901831

14. Sarma S.D., Sousa R, Hu X., Koiller B. Spin quantum computation in silicon nanostructures. Solid State Commun. 2005. 133(11): 737. https://doi.org/10.1016/j.ssc.2004.12.037

15. Gritsenko V.A., Tyschenko I.E., Popov V.P., Perevalov T.V. Dijelektriki v nanojelectronike. (Novosibirsk: CO RAN, 2010) [in Russian].

16. López J.A.L., López J.C., Valerdi D.E., Salgado G.G., Díaz-Becerril T., Pedraza A.P., Gracia F.J.F. Morphological, compositional, structural, and optical properties of Si-nc embedded in SiOx films. Nanoscale Res. Lett. 2012. 7: 604. https://doi.org/10.1186/1556-276X-7-604

17. Hübner K. Chemical bond and related properties of SiO2. VII. Structure and electronic properties of the SiOx region of Si–SiO2 interfaces. Phys. Status Solidi A. 1980. 61(2): 665. https://doi.org/10.1002/pssa.2210610241

18. Iftiquar S.M. Structural studies on semiconducting hydrogenated amorphous silicon oxide films. High Temp. Mater. Processes. 2002. 6(1): 40. https://doi.org/10.1615/HighTempMatProc.v6.i1.40

19. Shallenberger J.R. Determination of chemistry and microstructure in SiOx (0.1<x<0.8) films by x-ray photoelectron spectroscopy. Journal of Vacuum Science & Technology A. 1996. 14(3): 693. https://doi.org/10.1116/1.580373

20. Carrier P., Abramovici G., Lewis L.J., Dharma-Wardana M.W.C. Electronic and Optical Properties of Si/SiO2 Superlattices from First Principles: Role of Interfaces. Mat. Res. Soc. Symp. Proc. 2001. 677: AA4.10.1.

21. Gritsenko V.A. Stroeniye i elektronnaya struktura amorfnykh dielektrikov v kremniyevykh MDP strukturakh. (Novosibirsk: Izdatelstvo «Nauka» Sibirskoe otdeleniye, 1993) [in Russian].

22. Gritsenko V.A. Atomnaya struktura amorfnykh nestekhiometricheskikh oksidov i nitridov kremniya. Uspekhi fizicheskikh nauk. 2008. 178(7): 727. [in Russian].

23. Barranco A., Yubero F., Espinos J.P., Holgado J.P., Caballero A., Gonzalez-Elipe A.R., Mejias J.A. Structure and chemistry of SiOx (x<2) systems. Vacuum. 2002. 67(3–4): 491. https://doi.org/10.1016/S0042-207X(02)00218-X

24. Novikov Yu.N., Gritsenko V.A. Short-range order in amorphous SiOx by x-ray photoelectron spectroscopy. J. Appl. Phys. 2011. 110: 014107. https://doi.org/10.1063/1.3606422

25. Gritsenko V.A., Zhuravlev K.S., Nadolinnyy V.A. Kvantovaniye elektronnogo spektra i lokalizatsiya elektronov i dyrok v kremniyevykh kvantovykh tochkakh. Fizika tverdogo tela. 2011. 53(4): 803 [in Russian].

26. Tomozeiu N., Hapert J.J., Faassen E.E., Arnoldbik W. Structural properties of a-SiOx layers deposited by reactive sputtering technique. J. Optoelectron. Adv. Mater. 2002. 4(3): 513.

27. Zacharias M., Drusedau T., Panckow A., Freistedt H., Garke B. Physical properties of α-SiOx:H alloys prepared by dc magnetron sputtering with water vapour as oxygen source. J. Non- Cryst. Solids. 1994. 169(1–2): 29. https://doi.org/10.1016/0022-3093(94)90221-6

28. Kim B.-H., Kim G., Park K., Shin M., Chung Y.-C., Lee K.-R. Effects of suboxide layers on the electronic properties of Si(100)/SiO2 interfaces: Atomistic multi-scale approach. J. Appl. Phys. 2013. 113: 073705. https://doi.org/10.1063/1.4791706

29. Bondi R.J., Lee S., Hwang G.S. First-principles study of the mechanical and optical properties of amorphous hydrogenated silicon and silicon-rich silicon oxide. Phys. Rev. B. 2010. 81(19): 195207. https://doi.org/10.1103/PhysRevB.81.195207

30. Lee S., Bondi R.J., Hwang G.S. Ab initio parameterized valence force field for the structure and energetics of amorphous SiOx (0 < x < 2) materials. Phys. Rev. B. 2011. 84: 045202. https://doi.org/10.1103/PhysRevB.84.045202

31. Korkin A., Bartlett R.J., Karasiev V., Greer J.C., Henderson T.M., Bersuker G. Computational design of silicon suboxides: chemical and mechanical forces on the atomic scale. J. Comput.-Aided Mater. Des. 2006. 13: 185. https://doi.org/10.1007/s10820-006-9010-4

32. Burlakov V.M., Briggs G.A.D., Sutton A.P. Monte Carlo simulation of growth of porous SiOx by vapor deposition. Phys. Rev. Lett. 2001. 86(14): 3052. https://doi.org/10.1103/PhysRevLett.86.3052

33. Yu D., Lee S., Hwang G.S. On the origin of Si nanocrystal formation in a Si suboxide matrix. J. Appl. Phys. 2007. 102: 084309. https://doi.org/10.1063/1.2800268

34. Kirichenko T.A., Yu D., Banerjee S.K., Hwang G.S. Silicon interstatials at Si/SiO2 interfaces: Density functional calculation. Phys. Rev. B. 2005. 72(3): 035345. https://doi.org/10.1103/PhysRevB.72.035345

35. Korkin A., Greer J.C., Bersuker G., Karasiev V.V., Bartlett R.J. Computational design of Si/SiO2 interfaces: Stress and strain on the atomic scale. Phys. Rev. B. 2006. 73(16): 165312. https://doi.org/10.1103/PhysRevB.73.165312

36. Bongiorno A., Pasquarello A. Oxygen diffusion through the disordered oxide network during silicon oxidation. Phys. Rev. Lett. 2002. 88(12): 125901. https://doi.org/10.1103/PhysRevLett.88.125901

37. Zhang R.Q., Zhao M.W., Lee S.T. Silicon monoxide clusters: The favorable precursors for forming silicon nanostructures. Phys. Rev. Lett. 2004. 93(9): 095503. https://doi.org/10.1103/PhysRevLett.93.095503

38. Muller T., Heinig K.-H., Moller W. Nanocrystal formation in Si implanted thin SiO2 layers under the influence of an absorbing interface. Mater. Sci. Engin. B. 2003. 101(1–3): 49. https://doi.org/10.1016/S0921-5107(02)00711-0

39. Zverev A.V., Neizvestnyy I.G., Shvarts N.L. Reshetochnaya Monte-Karlo model SiOx-sloev. Rossiyskiye nanotekhnologii. 2008. 3(5–6): 175. [in Russian].

40. Beyer V., Borany J., Heinig K.-H. Dissociation of Si+ ion implanted and as-grown thin SiO2 layers during annealing in ultra-pure neutral ambient by emanation of SiO. J. Appl. Phys. 2007. 101(5): 053516. https://doi.org/10.1063/1.2436834

41. Mikhantev E.A., Neizvestnyy I.G., Usenkov S.V. Modelirovaniye protsessa formirovaniya nanoklasterov kremniya pri otzhige SiOx-sloev. Avtometriya. 2011. 47(5): 88. [in Russian].

42. Mikhantev E.A., Neizvestnyy I.G., Usenkov S.V. Vliyaniye monooksida kremniya na protsess formirovaniya kremniyevykh nanoklasterov (modelirovaniye metodom Monte-Karlo). Fizika i tekhnika poluprovodnikov. 2014. 48(7): 917. [in Russian].

Published
2019-01-11
How to Cite
Filonenko, O. V., & Lobanov, V. V. (2019). Non-stoichiometric silicon oxides SiOx (x &lt; 2). Surface, (10(25), 118-136. https://doi.org/10.15407/Surface.2018.10.118
Section
Theory of surface chemical structure and reactivity.