Solar elements based on organic and organo-inorganic materials

  • V. V. Lobanov O.O. Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine
  • M. I. Terebinskaya O.O. Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine
  • O. V. Filonenko O.O. Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine
  • O. I. Tkachuk O.O. Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine
Keywords: solar cells, solar photovoltaics, Shockley-Quayssera limit, flexoelectric effect, flexo-photovoltaic effect, current carriers, singlet fission, conductive polymers, excitons, donor materials, acceptor materials, organic metals, oxidation state, conduction mechanism, polarons, bipolarons, poly(3,4-ethylenedioxythiophene, solar radiation simulator, polystyrene-sulfonic acid, intermolecular complex PEDOT: PSS


The depletion of both available and explored reserves of mineral and organic fuel stimulates the development of solar energy (solar photovoltaics, SF), non-associated with environmental pollution and the violation of the thermal balance of the planet. The development of SF went and goes in the direction of increasing the efficiency of solar cells (SE), subject to the requirements of reducing their cost, increasing the service life and stability under changing environmental conditions, namely humidity, cloud cover, temperature drops, pressure, etc.

The review presents a classification of solar cells by generation of appearance, principle of operation and other indicators, in particular, the intensity of the collection of light, the composition of the absorbing material, its thickness, etc. Specific options are given for solar cells of various types. Due attention is paid to ways to overcome the fundamental Shockley-Quisser limit, namely, flexoelectric, flexo-photovoltaic effects, as well as the process of singlet fission - the most promising method for increasing the efficiency of solar cells.

The main special parameters and characteristics of solar cells, experimental methods for their determination, and the calibration of artificial simulators of solar radiation are considered.

Much attention in the review is paid to the use of conductive polymers and organo-inorganic materials in SFs, their classification is given with emphasis on advantages and disadvantages compared to silicon SCs. A brief excursion into the history of the appearance and development of conductive polymers (organic metals) was carried out with coverage of methods for their reduction or oxidation to increase electrical conductivity.

The properties of poly (3,4-ethylenedioxythiophene) (PEDOT) are described in detail in both isolated state and combination with polystyrenesulfonic acid (PSS). The micro- and macroscopic properties of the intermolecular complex PEDOT: PSS, the most studied conductive polymer that plays an important role in SF, are described, determined from quantum-mechanical calculations.

            The properties of organo-inorganic materials are sufficiently thoroughly analyzed, which, according to well-founded forecasts, will soon achieve economic indicators of the efficiency of solar cells inherent in the first generation. The scheme of photogeneration of charge carriers from donor and acceptor materials has been refined. The main properties are presented of solar cells based on perovskite, sensitized with dyes, and methods for their modification aimed at increasing the efficiency of solar cells.

The review concludes with a brief discussion on the mechanism of conductivity in organic metals with emphasis on the relationship between the degree of their oxidation and the formation of polarons and bipolarons in the polymer conjugation chain.


Sims R.E.H. Renewable energy: a response to climate change. Solar Energy. 2004. 76(1-3): 9.

Sen Z. Solar energy in progress and future research trends. Progress in Energy & Combustion Science. 2004. 30(4): 367.

Gremenok V.F., Tivanov M.S., Zalessky V.B. The solar cells based on semiconductor materials. (Minsk: Publishing Center of BSU, 2007). [in Russian].

Gremenok V.F. Thin film solar cells based on Cu(In, Ga)Se2. In: Proceedings of the VI International Youth Environmental Forum "ECOBALTICA'2006". (June 27-29, 2006, Saint-Petersburg, Russia). P. 24.

McNelis B. The Photovoltaic Businees: Manufactures and Markets. Series on Photoconversion of Solar Energy. 2001. 1: 713.

Chapin D.M., Fuller C.S., Pearson G.L. A New Silicon p-n junction photocell for converting solar radiation into electrical power. J. Appl. Phys. 1954. 25(5): 676.

Ginley D.S., Cahen D. (Eds) Fundamentals of Materials for Energy and Environmental Sustainability. (Cambridge: Cambridge Univ. Press, 2012).

Green M.A. Third generation photovoltaics. (Berlin: Springer, 2003).

Marti A., Leque A. (Eds) Next generation photovoltaics. (Bristol: Institute of Physics Publ., 2004).

McCann M.J., Catchpole K.R., Weber K.J., Blakers A.W. A review of thin-film crystalline silicon for solar cell applications. Part 1: Native substrates. Sol. Energy Mater. Sol. Cells. 2001. 68(2): 135.

Aleshin A.N. Solar cells based on polymer and composite (organic-inorganic) materials. Innovation. 2012. 7(165): 96. [in Russian].

Chopra K.L., Das S.R. Thin film solar cells. (New York: Plenum Press, 1983).

Reinhard P., Buecheler S., Tiwari A.N. Technological status of Cu(In, Ga)(Se,S)2-based photovoltaics. Sol. Energy Mater. Sol. Cells. 2013. 119: 287.

Chirilă A., Buecheler S., Pianezzi F., Bloesch P., Gretener C., Uhl A.R., Fella C., Kranz L., Perrenoud J., Seyrling S., Verma R., Nishiwaki S., Romanyuk Y.E., Bilger G., Tiwari A.N. Highly efficient Cu(In, Ga)Se2 solar cells grown on flexible polymer films. Nature Mater. 2011. 10(11): 857.

Polizzotti A., Repins I.L., Noufi R., Wei S.-H., Mitzi D.B. The state and future prospects of kesterite photovoltaics. Energy Environ. Sci. 2013. 6(11): 3171.

Dimroth F., Grave M., Beutel P., Fiedeler U., Karcher C., Tibbits T.N.D., Oliva E., Siefer G., Schachtner M., Wekkeli A., Bett A.W., Krause R., Piccin M., Blanc N., Drazek C., Guiot E., Ghyselen B., Salvetat T., Tauzin A., Signamarcheix T., Dobrich A., Hannappel T., Schwarzburg K. Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency. Prog. Photovolt. Res. Appl. 2014. 22(3): 277.

Fahrenbruch A.L., Bube R.H. Fundamentals of solar cells: Photovoltaic solar energy conversion. (New York: Academic Press, 1983).

Andreev V.M., Grilikhes V.A., Rumyantsev V.D. Photovoltaic conversion of concentrated sunlight. (Chichester: John Wiley, 1997).

Shockley W., Queisse, H.J. Detailed balance limit of efficiency of p‐n junction solar cells. J. Appl. Phys. 1961. 32(3): 510.

Yang M.M., Kim D.J., Alexe M. Flexo-photovoltaic effect. Science. 2018. 60(6391): 904.

Johnson R.C., Merrifield R.E. Effects of magnetic fields on the mutual annihilation of triplet excitons in anthracene crystals. Phys. Rev. B. 1970. 1(2): 896.

Lee J, Jadhav P., Reusswig P.D., Yost S.R., Thompson N.J., Congreve D.N., Hontz E., Van Voorhis T., Baldo M.A. Singlet exciton fission photovoltaics. Acc. Chem. Res. 2013. 46 (6): 1300.

Wilson M.W.B., Rao A., Clark J., R.S.S. Kumar, D. Brida, G. Cerullo, R.H. Friend. Ultrafast dynamics of exciton fission in polycrystalline pentacene. J. American Chem. Soc. 2011. 133(31): 11830.

Smith M.B., Michl J. Singlet Fission. Chem. Rev. 2010. 110(11): 6891.

Alferov Zh.I., Andreev V.M., Rumyantsev V.D. Trends and prospects for the development of solar photovoltaics. Physics and technology of semiconductors. 2004. 38 (8): 937. [in Russian].

Ryvkin S.M. Photoelectric phenomena in semiconductors. (Moscow: Fizmatgiz, 1963).

Dzhafarov T.D. Photostimulated Atomic Processes in Semiconductors. (Moscow: Energoatomizdat, 1984).

Bauer T. Thermophotovoltaics: Basic Principles and Critical Aspects of System Design. (Berlin: Springer-Verlag, 2011).

Milichko V.A., Shalin A.S., Mukhin I.S., Kovrov A.E., Krasilin A.A., Vinogradov A.V., Belov P.A., Simovskiy K.R. Solnechnaya fotovol'taika: sovremennoye sostoyaniye i tendentsii razvitiya. Uspekhi fiz. Nauk. 2016. 186(8): 801. [in Russian].

Yu G., Gao J., Hummelen J.C., Wudl F., Heeger A.J. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science. 1995. 270(5243): 1789.

Deibel C., Dyakonov V. Polymer-fullerene bulk heterojunction solar cells. Rep. Prog. Phys. 2010. 73(9): 096401.

Wu C., Neuner III B., John J., Milder A., Zollars B., Savoy S., Shvets G. Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems. J. Opt. 2012. 14(2): 024005.

Lenert A., Bierman D.M., Nam Y., Chan W.R., Celanović I., Soljačić M., Wang E.N. A nanophotonic solar thermophotovoltaic device. Nature Nanotechnology. 2014. 9(2): 126.

Goetzberger A., Hebling C., Schock H.-W. Photovoltaic materials, history, status and outlook. Mater. Sci. Eng., R. 2003. 40(1): 1.

Green M.A. Photovoltaics: technology overview. Energy Policy. 2000. 28(14): 989.

Roedem B. Thin-film PV module review: Changing contribution of PV module technologies for meeting volume and product needs. Refo-cus. 2006. 7(4): 34.

Kazmerski L.L. Photovoltaics: A review of cell and module technologies. Renewable and Sustainable Energy Reviews. 1997. 1(1,2): 71.

Fonash C. Sovremennyye problemy poluprovodnikovoy fotoenergetiki. (Moskva: Mir, 1988). [In Russian].

Schock H.W. Thin film photovoltaics. Appl. Surf. Sci. 1996. 92: 606.

Koltun M.M. Optika i metrologiya solnechnykh elementov. (Moskva: Nauka,1984). [In Russian].

Zi S. Fizika poluprovodnikovykh priborov. 2 T. (Moskva: Mir, 1984). [In Russian].

Brandhorst H.M. Terrestrial solar cell calibration and measurement procedures. In: Proceedings of the Inter. Photovoltaic Solar Energy Conf. (26-29 May, 1977, Luxemburg). P. 745.

Gueymard C.A., Myers D., Emery K. Proposed reference irradiance spectra for solar energy systems testing. Solar Energy. 2002. 73(6): 443.

Terrestrial Photovoltaic Measurement Procedures, Technical Memorandum 73702, NASA, Cleveland, Ohio, 1977.

Farenbrukh A., B'yub R. Solnechnyye elementy: teoriya i eksperiment. (Moskva: Energoatomizdat, 1987).

Gilot J., Wienk M.M., Janssen R.A.J. On the efficiency of polymer solar cells. Nat. Mater. 2007. 6(10): 704.

Li G., Shrotriya V., Huang J., Yao Y., Moriarty T., Emery K., Yang Y. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat. Mater. 2005. 4(11): 864.

Kroon J. M., Wienk M. M., Verhees W. J. H., Hummelen J. C. Accurate efficiency determination and stability studies of conjugated polymer/fullerene solar cells. Thin Sol. Films. 2002. 403-404: 223.

Shrotriya V., Li G., Yao Y., Moriarty T., Emery K., Yang Y. Accurate measurement and characterization of organic solar cells. Adv. Funct. Mater. 2006. 16(15): 2016.

Cravino A., Schilinsky P., Brabec C.J. Characterization of organic solar cells: the importance of device layout. Adv. Funct. Mater. 2007. 17(18): 3906.

Chiang C.K., Fincher C.R., Park Y.W., Heeger A.J., Shirakawa H., Louis E.J., Gau S.C., MacDiarmid A.G. Electrical Conductivity in Doped Polyacetylene. Phys. Rev. Lett. 1977. 39(17): 1098.

Shaheen S.E., Ginley D.S., Jabbour G.E. Organic-based photovoltaics: toward low-cost power generation. MRS Bull. 2005. 30(01): 10.

Liang Y., Xu Z., Xia J., Tsai S.-T., Wu Y., Li G., Ray C., Yu L. For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Adv. Mater. 2010. 22(20) E135.

Park S.H., Roy A., Beaupre S., Cho S., Coates N., Moon J.S., Moses D., Leclerc M., Lee K., Heeger A.J. Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nature Photon. 2009. 3(5): 297.

Koster L.J.A., Mihailetchi V.D., Blom P.W. Ultimate efficiency of polymer/fullerene bulk heterojunction solar cells. Appl. Phys. Lett. 2006. 88(9): 093511.

Scharber M.C., Mühlbacher D., Koppe M., Denk P., Waldauf C., Heeger A.J., Brabec C.J. Design rules for donors in bulk-heterojunction solar cells-towards 10 % energy-conversion efficiency. Adv. Mater. 2006. 18(6): 789.

Yang G., Kampstra K.L., Abidian M.R. High performance conducting polymer nanofiber biosensors for detection of biomolecules. Adv. Mater. 2014. 26(29): 4954.

Hempel F., Law J.K.-Y., Nguyen T.C., Munief W., Lu X., Pachauri V., Susloparova A., Vu X.T., Ingebrandt S. PEDOT:PSS organic electrochemical transistor arrays for extracellular electrophysiological sensing of cardiac cells. Biosens. Bioelectron. 2017. 93: 132.

Lee S.J., Kim H.P., Yusoff A.R.M., Jang J. Organic photovoltaic with PEDOT: PSS and V2O5 mixture as hole transport layer. Sol. Energy Mater. Sol. Cells. 2014. 120: 238.

Kim B.-J., Han S.-H., Park J.-S. Sheet resistance, transmittance, and chromatic property of CNTs coated with PEDOT:PSS films for transparent electrodes of touch screen panels. Thin Solid Films. 2014. 572: 68.

Ho K.-Y., Li C.-K., Syu H.-J., Lai Y., Lin C.-F., Wu Y.-R. Analysis of the PEDOT:PSS/Si nanowire hybrid solar cell with a tail state model. J. Appl. Phys. 2016. 120(21): 215501.

Ryu K.S., Lee Y.-G., Hong Y.-S., Park Y.J., Wu X., Kim K.M., Kang M.G., Park N.-G., Chang S.H. Poly (ethylenedioxythiophene)(PEDOT) as polymer electrode in redox supercapacitor. Electrochim. Acta. 2004. 50(2, 3): 843.

Heeger A.J. Semiconducting and Metallic Polymers: The Fourth Generation of Polymeric Materials (Nobel Lecture). Angew. Chem. Int. Ed. 2001. 40(14): 2591.<2591::AID-ANIE2591>3.0.CO;2-0

MacDiarmid A.G. "Synthetic Metals": A Novel Role for Organic Polymers (Nobel Lecture). Angew. Chem. Int. Ed. 2001. 40(14): 2581.<2581::AID-ANIE2581>3.0.CO;2-2

Shirakawa H. The Discovery of Polyacetylene Film: The Dawning of an Era of Conducting Polymers (Nobel Lecture). Angew. Chem. Int. Ed. 2001. 40(14): 2574.<2574::AID-ANIE2574>3.0.CO;2-N

Nordén B., Krutmeijer E. The nobel prize in chemistry. 2000: Advanced information.

dE Patent App. DE19,883,813,589. Jonas F., Heywang G., Schmidtberg W. Novel polythiophenes, process for their preparation, and their use. 1989.

Jonas F., Schrader L. Conductive modifications of polymers with polypyrroles and polythiophenes. Synth. Met. 1991. 41 (3): 831.

Heywang G., Jonas F. Poly(alkylenedioxythiophene)s - new, very stable conducting polymers. Adv. Mater. 1992. 4 (2): 116.

Letheby H. On the production of a blue substance by the electrolysis of sulphate of aniline. J. Chem. Soc. 1862. 15 (0): 161.

Jozefowicz M., Yu L.T., Belorgey G., Buvet R. Conductivité Electronique et Propriétés Chimiques de Polyanilines Oligomères. J. Polym. Sci., Part C. Polym. Symposia. 1967. 16(5): 2943.

Mamadou I., Yu L.-T., Buvet R. Compt. rend. l'Acad. Sci. (Paris) 1974. 279(23): 931.

Bolto B., McNeill R., Weiss D. Electronic Conduction in Polymers. III. Electronic Properties of Polypyrrole. Aust. J. Chem. 1963. 16(6): 1090.

Dall'Olio A., Dascola G., Varacca V., Bocche V. Electron paramagnetic resonance and conductivity of an electrolytic oxypyrrole (pyrrole polymer) black. Compt. rend. l'Acad. Sci. 1968. C267: 433.

Diaz A.F., Kanazawa K.K., Gardini G.P. Electrochemical polimerization of pyrrole. J. Chem. Soc., Chem. Commun. 1979. 14: 635.

Elschner A., Kirchmeyer S., Lövenich W., Merker U., Reuter K. PEDOT: Principles and Applications of an Intrinsically Conductive Polymer (Boca Raton: CRC Press, 2011).

Natta G., Mazzanti G., Corradini P. Polimerizzazione stereospecifica dell'acetilene. Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. 1958. 25(8): 3.

Skotheim T.A., Reynolds J.R. Handbook of conducting polymers: conjugated polimers processing and aplications, Third Edition (Boca Raton: CRC Press, 2007).

Hatano M., Kambara S., Okamoto S. Paramagnetic and electric properties of polyacetylene. Journal of Polymer Science 1961. 51(156): S26.

Chiang C.K., Fincher C.R., Park Y.W., Heeger A.J., Shirakawa H., Louis E.J., Gau S.C., MacDiarmid A.G. Electrical conductivity in doped polyacetylene. Phys. Rev. Lett. 1977. 39(17): 1098.

Shirakawa H., Louis E.J., MacDiarmid A.G., Chiang C.K., Heeger A.J. Synthesis of Electrically Conducting Organic Polymers: Halogen Derivatives of Polyacetylene, (CH)x. J. Chem. Soc., Chem. Commun. 1977. 16: 578.

Ito T., Shirakawa H., Ikeda S. Thermal cis-trans isomerization and decomposition of polyacetylene. J. Polym. Sci: Polym. Chem. Ed. 1975. 13: 1943.

Naarmann H., Theophilou N. New process for the production of metal-like, stable polyacetylene. Synth. Met. 1987. 22 (1): 1.

Kovacic P., Jones M.B. Dehydro coupling of aromatic nuclei by catalyst-oxidant systems: poly(p-phenylene). Chem. Rev. 1987. 87(2): 357.

Kovacic P., Kyriakis A. Polymerization of benzene to p-polyphenyl. Tetrahedron Lett. 1962. 3(11): 467.

Ivory D.M., Miller G.G., Sowa J.M., Shacklette L.W., Chance R.R., Baughman R.H. Highly conducting charge-transfer complexes of poly(p-phenylene). J. Chem. Phys. 1979. 71(3): 1506.

Nalwa H.S. Advanced Functional Molecules and Polymers. Volume 3: Electronic and Photonic Properties. (CRC Press, 2001).

Shacklette L.W., Elsenbaumer R.L., Chance R.R., Sowa J.M., Ivory D.M., Miller G.G., Baughman R.H. Electrochemical doping of poly-(p-phenylene) with application to organic batteries. J. Chem. Soc., Chem. Commun. 1982. 6: 361.

Zhu L.M., Lei A.W., Cao Y.L., Ai X.P., Yang H.X. An all-organic rechargeable battery using bipolar polyparaphenylene as a redox-active cathode and anode. Chem. Commun. 2013. 49(6): 567.

Grem G., Leditzky G., Ullrich B., Leising G. Realization of a blue-light-emitting device using poly(p-phenylene). Adv. Mater. 1992. 4(1): 36.

Brédas J.L. Relationship between band gap and bond length alternation in organic conjugated polymers. J. Chem. Phys. 1985. 82(8): 3808.

Brédas J.L., Thémans B., Fripiat J.G., André J.M., Chance R.R. Highly conducting polyparaphenylene, polypyrrole, and polythiophene chains: An ab initio study of the geometry and electronic-structure modifications upon doping. Phys. Rev. B. 1984. 29(12): 6761.

Ambrosch-Draxl C., Majewski J.A., Vogl P., Leising G. First-principles studies of the structural and optical properties of crystalline poly(para-phenylene). Phys. Rev. B. 1995. 51(15): 9668.

Alves-Santos M., Dávila L.Y.A., Petrilli H.M., Capaz R.B., Caldas M.J. Application of standard DFT theory for nonbonded interactions in soft matter: Prototype study of poly-para-phenylene. J. Comput. Chem. 2005. 27(2): 217.

Shacklette L.W., Eckhardt H., Chance R.R., Miller G.G., Ivory D.M., Baughman R.H. Solid-state synthesis of highly conducting polyphenylene from crystalline oligomers. J. Chem. Phys. 1980. 73(8): 4098.

Armour M., Davies A.G., Upadhyay J., Wassermann A. Colored electrically conducting polymers from furan, pyrrole, and thiophene. J. Polym. Sci. Part A-1: Polym. Chem. 1967. 5(7): 1527.

Tourillon G., Garnier F. New electrochemically generated organic conducting polymers. J. Electroanal. Chem. Interfac. Electrochem. 1982. 135(1): 173.

eP Patent App. EP19,890,106,236. Jonas F., Heywang G., Schmidtberg W., Heinze J., Dietrich M. Neue polythiophene, verfahren zu ihrer herstellung und ihre verwendung. 1989.

dE Patent App. DE19,883,813,589. Jonas F., Heywang G., Schmidtberg W. Novel polythiophenes, process for their preparation, and their use. 1989.

Groenendaal L., Jonas F., Freitag D., Pielartzik H., Reynolds J.R. Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future. Advanced Materials. 2000. 12 (7): 481.<481::AID-ADMA481>3.3.CO;2-3

Dkhissi A., Beljonne D., Lazzaroni R. Atomic scale modeling of interfacial structure of PEDOT/PSS. Synth. Met. 2009. 159(5-6): 546.

Winther-Jensen B., West K. Vapor-Phase Polymerization of 3,4-Ethylenedioxythiophene: A Route to highly conducting polymer surface layers. Macromolecules. 2004. 37(12): 4538.

Bubnova O., Khan Z.U., Malti A., Braun S., Fahlman M., Berggren M., Crispin X. Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene). Nat. Mater. 2011. 10(6): 429.

Xia Y., Sun K., Ouyang J. Solution-processed metallic conducting polymer films as transparent electrode of optoelectronic devices. Adv. Mater. 2012. 24(18): 2436.

Fabretto M.V., Evans D.R., Mueller M., Zuber K., Hojati-Talemi P., Short R.D., Wallace G.G., Murphy P.J. Polymeric material with metal-like conductivity for next generation organic electronic devices. Chem. Mater. 2012. 24(20): 3998.

Kim N., Kang H., Lee J.-H., Kee S., Lee S.H., Lee K. Highly Conductive all-plastic electrodes fabricated using a novel chemically controlled transfer-printing method. Adv. Mater. 2015. 27(14): 2317.

Bubnova O., Khan Z.U., Wang H., Braun S., Evans D.R., Fabretto M., Hojati-Talemi P., Dagnelund D., Arlin J.-B., Geerts Y.H., Desbief S., Breiby D.W., Andreasen J.W., Lazzaroni R., Chen W.M., Zozoulenko I., Fahlman M., Murphy P.J., Berggren M., Crispin X. Semi-metallic polymers. Nat. Mater. 2014. 13(2): 190.

Shi H., Liu C., Jiang Q., Xu J. Effective approaches to improve the electrical conductivity of PEDOT:PSS: A Review. Adv. Electronic Mater. 2015. 1(4): 1500017.

Ha Y.-H., Nikolov N., Pollack S.K., Mastrangelo J., Martin B.D., Shashidhar R. Towards a transparent, highly conductive poly(3,4-ethylenedioxythiophene). Adv. Funct. Mater. 2004. 14(6): 615.

Levermore P., Chen L., Wang X., Das R., Bradley D. Fabrication of highly conductive poly(3,4-ethylenedioxythiophene) films by vapor phase polymerization and their application in efficient organic light-emitting diodes. Advanced Materials. 2007. 19(17): 2379.

Badre C., Marquant L., Alsayed A.M., Hough L.A. Highly conductive poly(3,4-ethylenedioxythiophene):poly (styrenesulfonate) films using 1-ethyl-3-methylimidazolium tetracyanoborate ionic liquid. Adv. Funct. Mater. 2012. 22(13): 2723.

Zhu Z., Liu C., Xu J., Jiang Q., Shi H., Liu E. Improving the electrical conductivity of PEDOT:PSS films by binary secondary doping. Electronic Mater. Lett. 2016. 12(1): 54.

Wu F., Li P., Sun K., Zhou Y., Chen W., Fu J., Li M., Lu S., Wei D., Tang X., Zang Z., Sun L., Liu X., Ouyang J. Conductivity enhancement of PEDOT:PSS via addition of chloroplatinic acid and its mechanism. Adv. Electronic Mater. 2017. 3(7): 1700047.

Dkhissi A., Louwet F., Groenendaal L., Beljonne D., Lazzaroni R., Brédas J. Theoretical investigation of the nature of the ground state in the low-bandgap conjugated polymer, poly (3, 4-ethylenedioxythiophene). Chem. Phys. Lett. 2002. 359(5-6): 466.

Dkhissi A., Beljonne D., Lazzaroni R., Louwet F., Groenendaal B. Modeling of the solid-state packing of charged chains (PEDOT) in the presence of the counterions (TSA) and the solvent (DEG). Theor.Chem. Acc. 2008. 119(4): 305.

Lenz A., Kariis H., Pohl A., Persson P., Ojamae L. The electronic structure and reflectivity of PEDOT:PSS from density functional theory. Chem. Phys. 2011. 384(1-3): 44.

Kim E.-G., Brédas J.-L. Electronic evolution of poly(3,4-ethylenedioxythiophene) (PEDOT): from the isolated chain to the pristine and heavily doped crystals. J. Am. Chem. Soc. 2008. 130(50): 16880.

Car R., Parrinello M. Unified Approach for Molecular Dynamics and Density-Functional Theory. Phys. Rev. Lett. 1985. 55(22): 2471.

Galli G., Parrinello M. Ab-initio molecular dynamics: principles and practical implementation. In: Computer Simulation in Materials Science. (Dordrecht: Kluwer Academic Publishers, 1991).

Burkhardt S.E., Rodriguez-Calero G.G., Lowe M.A., Kiya Y., Hennig R.G., Abruna H.D. Theoretical and electrochemical analysis of poly(3,4-alkylenedioxythiophenes): electron-donating effects and onset of p-doped conductivity. J. Phys. Chem. C. 2010. 114(39): 16776.

Poater J., Casanovas J., Solá M., Alemán C. Examining the planarity of poly(3,4-ethylenedioxythiophene): consideration of self-rigidification, electronic, and geometric effects. J. Phys. Chem. A. 2010. 114(2): 1023.

Wijsboom Y.H., Sheynin Y., Patra A., Zamoshchik N., Vardimon R., Leitus G., Bendikov M. Tuning of electronic properties and rigidity in PEDOT analogs. J. Mater. Chem. 2011. 21(5): 1368.

Franco-Gonzalez J.F., Zozoulenko I.V. Molecular dynamics study of morphology of doped PEDOT: from solution to dry phase. J. Phys. Chem. B. 2017. 121(16): 4299.

Palumbiny C.M., Liu F., Russell T.P., Hexemer A., Wang C., Müller-Buschbaum P. The crystallization of PEDOT:PSS polymeric electrodes probed in situ during printing. Adv. Mater. 2015. 27(22): 3391.

Brédas J., Heeger A. Influence of donor and acceptor substituents on the electronic characteristics of poly(paraphenylene vinylene) and poly(paraphenylene). Chem. Phys. Lett. 1994. 217(5-6): 507.

Shalabi A., Aal S.A., Assem M. PEDOTs-PCnBMs polymer-fullerene BHJ solar cells: Quantum mechanical calculations of photovoltaic and photophysical properties. Nano Energy. 2012. 1(4): 608.

Chang Y., Lee K., Kiebooms R., Aleshin A., Heeger A. Reflectance of conducting poly(3,4-ethylenedioxythiophene). Synth. Met. 1999. 105(3): 203.

Dkhissi A., Beljonne D., Lazzaroni R., Louwet F., Groenendaal L., Brédas J.L. Density functional theory and Hartree-Fock studies of the geometric and electronic structure of neutral and doped ethylenedioxythiophene (EDOT) oligomers. Int. J. Quantum Chem. 2003. 91(3): 517.

Alemán C., Armelin E., Iribarren J.I., Liesa F., Laso M., Casanovas J. Structural and electronic properties of 3, 4-ethylenedioxythiophene, 3, 4-ethylenedisulfanylfurane and thiophene oligomers: A theoretical investigation. Synth. Met. 2005. 149(2-3): 151.

Patra A., Wijsboom Y.H., Zade S.S., Li M., Sheynin Y., Leitus G., Bendikov M. Poly (3, 4-ethylenedioxyselenophene). J. Am. Chem. Soc. 2008. 130(21): 6734.

Muñoz W.A., Singh S.K., Franco-Gonzalez J.F., Linares M., Crispin X., Zozoulenko I.V. Insulator to semimetallic transition in conducting polymers. Phys. Rev. B. 2016. 94(20): 205202.

Eur. Patent 440957. Bayer A.G. New polythiophene dispersions: their preparation and their use. 1991.

Kirchmeyer S., Reuter K. Scientific importance, properties and growing applications of poly(3,4-ethylenedioxythiophene). J. Mater. Chem. 2005. 15(21): 2077.

Yin H.-E., Huang F.-H., Chin W.-Y. Hydrophobic and flexible conductive films consisting of PEDOT:PSS-PBA/fluorine-modified silica and their performance in weather stability. J. Mater. Chem. 2012. 22(28): 14042.

Heuer R.W., Wehermann R., Kirchmeyer S. Electrochromic window based on conducting poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate). Adv. Funct. Mater. 2002. 12(2): 89.<89::AID-ADFM89>3.0.CO;2-1

Aleshin A.N., Williams S.R., Heeger A.J. Transport properties of poly(3,4-ethylenedioxythiophene)/ poly(styrenesulfonate). Synth. Met. 1998. 94(2) 173.

Jonas F., Krafft W., Muys B. Poly(3, 4-ethylenedioxythiophene): Conductive coatings, technical applications and properties. Macromol. Symp. 1995. 100(1): 169.

De Paoli M.-A., Casalbore-Miceli G., Girotto E.M., Gazotti W.A. All polymeric solid state electrochromic devices. Electrochim. Acta. 1999. 44(18): 2983.

Cao Y., Yu G., Zhang C., Menon R., Heeger A.J. Polymer light-emitting diodes with polyethylene dioxythiophene-polystyrene sulfonate as the transparent anode. Synth. Met. 1997. 87(2): 171.

Ouyang J., Chu C.-W., Chen F.-C., Xu Q., Yang Y. High-conductivity poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) film and its application in polymer optoelectronic devices. Adv. Funct. Mater. 2005. 15(2): 203.

Yoshika Y., Jabbour G.E. Desktop inkjet printer as a tool to print conducting polymers. Synth. Met. 2006. 156(11-13): 779.

Fan B., Mei X., Ouyang J. Significant conductivity enhancement of conductive poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) films by adding anionic surfactants into polymer solution. Macromolecules. 2008. 41(16): 5971.

Dimitriev O.P., Piryatinski Y.P., Pud A.A. Evidence of the controlled interaction between PEDOT and PSS in the PEDOT:PSS complex via concentration changes of the complex solution. J. Phys. Chem. B. 2011. 115(6): 1357.

Casado J., Hernandez V., Ramirez F.J., Lopez Navarrete J.T. Ab initio HF and DFT calculations of geometric structures and vibrational spectra of electrically conducting doped oligothiophenes. J. Mol. Struct.: THEOCHEM. 1999. 463(1-2): 211.

Zade S.S., Bendikov M. Theoretical study of long oligothiophene dications: bipolaron vs polaron pair vs triplet state. J. Phys. Chem. B. 2006. 110(32): 15839.

Zade S.S., Bendikov M. Twisting of conjugated oligomers and polymers: case study of oligo- and polythiophene. Chem.-Eur. J. 2007. 13(13): 3688.

Alemán C., Casanovas J. Theoretical investigation of the 3,4-ethylenedioxythiophene dimer and unsubstituted heterocyclic derivatives. J. Phys. Chem. A. 2004. 108(8): 1440.

Agalya G., Lv C., Wang X., Koyama M., Kubo M., Miyamoto A. Theoretical study on the electronic and molecular properties of ground and excited states of ethylenedioxythiophene and styrenesulphonic acid. Appl. Surf. Sci. 2005. 244(1-4): 195.

Brédas J.L., Wudl F., Heeger A.J. Polarons and bipolarons in doped polythiophene: A theoretical investigation. Solid State Commun. 1987. 63(7): 577.

Gangopadhyay R., Das B., Molla M.R. How does PEDOT combine with PSS? Insights from structural studies. RSC Adv. 2014. 4(83): 43912.

Rumbau V., Pomposo J.A., Eleta A., Rodrigues J., Grande H., Mecerreyes D., Ochoteco E. First enzymatic synthesis of water-soluble conducting poly(3,4-ethylenedioxythiophene). Biomacromolecules. 2007. 8(2): 315.

Ouyang J. Solution-processed PEDOT:PSS films with conductivities as Indium Tin Oxide through a treatment with mild and weak organic acids. ACS Appl. Mater. Interfaces. 2013. 5(24): 13082.

Runge E., Gross E.K.U. Density-functional theory for time-dependent systems. Phys. Rev. Lett. 1984. 52(12): 997.

Nagarajan S., Kumar J., Bruno F.F., Samuelson L.A., Nagarajan R. Biocatalytically synthesized poly(3,4-ethylenedioxythiophene). Macromolecules. 2008. 41(9): 3049.

Gao F., Ren S., Wang J. The renaissance of hybrid solar cells: progresses, challenges, and perspectives. Energy Environ. Sci. 2013. 6(7): 2020.

Bagher A.M. Comparison of organic solar cells and inorganic solar cells. Int. J. Renewable and Sustainable Energy. 2014. 3(3): 53.

Vivo P. Doctoral (Science in Technology) Thesis. (Tampere, 2010).

Scharber M.C., Sariciftci N.S. Efficiency of bulk-heterojunction organic solar cells. Prog. Polym. Sci. 2013. 38(12): 1929.

Liu X., Chen H., Tan S. Overview of high-efficiency organic photovoltaic materials and devices. Renewable and Sustainable Energy Rev. 2015. 52(C): 1527.

Kim M.-S. Ph.D (Materials Science and Engineering) Thesis. (Michigan, 2009).

Wonneberger H. Doctoral. (Chem.) Thesis. (Mainz, 2012). [in German].

Wright M., Uddin A. Organic-inorganic hybrid solar cells: A comparative review. Sol. Energy Mater. Sol. Cells. 2012. 107: 87.

Gruber M., Stickler B.A., Trimmel G., Schürrer F., Zojer K. Impact of energy alignment and morphology on the efficiency in inorganic-organic hybrid solar cells. Org. Electron. 2010. 11(12): 1999.

X. Fan, M. Zhang, X. Wang, F. Yang, X. Meng, Recent progress in organic-inorganic hybrid solar cells, J. Mater. Chem. A, 2013, 1, 8694.

Mehmood U., Rahman S., Harrabi K., Hussein I.A., Reddy B.V.S. Recent Advances in Dye Sensitized Solar Cells. Advances in Materials Science and Engineering. 2014. 2014: 1.

Cao Y., Bai Y., Yu Q., Cheng Y., Liu S., Shi D., Gao F., Wang P. Dye-sensitized solar cells with a high absorptivity ruthenium sensitizer featuring a 2-(hexylthio) thiophene conjugated bipyridine. J. Phys. Chem. C. 2009. 113(15): 6290.

Yella A., Lee H.W., Tsao H.N., Yi C., Chandira A.K., Nazeeruddin M.K., Dia E.W., Yeh C.Y., Zakeeruddi S.M., Grätzel M. Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science. 2011. 334(6056): 629.

Mikroyannidis J.A., Stylianakis M.M., Suresh P., Roy M.S., Sharma G.D. Synthesis of perylene monoimide derivative and its use for quasi-solid-state dyesensitized solar cells based on bare and modified nano-crystalline ZnO photoelectrodes. Energy Environ. Sci. 2009. 2(12): 1293.

Wu J., Lan Z., Lin J., Huang M., Huang Y., Fan L., Luo G. Electrolytes in Dye-Sensitized Solar Cells. Chem. Rev. 2015. 115(5): 2136.

Li B., Wang L., Kang B., Wang P., Qiu Y. Review of recent progress in solidstate dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells. 2006. 90(5): 549.

Song T.-B., Chen Q., Zhou H., Jiang C., Wang H.-H., Yang (Michael) Y., Liu Y., You J., Yang Y. Perovskite solar cells: film formation and properties. J. Mater. Chem. A. 2015. 3(17): 9032.

Kojima A., Teshima K., Shirai Y., Miyasaka T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009. 131(17): 6050.

Lin Q., Armin A., Nagiri R.C.R., Burn P.L., Meredith P. Electro-optics of perovskite solar cells. Nature Photonics. 2015. 9(2): 106.

Boix P.P., Nonomura K., Mathews N., Mhaisalkar S.G. Current progress and future perspectives for organic/inorganic perovskite solar cells. Materials Today. 2014. 17(1): 16.

Snaith H.J. Perovskites: The emergence of a new era for low-cost, high-efficiency solar cells. J. Phys. Chem. Lett. 2013. 4(21): 3623.

Liu Y., Hong Z., Chen Q., Chang W., Zhou H., Song T.-B., Young E., Yang (Michael) Y., You J., Li G., Yang Y. Integrated perovskite/bulk-heterojunction toward efficient solar cells. Nano Lett. 2014. 15(1): 662.

Im J.-H., Lee C.-R., Lee J.-W., Parka S.-W., Park N.-G. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale. 2011. 3(10): 4088.

Green M.A., Ho-Baillie A., Snaith H.J. The emergence of perovskite solar cells. Nature Photonics. 2014. 8(7): 506.

Wang B., Xiao X., Chen T. Perovskite photovoltaics: a high-efficiency newcomer to the solar cell family. Nanoscale. 2014. 6(21): 12287.

Baikie T.J. Fang Y., Kadro J.M., Schreyer M., Wei F., Mhaisalkar S.G., Graetzel M., White T.J. Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. J. Mat. Chem. A. 2013. 1(18): 5628.

Sum T.C., Mathews N. Advancements in perovskite solar cells: photophysics behind the photovoltaics. Energy Environ. Sci. 2014. 7(8): 2518.

Umebayashi T., Asai K., Kondo T., Nakao A. Electronic structures of lead iodide based low-dimensional crystals. Phys. Rev. B. 2003. 67(15): 155405.

Mosconi E., Amat A., Nazeeruddin M.K., Grätzel M., De Angelis F. First-principles modeling of mixed halide organometal perovskites for photovoltaic applications. J. Phys. Chem. C. 2013. 117(27): 13902.

Umari P., Mosconi E., De Angelis F. Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 perovskites for solar cell applications. Sci. Rep. 2014. 4(1): 4467.

Even J., Pedesseau L., Jancu J.-M., Katan C. Importance of spin-orbit coupling in hybrid organic/inorganic perovskites for photovoltaic applications. J. Phys. Chem. Lett. 2013. 4(17): 2999.

Noh J.H., Im S.H., Heo J.H., Mandal T.N., Seok S.I. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett. 2013. 13(4): 1764.

Liu M., Johnston M.B., Snaith H.J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature. 2013. 501(7467): 395.

Jung H.S., Park N.-G. Perovskite Solar Cells: From Materials to Devices. Small. 2014. 11(1): 10.

Di Giacomo F., Zardetto V., D'Epifanio A., Pescetelli S., Matteocci F., Razza S., Di Carlo A., Licoccia S., Kessels W.M.M., Creatore M., Brown T.M. Flexible perovskite photovoltaic modules and solar cells based on atomic layer deposited compact layers and UV-irradiated TiO2 scaffolds on plastic substrates. Adv. Energy Mater. 2015. 5(8): 1401808.

You J., Hong Z., Yang Y.M., Chen Q., Cai M., Song T.-B., Chen C.C., Lu S., Liu Y., Zhou H., Yang Y. Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. ACS Nano. 2014. 8(2): 1674.

Kim B.J., Kim D.H., Lee Y.-Y., Shin H.-W., Han G.S., Hong J.S., Mahmood K., Ahn T.K., Joo Y. C., Hong K.S., Park N.-G., Lee S., Jung H.S. Highly efficient and bending durable perovskite solar cells: toward a wearable power source. Energy Envirov Sci. 2015. 8(3): 916.

Green M.A., Ho-Baillie A., Snaith H.J. The emergence of perovskite solar cells. Nature Photonics. 2014. 8(7): 506.

Burschka J., Pellet N., Moon S.-J., Humphry-Baker R., Gao P., Nazeeruddin M.K., Grätzel M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature. 2013. 499(7458): 316.

Jeon N.J., Noh J.H., Kim Y.C., Yang W.S., Ryu S., Seok S.I. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nature Materials. 2014. 13(9): 897.

Malinkiewicz O., Yella A., Lee Y.H., Espallargas G.M., Graetzel M., Nazeeruddin M.K., Bolink H.J. Perovskite solar cells employing organic charge-transport layers. Nature Photon. 2013. 8(2): 128.

Ponseca C.S., Savenije T.J., Abdellah M., Zheng K., Yartsev A., Pascher T., Harlang T., Chabera P., Pullerits T., Stepanov A., Wolf J.P., Sundström V. Organometal halide perovskite solar cell materials rationalized: ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination. J. Am. Chem. Soc. 2014. 136(14): 5189.

Stoumpos C.C., Malliakas C.D., Kanatzidis M.G. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inor. Chem. 2013. 52(15): 9019.

Giorgi G., Fujisawa J.-I., Segawa H., Yamashita K. Small photocarrier effective masses featuring ambipolar transport in methylammonium lead iodide perovskite: A density functional analysis. J. Phys. Chem. Lett. 2013. 4(24): 4213.

Ogomi Y., Kukihara K., Qing S., Toyoda T., Yoshino K., Pandey S., Momose H., Hayase S. Control of charge dynamics through a charge-separation interface for all-solid perovskite-sensitized solar cells. Chem. Phys. Chem. 2014. 15(6): 1062.

Stranks S.D., Eperon G.E., Grancini G., Menelaou C., Alcocer M.J.P., Leijtens T., Herz L.M., Petrozza A., Snaith, H.J. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science. 2013. 342(6156): 341.

Wehrenfennig C., Eperon G.E., Johnston M.B., Snaith H.J., Herz L.M. High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater. 2013. 26(10): 1584.

Snaith H.J., Abate A., Ball J.M., Eperon G.E., Leijtens T., Noel N.K., Stranks S.D., Wang J.T., Wojciechowski K., Zhang W. Anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 2014. 5(9): 1511.

Kim H.-S., Park N.-G. Parameters affecting I-V hysteresis of CH3NH3PbI3 perovskite solar cells: effects of perovskite crystal size and mesoporous TiO2 layer. J. Phys. Chem. Lett. 2014. 5(17): 2927.

Nie W., Tsai H., Asadpour R., Blancon J.-C., Neukirch A.J., Gupta G., Crochet J.J., Chhowalla M., Tretiak S., Alam M.A., Wang H.-L., Mohite A.D. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science. 2015. 347(6221): 522.

Dharani S., Mulmudi H.K., Yantara N., Trang P.T., Park N.G., Graetzel M., Mhaisalkar S., Mathews N., Boix P.P. High efficiency electrospun TiO2 nanofiber based hybrid organic-inorganic perovskite solar cell. Nanoscale. 2014. 6(3): 1675.

Diao F., Liang W., Tian F., Wang Y., Vivo P., Efimov A., Lemmetyinen H. Preferential Attachments of Organic Dyes onto {101} Facets of TiO2 Nanoparticles. J. Phys. Chem. C. 2015. 119(16): 8960.

Lellig P., Niedermeier M.A., Rawolle M.A., Meister M., Laquai F., Müller-Buschbaum P., Gutmann J.S. Comparative study of conventional and hybrid blocking layers for solid-state dye-sensitized solar cells. Phys. Chem. Chem. Phys. 2012. 14(5): 1607.

Matteocci F., Mincuzzi G., Giordano F., Capasso A., Artuso E., Barolo C., Viscardi G., Brown T.M., Reale A., Di Carlo A. Blocking layer optimisation of poly(3-hexylthiopene) based solid state dye sensitized solar cells. Organic Electronics. 2013. 14(7): 1882.

Wang D.H., Morin P., Lee C., Ko Ko Kyaw A., Leclerc M., Heeger A.J. Effect of processing additive on morphology and charge extraction in bulkheterojunction solar cells. J. Mater. Chem. A. 2014. 2(36): 15052.

Roberson L.B., Poggi M.A., Kowalik J., Smestad G.P., Bottomley L.A., Tolbert L.M. Correlation of morphology and device performance in inorganic-organic TiO2-polythiophene hybrid solid-state solar cells. Coord. Chem. Rev. 2004. 248(13-14): 1491.

Lee C.-K., Pao C.-W., Chen C.-W. Correlation of nanoscale organizations of polymer and nanocrystals in polymer/inorganic nanocrystal bulk heterojunction hybrid solar cells: insights from multiscale molecular simulations. Energy Environ. Sci. 2013. 6(1): 307.

Scharber M.C., Mühlbacher D., Koppe M., Denk P., Waldauf C., Heeger A.J., Brabec C.J. Design rules for donors in bulk-heterojunction solar cells-towards 10 % energy-conversion efficiency. Adv. Mater. 2006. 18(6): 789.

Xiang H., Wei S.-H., Gong X. Identifying optimal inorganic nanomaterials for hybrid solar cells. J. Phys. Chem. C. 2009. 113(43): 18968.

Timonov A.M., Vasil'yeva S.V. Elektronnaya provodimost' polimernykh soyedineniy. Sorosovskiy obrazovatel'nyy zhurnal. 2000. 3: 33. [in Russian].

Andreyeva O.A., Burkova L.A. Issledovaniye mekhanizma khimicheskogo dedopirovaniya provodyashchego polipirrola metodom EPR-spektroskopii. Fizika tverdogo tela. 2011. 53(9): 1826. [in Russian].

Chitte H.K., Bhat N.V., Walunj V.E., Shinde G.N. Synthesis of polypyrrole using ferric chloride (FeCl3) as oxidant together with some dopants for use in gas sensors. J. sensor technology. 2011. 1(2): 47.

Heeger A.J. Charge transfer in polymeric systems. Striving toward intrinsic properties. Faraday Discus. Chem. Soc. 1989. 88: 203.

Odzhayev V.B., Popok V.N., Azarko I.I. Fizika elektroprovodyashchikh polimerov. (Minsk: Belgosuniversitet, 2000). [in Russian].

Tager A.A. Fiziko-khimiya polimerov. (Moskva: Khimiya, 1968). [in Russian].

Hassan S.M., Baker A.Gh., Jafaar H.I. AC electrical conductivity for po-lyaniline prepared in different acidic medium. Int. j. basic appl. Sci. 2012. 1(2): 352.

Hendi A.A. AC Conductivity and dielectric measurements of bulk tetracy-anoquinoidimethane. Australian j. basic appl. Sci. 2011. 5(7): 380.

Hill R.M. Variable-range hopping. Physica Status Solidi A. 1976. 34(2): 601.

Olivier G., Mostefa M. Notes on the hopping conduction in granular metals. J. Physics C: Solid State Phys. 1984. 17(32): 5729.

Joung D., Khondaker S. I. Efros-Shklovskii variable-range hopping in reduced graphene oxide sheets of varying carbon sp2 fraction. Phys. Rev. B. 201. 286 (23): 235423.

Taher Y. B., Oueslati A., Maaloul N. K., Khirouni K., Gargouri M. Conductivity study and correlated barrier hopping (CBH) conduction mechanism in diphosphate compound. Applied Physics A. 2015. 120(4): 1537.

Mott N., Devis E. Elektronnyye protsessy v nekristallicheskikh veshchestvakh. T. 1. (Moskva: Mir, 1982). [in Russian].

Likharev K. K. Single-electron devices and their applications. Proceedings of the IEEE. 1999. 87(4): 606.

Xie H., Sheng P. Fluctuation-induced tunneling conduction through nanoconstrictions. Phys. Rev. B. 2009. 79(16): 165419.

Salkola M.I, Bishop A.R, Trugman S.A, Mustre de Leon J. Correlation-function analysis of nonlinear and nonadiabatic systems: Polaron tunnelingю Phys. Rev. B: Condensed matter. 199. 51(14):8878.

Trixler F. Quantum Tunnelling to the Origin and Evolution of Life. Curr Org Chem. 2013 17(16): 1758.

Karmakar S., Behera D. Non-overlapping small polaron tunneling conduction coupled dielectric relaxation in weak ferromagnetic NiAl2O4. J. Phys. Condens Matter. 2019. 31(24): 245701.

Saville P. Polypyrrole Formation and use. Defence R&D Canada - Atlantic, Technical memorandum DRDC Atlantic TM 2005-004 January 2005.

Gu H., Huang Y., Zhang X., Wang Q., Zhu J., Shao L., Haldolaarachchige N., Young D.P., Wei S., Guo Z. Magnetoresistive polianiline-magnetite nanocomposites with negative dielectrical properties. Polymer. 2012. 53(3): 801.

Chougule M.A., Pawar S.G., Godse P.R., Mulik R.N., Sen S., Patil V.B. Synthesis and characterization of polypyrrole (PPy) thin films. Soft nanoscience letters. 2011. 1(1): 6.

Fattoum A., Othman Z.B., Arous M. DC AC conductivity of polyaniline/poly(methyl methacrylathe) blends below the percolation threshold. Materials chem. Phys. 2012. 135(1): 117.

Bohli N., Gmati F., Mohamed A.B., Vigneras V., Mianc J.-L. Conductivity mechanism of polyaniline organic films: the effects of solvent type and casting temperature. J. Phys. D: Appl. Phys. 2009. 42(20): 205404.

Bishop A.R., Campbell D.K., Fesser K. Polyacetylene and relativistic field theory models. Mol. Cryst. Liq. Cryst. 1981. 77(1-4): 253.

Brazovskii S.A., Kirova N.N. Excitons, polarons and bipolarons in conducting polymers. JETP Lett. 1981. 33(1): 4.

Bredas J.L., Chance R.R., Silbey R. Comparative theoretical study of the doping of conjugated polymers: polarons in polyacetylene and polyparaphenylene. Phys. Rev. B: Condens. Matter. 1982. 26(10): 5843.

Su W.P., Schrieffer J.R. Soliton dynamics in polyacetylene. Proc. Natl. Acad. Sci. USA. 1980. 77(10): 5626.

Tol A.J.W. The instability of a bipolaron versus two polarons: charge localization in cyclo-dodecathiophene. Synth. Met. 1995. 74(1): 95.

Brocks G. Polarons and bipolarons in oligothiophenes: a first principles study. Synth. Met. 1999. 102(1-3): 914.

Silva G.M.E. Electric-field effects on the competition between polarons and bipolarons in conjugated polymers. Phys. Rev. B. 2000. 61(16): 10777.

Zade S.S., Bendikov M. Theoretical study of long oligothiophene dications: bipolaron vs polaron pair vs triplet state. J. Phys. Chem. B. 2006. 110(32): 15839.

Zamoshchik N., Salzner U., Bendikov M. Nature of charge carriers in long doped oligothiophenes: the effect of counterions. J. Phys. Chem. C. 2008. 112(22): 8408.

Heeger A.J., Kivelson S., Schrieffer J.R., Su W.P. Solitons in conducting polymers. Rev. Mod. Phys. 1988. 60(3): 781.

Bredas J.L., Street G.B. Polarons, bipolarons, and solitons in conducting polymers. Acc. Chem. Res. 1985. 18(10): 309.

Shimoi Y., Kuwabara M., Abe S., Highly doped nondegenerate conjugated polymers theory using the DMRG method. Syn. Met. 2001. 119: 213.

Santos M.J.L., Brolo A.G., Girotto E.M. Study of polaron and bipolaron states in polypyrrole by in situ Raman spectroelectrochemistry. Electrochim. Acta 2007. 52: 6141.

Dai Y., Blaisten-Barojas E. Energetics, structure, and charge distribution of reduced and oxidized n-pyrrole oligomers: a density functional approach. J. Chem. Phys. 2008. 129: 164903.

Dai Y., Blaisten-Barojas E. Monte Carlo study of oligopyrroles in condensed phases. J. Chem. Phys. 2010. 133: 034905.

Dai Y., Chowdhury S., Blaisten-Barojas E. Density functional theory study of the structure and energetics of negatively charged oligopyrroles. Int. J. Quant. Chem. 2011. 111: 2295.

Lin X., Smela E., Yip S. Polaron-induced conformation change in single polypyrrole chain: an intrinsic actuation mechanism, Int. J. Quant. Chem. 2005. 102: 980.

Dai Y., Wei C., Blaisten-Barojas E. Bipolarons and polaron pairs in oligopyrrole dications. Computational and Theoretical Chemistry. 2012. 993: 7.

How to Cite
Lobanov, V. V., Terebinskaya, M. I., Filonenko, O. V., & Tkachuk, O. I. (2019). Solar elements based on organic and organo-inorganic materials. Surface, (11(26), 270-343.
Theory of surface chemical structure and reactivity.