Physico-chemical properties and application of the conductive organic polymer poly-3,4 ethylenedioxythiophene-polystyrol sulfona

  • A. A. Biliuk Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine
  • O. Yu. Semchuk Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine
  • O. O. Havryliuk Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine https://orcid.org/0000-0003-4487-0537
Keywords: conductive polymers, polythiophenes, poly-3,4-ethylenedioxythiophene-polystyrene sulfonate, PEDOT:PSS, polymer electrolyte, conductivity, Seebeck coefficient, organic electronics, organic solar cells, organic light emitting diodes, tensate diodes, polyurethane, lycra, strain gauges

Abstract

The history of the creation of conductive organic materials began in 1977, when, through the modification of polyacetylene, a material was created that conducts electricity almost as well as metals. These discoveries and other fundamental research in the field of organic polymers have contributed to the development of organic electronics, which combines developments in solid state and molecular physics, organic and inorganic chemistry, polymeric materials science, electronics and printing. One of the promising materials that can and are already being used in organic electronics is poly-3,4-ethylenedioxythiophene-polystyrene sulfonate (PEDOT:PSS) is a polymer electrolyte consisting of a positively charged polymer (PEDOT) and a negatively charged surface-active substances - anionic surfactant - polystyrene sulfonic acid (PSS) and is the most successful polymeric material in terms of practical application. PEDOT is a class of substituted polythiophene and is an example of good electrochromic material. The charge transfer in the conductive PEDOT polymer is via a bonded system due to electron-exchange reactions between adjacent redox sites (between the polymer fragments where the electron or hole is delocalized) and is accompanied by the movement of the dopant anions along the polymer chain. The recent discovery of the outstanding thermoelectric properties of conductive polymer PEDOT: PSS opens up new prospects for the use of conductive organic polymers in such fields as robotics, medicine, advertising, and many others.

The review is devoted to the structure, physicochemical properties and application of conductive polymer of poly-3,4-ethylenedioxythiophene-polystyrene sulfonate (PEDOT: PSS), as well as methods of manufacturing and research of its properties, operational parameters, directions of practical use of devices from this organic polymer. The main applications of PEDOT are described: PSS in electronics, in particular in solar cells and sensors, and in biomedicine as a substrate.

References

Po R., Carbonera C., Bernardi A., Tinti F., Camaioni N. Polymer- and carbon-based electrodes for polymer solar cells: Toward low-cost, continuous fabrication over large area. Solar Energy Materials & Solar Cells. 2012. 100: 97. https://doi.org/10.1016/j.solmat.2011.12.022

Sun K., Zhang S., Li P., Xia Y., Zhang X., Du D., Isikgor F. H., Ouyang J. Review on application of PEDOTs and PEDOT:PSS in energy conversion and storage devices. Journal of Materials Science Materials in Electronics. 2015. 26(7): 1. https://doi.org/10.1007/s10854-015-2895-5

Huang L. M., Chen C. H., Wen T. C. Development and characterization of flexible electrochromic devices based on polyaniline and poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonic acid). Electrochimica Acta. 2006 . 51(26): 5858. https://doi.org/10.1016/j.electacta.2006.03.031

Kim Y., Kim E. Complementary electrochromic windows with conductive nano-composite thin films. Current app. physics. 2008.8(6):752. https://doi.org/10.1016/j.cap.2007.04.020

Mortimer R. J., Dyer A. L., Reynolds J. R. Electrochromic organic and polymeric materials for display applications. Displays. 2006. 27:2. https://doi.org/10.1016/j.displa.2005.03.003

O'Kane M. Solution-Processing Techniques: A Comparison https://www.ossila.com/pages¬/solution-processing-techniques-comparison.

Taroni J., Santagiuliana G., Wan K. Calado P., Qiu M., Zhang H., Pugno N. M., Palma M., Stingelin-Stutzman N., Heeney M. Toward Stretchable Self-Powered Sensors Based on the Thermoelectric Response of PEDOT:PSS/Polyurethane Blends. Adv. Funct. Mater. 2018. 28(15). https://doi.org/10.1002/adfm.201704285

Service R. F. Electronic Textiles Charge Ahead. Science. 2003. 301(5635): 909. https://doi.org/10.1126/science.301.5635.909

Cima M. J. Next-generation wearable electronics. Nat. Biotechnol. 2014. 32: 642. https://doi.org/10.1038/nbt.2952

Zeng W., Shu L., Li Q., Chen S., Wang F., Tao X. Fiber. Based Wearable Electronics: A Review of Materials, Fabrication, Devices, and Applications. Adv. Mater. 2014. 26: 5310. https://doi.org/10.1002/adma.201400633

Tricoli A., Nasiri N., De S. Wearable and Miniaturized Sensor Technologies for Personalized and Preventive Medicine. Adv. Funct. Mater. 2017. 27(15). https://doi.org/10.1002/adfm.201605271

Kim G.H., Shao L., Zhang K., et al.Engineered doping of organic semiconductors for enhanced thermoelectric efficiency. Nat Mater. 2013. 12(8): 719. https://doi.org/10.1038/nmat3635

Goldsmid H. J. Towards Improved Thermoelectric Generator Materials. J. Electron. Mater. 2017. 46: 2599. https://doi.org/10.1007/s11664-016-4781-1

Snyder G. J., Toberer E. S. Complex thermoelectric materials. Nat. Mater. 2008 . 7: 105. https://doi.org/10.1038/nmat2090

Cho C., Wallace K. L., Tzeng P., et al. Outstanding Low Temperature Thermoelectric Power Factor from Completely Organic Thin Films Enabled by Multidimensional Conjugated Nanomaterials // Adv.Energy Mater.2016. 6(7): 1502168. https://doi.org/10.1002/aenm.201502168

Cho C., Stevens B., Hsu J. H., Bureau R., Hagen D. A., Regev O., Yu C., Grunlan J. C. Completely organic multilayer thin film with thermoelectric power factor rivaling inorganic tellurides. Adv. Mater. 2015. 27(19): 2996. https://doi.org/10.1002/adma.201405738

Bounioux C., Diaz-Chao P., Campoy-Quiles M., Martín-González M. S., Alejandro R. Goñi A. R., Yerushalmi-Rozene R., Müller C. Thermoelectric composites of poly(3-hexylthiophene) and carbon nanotubes with a large power factor. Energy Environ. Sci. 2013. 6: 918-925. https://doi.org/10.1039/c2ee23406h

Dörling B., Ryan J. D., Craddock J. D., Sorrentino A., El Basaty A., Gomez A., Garriga M., Eva Pereiro, Anthony J. E., Weisenberger M. C., Goñi A. R., Müller C., Campoy-Quiles M. Photoinduced p- to n-type Switching in Thermoelectric Polymer-Carbon Nanotube Composites. Adv. Mater. 2016. 28(14): 2782. https://doi.org/10.1002/adma.201505521

Nardes A. M., Kemerink M., Janssen R. A. J., Bastiaansen J.A.M., Kiggen N.M., Langeveld B.M.W., van Breemen A.J., de Kok. M.M. Microscopic understanding of the anisotropic conductivity of PEDOT:PSS thin films. Adv. Mater. 2007. 19(9): 1196. https://doi.org/10.1002/adma.200602575

Chang K.-C., Jeng M.-S., Yang C.-C., Chou Y.-W., Wu S.-K., Thomas M. A., Peng Y.-C. The Thermoelectric Performance of Poly(3,4-ethylenedi oxythiophene) / Poly(4-styrenesulfonate) Thin Films. J. Electron. Mater. 2009. 38(7): 1182. https://doi.org/10.1007/s11664-009-0821-4

Liu C., Lu B., Yan J., Xu J., Yue R., Zhu Z., Zhou S., Hu X., Zhang Z., Chen P., Highly conducting free-standing poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) films with improved thermoelectric performances. Synth. Met. 2010. 160(23-24): 2481. https://doi.org/10.1016/j.synthmet.2010.09.031

Tsai T.-C., Chang H.-C., Chen C.-H., Whang W.-T.. Widely variable Seebeck coefficient and enhanced thermoelectric powerof PEDOT:PSS films by blending thermal decomposable ammonium formate. Org. Electron. 2011. 12: 2159. https://doi.org/10.1016/j.orgel.2011.09.004

Nardes A. M., Janssen R. A. J., Kemerink M. A Morphological Model for the Solvent-Enhanced Conductivity of PEDOT:PSS Thin Films. Adv. Funct. Mater. 2008. 18: 865. https://doi.org/10.1002/adfm.200700796

Crispin X., Marciniak S., Osikowicz W., Zotti G., Denier van der Gon A. W., Louwet F., Fahlman M., L. Groenendaal, Schryver F. C., de Salaneck W. R. Conductivity, morphology, interfacial chemistry, and stability of poly(3,4-ethylene dioxythiophene)-poly(styrene sulfonate): A photoelectron spectroscopy study. J. Polym. Sci., Part B: Polym.Phys. 2003. 41(21): 2561. https://doi.org/10.1002/polb.10659

Bubnova O., Berggren M., Crispin X. Tuning the Thermoelectric Properties of Conducting Polymers in an Electrochemical Transistor. Chem. Soc. 2012. 134(40): 16456. https://doi.org/10.1021/ja305188r

Bubnova O., Khan Z. U., Malti A., et al. Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene). Nat. Mater. 2011. 10(6): 429. https://doi.org/10.1038/nmat3012

Park T., Park C., Kim B., Braun S., Fahlman M., Berggren M., Crispin X. Flexible PEDOT electrodes with large thermoelectric power factors to generate electricity by the touch of fingertips. Energy Environ. Sci. 2013. 6(3):788. https://doi.org/10.1039/c3ee23729j

Murakami T., Mori Y., Okuzaki H. Effect of Ethylene Glycol on Structure and Carrier Transport in Highly Conductive Poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate). Trans. Mater. Res. Soc. Jpn. 2011. 36(2): 165. https://doi.org/10.14723/tmrsj.36.165

Kim J., Jung J., Lee D., Joo J. Enhancement of electrical conductivity of poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) by a change of solvents. Synth. Met. 2002. 126(2-3): 311. https://doi.org/10.1016/S0379-6779(01)00576-8

Zhang F., Zang Y., Huang D., Di C.-A., Zhu D., Flexible and self-powered temperature-pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials. Nat. Commun. 2015. 6: 8356. https://doi.org/10.1038/ncomms9356

Shinji H., Takayuki O. Plasmonics: visit the past to know the future. J. Phys. D: Appl. Phys. 2012. 45(43): 433001. https://doi.org/10.1088/0022-3727/45/43/433001

Xu X., Fukuda K., Karki A., Park S., Kimura H., Jinno H., Watanabe N., Yamamoto S., Shimomura S., Kitazawa D., Yokota T., Umezu S., Nguyen T.-Q., Someya T. Thermally stable, highly efficient, ultraflexible organic photovoltaics. Proceedings of the National Academy of Sciences USA. 2018. 115(18): 4589. https://doi.org/10.1073/pnas.1801187115

Bochkarev M. N, Vitukhnovsky A. G, Katkova M. A Organic Light Emitting Diodes (OLED). (Moscow: DECOM, 2011.) [in Russian]

Viventi J., Kim D.-H., Moss J. D., Kim Y.-S, Blanco J. A., Annetta N., Hicks A., Xiao J., Huang Y., Callans D. J., Rogers J. A., Litt B.. A Conformal, Bio-Interfaced Class of Silicon Electronics for Mapping Cardiac Electrophysiology. Sci.Transl. Med. 2010. 2(24): 24ra22. https://doi.org/10.1126/scitranslmed.3000738

Yoon J., Baca A. J., Elvikis P., Geddes III J. B., Li L., Kim R. H., Xiao J., Wang S., Kim T.-H., Motala M. J., Ahn B. Y., Duoss E. B., Lewis J. A., Nuzzo R. G., Ferreira P. M., Huang Y., Rockett A., Rogers J. A. Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs. Nat. Mater. 2008. 7: 907. https://doi.org/10.1038/nmat2287

Qi Y., Jafferis N. T., Lyons K. Jr., Lee C.M., Ahmad H., McAlpine M. C. Piezoelectric ribbons printed onto rubber for flexible energy conversion. Nano Lett. 2010. 10(2): 524. https://doi.org/10.1021/nl903377u

Siciliano B., Oussama K. Springer Handbook of Robotics. (Berlin: Springer-Verlag, 2008). https://doi.org/10.1007/978-3-540-30301-5

Francoeur A. D. Choosing the best protection. Photonics Spectra. 2009. 43: 50.

Gonzalez M., Axisa F., Bulcke M. V., Brosteaux D., Vandevelde B., Vanfleteren J. Design of Metal Interconnects for Stretchable Electronic Circuits using Finite Element Analysis. Microelectron. Reliab. 2008. 48(6): 825. https://doi.org/10.1016/j.microrel.2008.03.025

Park S.-I., Xiong Y., Kim R.-H., Elvikis P., Meitl M., Kim D.-H., Wu J., Yoon J., Yu C.-J., Liu Z., Huang Y., Hwang K.-C., Ferreira P., Li X., Choquette K., Rogers J. A. Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays. Science. 2009. 325(5943): 977. https://doi.org/10.1126/science.1175690

Hu X., Krull P., de Graff B., Dowling K., Rogers J. A., Arora W. J. Stretchable Inorganic Semiconductor Electronic Systems. Adv. Mater. 2011. 20: 1. https://doi.org/10.1002/adma.201100144

Qi H.J., Boyce M.C. Constitutive model for stretch-induced softeningof the stress-stretch behavior of elastomericmaterials. J. Mech. Phys. Solids. 2004. 52: 2187. https://doi.org/10.1016/j.jmps.2004.04.008

Du P., O'Grady G., Egbuji J.U., Lammers W. J., Budgett D., Nielsen P., Windsor J. A., Pullan A. J., Cheng L.K. High-resolution mapping of in vivo gastrointestinal slow wave activity using flexible printed circuit board electrodes: methodology and validation. Ann. Biomed.Eng. 2009. 37(4): 839. https://doi.org/10.1007/s10439-009-9654-9

Quirós-Solano W.F., Gaio N., Silvestri C., Pandrauda G., Sarroa P.M. PEDOT:PSS: a Conductive and Flexible Polymer for Sensor Integration in Organ-on-Chip Platforms. Procedia Engineering. 2016. 168: 1184. https://doi.org/10.1016/j.proeng.2016.11.401

Cho C.K., Hwang W.J., Eun K., Choa S.-H., Na S.-I., Kima H.-K. Mechanical flexibility of transparent PEDOT:PSS electrodes prepared by gravure printing for flexible organic solar cells. Solar Energy Materials and Solar Cells. 2011. 95(12): 3269. https://doi.org/10.1016/j.solmat.2011.07.009

Pakazad K., Savov A., van de Stolpe A., Dekker R. A novel stretchable micro-electrode array (SMEA) design for directional stretching of cells. Journal of Micromechanics and Microengineering. 2014. 24(3): 34003. https://doi.org/10.1088/0960-1317/24/3/034003

Soe A. K., Nahavandi S., Khoshmanesh K. Neuroscience goes on a chip.Biosensors and Bioelectronics. 2012. 35(1): 1. https://doi.org/10.1016/j.bios.2012.02.012

Bernardeschi I., Greco F., Ciofani G., Marino A., Mattoli V., Mazzolai B., Beccai L. A soft, stretchable and conductive biointerface for cell mechanobiology. Biomed Microdevices. 2015. https://doi.org/10.1007/s10544-015-9950-0

Harada S., Arie T., Akita S., Takei K. Highly Stable Liquid-Solid Metal Contact Toward Multilayered Detachable Flexible Devices. Adv. Electron. Mater. 2015. 1. https://doi.org/10.1002/aelm.201500080

Yamamoto Y., Harada S., Yamamoto D., Honda W., Arie T., Akita S., Takei K. Printed multifunctional flexible device with an integrated motion sensor for health care monitoring. Science Advances. 2016. 2(11). https://doi.org/10.1126/sciadv.1601473

Published
2019-10-30
How to Cite
Biliuk, A. A., Semchuk, O. Y., & Havryliuk, O. O. (2019). Physico-chemical properties and application of the conductive organic polymer poly-3,4 ethylenedioxythiophene-polystyrol sulfona. Surface, (11(26), 414-435. https://doi.org/10.15407/Surface.2019.11.414
Section
Physics and chemistry of surface phenomena