Physico-chemical properties and application of the conductive organic polymer poly-3,4 ethylenedioxythiophene-polystyrol sulfona

  • A. A. Biliuk Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine
  • O. Yu. Semchuk Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine
  • O. O. Havryliuk Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine
Keywords: conductive polymers, polythiophenes, poly-3,4-ethylenedioxythiophene-polystyrene sulfonate, PEDOT:PSS, polymer electrolyte, conductivity, Seebeck coefficient, organic electronics, organic solar cells, organic light emitting diodes, tensate diodes, polyurethane, lycra, strain gauges


The history of the creation of conductive organic materials began in 1977, when, through the modification of polyacetylene, a material was created that conducts electricity almost as well as metals. These discoveries and other fundamental research in the field of organic polymers have contributed to the development of organic electronics, which combines developments in solid state and molecular physics, organic and inorganic chemistry, polymeric materials science, electronics and printing. One of the promising materials that can and are already being used in organic electronics is poly-3,4-ethylenedioxythiophene-polystyrene sulfonate (PEDOT:PSS) is a polymer electrolyte consisting of a positively charged polymer (PEDOT) and a negatively charged surface-active substances - anionic surfactant - polystyrene sulfonic acid (PSS) and is the most successful polymeric material in terms of practical application. PEDOT is a class of substituted polythiophene and is an example of good electrochromic material. The charge transfer in the conductive PEDOT polymer is via a bonded system due to electron-exchange reactions between adjacent redox sites (between the polymer fragments where the electron or hole is delocalized) and is accompanied by the movement of the dopant anions along the polymer chain. The recent discovery of the outstanding thermoelectric properties of conductive polymer PEDOT: PSS opens up new prospects for the use of conductive organic polymers in such fields as robotics, medicine, advertising, and many others.

The review is devoted to the structure, physicochemical properties and application of conductive polymer of poly-3,4-ethylenedioxythiophene-polystyrene sulfonate (PEDOT: PSS), as well as methods of manufacturing and research of its properties, operational parameters, directions of practical use of devices from this organic polymer. The main applications of PEDOT are described: PSS in electronics, in particular in solar cells and sensors, and in biomedicine as a substrate.


Po R., Carbonera C., Bernardi A., Tinti F., Camaioni N. Polymer- and carbon-based electrodes for polymer solar cells: Toward low-cost, continuous fabrication over large area. Solar Energy Materials & Solar Cells. 2012. 100: 97.

Sun K., Zhang S., Li P., Xia Y., Zhang X., Du D., Isikgor F. H., Ouyang J. Review on application of PEDOTs and PEDOT:PSS in energy conversion and storage devices. Journal of Materials Science Materials in Electronics. 2015. 26(7): 1.

Huang L. M., Chen C. H., Wen T. C. Development and characterization of flexible electrochromic devices based on polyaniline and poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonic acid). Electrochimica Acta. 2006 . 51(26): 5858.

Kim Y., Kim E. Complementary electrochromic windows with conductive nano-composite thin films. Current app. physics. 2008.8(6):752.

Mortimer R. J., Dyer A. L., Reynolds J. R. Electrochromic organic and polymeric materials for display applications. Displays. 2006. 27:2.

O'Kane M. Solution-Processing Techniques: A Comparison¬/solution-processing-techniques-comparison.

Taroni J., Santagiuliana G., Wan K. Calado P., Qiu M., Zhang H., Pugno N. M., Palma M., Stingelin-Stutzman N., Heeney M. Toward Stretchable Self-Powered Sensors Based on the Thermoelectric Response of PEDOT:PSS/Polyurethane Blends. Adv. Funct. Mater. 2018. 28(15).

Service R. F. Electronic Textiles Charge Ahead. Science. 2003. 301(5635): 909.

Cima M. J. Next-generation wearable electronics. Nat. Biotechnol. 2014. 32: 642.

Zeng W., Shu L., Li Q., Chen S., Wang F., Tao X. Fiber. Based Wearable Electronics: A Review of Materials, Fabrication, Devices, and Applications. Adv. Mater. 2014. 26: 5310.

Tricoli A., Nasiri N., De S. Wearable and Miniaturized Sensor Technologies for Personalized and Preventive Medicine. Adv. Funct. Mater. 2017. 27(15).

Kim G.H., Shao L., Zhang K., et al.Engineered doping of organic semiconductors for enhanced thermoelectric efficiency. Nat Mater. 2013. 12(8): 719.

Goldsmid H. J. Towards Improved Thermoelectric Generator Materials. J. Electron. Mater. 2017. 46: 2599.

Snyder G. J., Toberer E. S. Complex thermoelectric materials. Nat. Mater. 2008 . 7: 105.

Cho C., Wallace K. L., Tzeng P., et al. Outstanding Low Temperature Thermoelectric Power Factor from Completely Organic Thin Films Enabled by Multidimensional Conjugated Nanomaterials // Adv.Energy Mater.2016. 6(7): 1502168.

Cho C., Stevens B., Hsu J. H., Bureau R., Hagen D. A., Regev O., Yu C., Grunlan J. C. Completely organic multilayer thin film with thermoelectric power factor rivaling inorganic tellurides. Adv. Mater. 2015. 27(19): 2996.

Bounioux C., Diaz-Chao P., Campoy-Quiles M., Martín-González M. S., Alejandro R. Goñi A. R., Yerushalmi-Rozene R., Müller C. Thermoelectric composites of poly(3-hexylthiophene) and carbon nanotubes with a large power factor. Energy Environ. Sci. 2013. 6: 918-925.

Dörling B., Ryan J. D., Craddock J. D., Sorrentino A., El Basaty A., Gomez A., Garriga M., Eva Pereiro, Anthony J. E., Weisenberger M. C., Goñi A. R., Müller C., Campoy-Quiles M. Photoinduced p- to n-type Switching in Thermoelectric Polymer-Carbon Nanotube Composites. Adv. Mater. 2016. 28(14): 2782.

Nardes A. M., Kemerink M., Janssen R. A. J., Bastiaansen J.A.M., Kiggen N.M., Langeveld B.M.W., van Breemen A.J., de Kok. M.M. Microscopic understanding of the anisotropic conductivity of PEDOT:PSS thin films. Adv. Mater. 2007. 19(9): 1196.

Chang K.-C., Jeng M.-S., Yang C.-C., Chou Y.-W., Wu S.-K., Thomas M. A., Peng Y.-C. The Thermoelectric Performance of Poly(3,4-ethylenedi oxythiophene) / Poly(4-styrenesulfonate) Thin Films. J. Electron. Mater. 2009. 38(7): 1182.

Liu C., Lu B., Yan J., Xu J., Yue R., Zhu Z., Zhou S., Hu X., Zhang Z., Chen P., Highly conducting free-standing poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) films with improved thermoelectric performances. Synth. Met. 2010. 160(23-24): 2481.

Tsai T.-C., Chang H.-C., Chen C.-H., Whang W.-T.. Widely variable Seebeck coefficient and enhanced thermoelectric powerof PEDOT:PSS films by blending thermal decomposable ammonium formate. Org. Electron. 2011. 12: 2159.

Nardes A. M., Janssen R. A. J., Kemerink M. A Morphological Model for the Solvent-Enhanced Conductivity of PEDOT:PSS Thin Films. Adv. Funct. Mater. 2008. 18: 865.

Crispin X., Marciniak S., Osikowicz W., Zotti G., Denier van der Gon A. W., Louwet F., Fahlman M., L. Groenendaal, Schryver F. C., de Salaneck W. R. Conductivity, morphology, interfacial chemistry, and stability of poly(3,4-ethylene dioxythiophene)-poly(styrene sulfonate): A photoelectron spectroscopy study. J. Polym. Sci., Part B: Polym.Phys. 2003. 41(21): 2561.

Bubnova O., Berggren M., Crispin X. Tuning the Thermoelectric Properties of Conducting Polymers in an Electrochemical Transistor. Chem. Soc. 2012. 134(40): 16456.

Bubnova O., Khan Z. U., Malti A., et al. Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene). Nat. Mater. 2011. 10(6): 429.

Park T., Park C., Kim B., Braun S., Fahlman M., Berggren M., Crispin X. Flexible PEDOT electrodes with large thermoelectric power factors to generate electricity by the touch of fingertips. Energy Environ. Sci. 2013. 6(3):788.

Murakami T., Mori Y., Okuzaki H. Effect of Ethylene Glycol on Structure and Carrier Transport in Highly Conductive Poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate). Trans. Mater. Res. Soc. Jpn. 2011. 36(2): 165.

Kim J., Jung J., Lee D., Joo J. Enhancement of electrical conductivity of poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) by a change of solvents. Synth. Met. 2002. 126(2-3): 311.

Zhang F., Zang Y., Huang D., Di C.-A., Zhu D., Flexible and self-powered temperature-pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials. Nat. Commun. 2015. 6: 8356.

Shinji H., Takayuki O. Plasmonics: visit the past to know the future. J. Phys. D: Appl. Phys. 2012. 45(43): 433001.

Xu X., Fukuda K., Karki A., Park S., Kimura H., Jinno H., Watanabe N., Yamamoto S., Shimomura S., Kitazawa D., Yokota T., Umezu S., Nguyen T.-Q., Someya T. Thermally stable, highly efficient, ultraflexible organic photovoltaics. Proceedings of the National Academy of Sciences USA. 2018. 115(18): 4589.

Bochkarev M. N, Vitukhnovsky A. G, Katkova M. A Organic Light Emitting Diodes (OLED). (Moscow: DECOM, 2011.) [in Russian]

Viventi J., Kim D.-H., Moss J. D., Kim Y.-S, Blanco J. A., Annetta N., Hicks A., Xiao J., Huang Y., Callans D. J., Rogers J. A., Litt B.. A Conformal, Bio-Interfaced Class of Silicon Electronics for Mapping Cardiac Electrophysiology. Sci.Transl. Med. 2010. 2(24): 24ra22.

Yoon J., Baca A. J., Elvikis P., Geddes III J. B., Li L., Kim R. H., Xiao J., Wang S., Kim T.-H., Motala M. J., Ahn B. Y., Duoss E. B., Lewis J. A., Nuzzo R. G., Ferreira P. M., Huang Y., Rockett A., Rogers J. A. Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs. Nat. Mater. 2008. 7: 907.

Qi Y., Jafferis N. T., Lyons K. Jr., Lee C.M., Ahmad H., McAlpine M. C. Piezoelectric ribbons printed onto rubber for flexible energy conversion. Nano Lett. 2010. 10(2): 524.

Siciliano B., Oussama K. Springer Handbook of Robotics. (Berlin: Springer-Verlag, 2008).

Francoeur A. D. Choosing the best protection. Photonics Spectra. 2009. 43: 50.

Gonzalez M., Axisa F., Bulcke M. V., Brosteaux D., Vandevelde B., Vanfleteren J. Design of Metal Interconnects for Stretchable Electronic Circuits using Finite Element Analysis. Microelectron. Reliab. 2008. 48(6): 825.

Park S.-I., Xiong Y., Kim R.-H., Elvikis P., Meitl M., Kim D.-H., Wu J., Yoon J., Yu C.-J., Liu Z., Huang Y., Hwang K.-C., Ferreira P., Li X., Choquette K., Rogers J. A. Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays. Science. 2009. 325(5943): 977.

Hu X., Krull P., de Graff B., Dowling K., Rogers J. A., Arora W. J. Stretchable Inorganic Semiconductor Electronic Systems. Adv. Mater. 2011. 20: 1.

Qi H.J., Boyce M.C. Constitutive model for stretch-induced softeningof the stress-stretch behavior of elastomericmaterials. J. Mech. Phys. Solids. 2004. 52: 2187.

Du P., O'Grady G., Egbuji J.U., Lammers W. J., Budgett D., Nielsen P., Windsor J. A., Pullan A. J., Cheng L.K. High-resolution mapping of in vivo gastrointestinal slow wave activity using flexible printed circuit board electrodes: methodology and validation. Ann. Biomed.Eng. 2009. 37(4): 839.

Quirós-Solano W.F., Gaio N., Silvestri C., Pandrauda G., Sarroa P.M. PEDOT:PSS: a Conductive and Flexible Polymer for Sensor Integration in Organ-on-Chip Platforms. Procedia Engineering. 2016. 168: 1184.

Cho C.K., Hwang W.J., Eun K., Choa S.-H., Na S.-I., Kima H.-K. Mechanical flexibility of transparent PEDOT:PSS electrodes prepared by gravure printing for flexible organic solar cells. Solar Energy Materials and Solar Cells. 2011. 95(12): 3269.

Pakazad K., Savov A., van de Stolpe A., Dekker R. A novel stretchable micro-electrode array (SMEA) design for directional stretching of cells. Journal of Micromechanics and Microengineering. 2014. 24(3): 34003.

Soe A. K., Nahavandi S., Khoshmanesh K. Neuroscience goes on a chip.Biosensors and Bioelectronics. 2012. 35(1): 1.

Bernardeschi I., Greco F., Ciofani G., Marino A., Mattoli V., Mazzolai B., Beccai L. A soft, stretchable and conductive biointerface for cell mechanobiology. Biomed Microdevices. 2015.

Harada S., Arie T., Akita S., Takei K. Highly Stable Liquid-Solid Metal Contact Toward Multilayered Detachable Flexible Devices. Adv. Electron. Mater. 2015. 1.

Yamamoto Y., Harada S., Yamamoto D., Honda W., Arie T., Akita S., Takei K. Printed multifunctional flexible device with an integrated motion sensor for health care monitoring. Science Advances. 2016. 2(11).

How to Cite
Biliuk, A. A., Semchuk, O. Y., & Havryliuk, O. O. (2019). Physico-chemical properties and application of the conductive organic polymer poly-3,4 ethylenedioxythiophene-polystyrol sulfona. Surface, (11(26), 414-435.
Physics and chemistry of surface phenomena