Properties, preparation methods and use of cerium nanooxide

  • А. M. Grinko National University of "Kyiv-Mohyla Academy" / Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine
  • А. V. Brichka Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine
  • О. М. Bakalinska Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine
  • М. Т. Каrtel Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine
Keywords: nanoscale cerium oxide, reactive oxygen species, enzyme mimetic activity, surface defects


The prevalence of Cerium compounds, economic affordability, and unique redox properties determine the wide range of cerium oxide applications. The transition to nanosized particles of cerium oxide allows these materials to reversibly absorb and release oxygen, which determined the use of nano-CeO2 in biomedical technologies in the treatment of diseases associated with lesions due to oxidative stress.

The review analyzed the state of modern scientific literature regarding the properties, methods for producing and using cerium nanooxide. The main characteristics of cerium oxide and the features of its structure are described, the mechanisms of action of the enzyme-like properties of nanoceria are given. It was shown that the coexistence of Ce3+ and Ce4+ ions on the surface is compensated by the formation of oxygen vacancies, which are essentially surface defects. Their number depends on the particle size, morphology and crystallinity of the material. These surface defects are catalytic centers that are capable of exhibiting the enzyme-like properties of nanoceria and effectively absorbing free radicals, which include reactive oxygen species.

Physicochemical properties of nanoparticles depend on the synthesis parameters. These include the nature and type of precursor, stabilizing agent and solvent, the duration and temperature of the reaction, and the pH of the reactive mixture. So, microgravity affects morphology, average particle size, crystallinity; an increase in the aging time leads to the synthesis of large particles and crystallites, increases the degree of crystallinity. The synthesis temperature affects the size and structure of crystallites, agglomeration, surface defects and oxidation state. Varying the synthesis parameters and their control during the reaction allows one to obtain particles with desired physicochemical properties. The main methods are analyzed in detail: deposition, hydrothermal, microemulsion, combustion, sol-gel and green.

It has been established that, due to its unique properties, nanosized cerium oxide has a wide range of applications. It is used as an abrasive powder for polishing glass and protecting it from corrosion; commercial sunscreens are produced on its basis, biosensors and solid oxide fuel cells are constructed, and catalysts are synthesized. Cerium oxide nanoparticles and materials based on it are widely used in environmental, industrial, bioanalytical and biomedical fields. Recently, the biomedical use of nanosized cerium oxide has been rapidly developing. The non-stoichiometric composition of cerium oxide nanoparticles allows it to effectively neutralize reactive oxygen species while protecting the body from oxidative stress. Nano-CeO2 is used in the treatment of inflammatory, cardiovascular and neurodegenerative diseases, it increases the activity of antimicrobials, is an agent for the delivery of therapeutic drugs to cancer cells.


Dahle J., Arai Y. Environmental geochemistry of cerium: applications and toxicology of cerium oxide nanoparticles. Int. J. Environ. Res. Public Health. 2015. 12(2): 1253.

Huang C.-H., Bian Z. Introduction in rare earth coordination chemistry: fundamentals and applications. In: Rare earth coordination chemistry, fundamentals and applications. (Wiley, Singapore, 2010).

Gangopadhyay S., Frolov D.D., Masunov A.E., Seal S. Structure and properties of cerium oxides in bulk and nanoparticulate forms. J. Alloys Compd. 2014. 584: 199.

Patnaik P. Handbook of inorganic chemicals. (NY, USA: McGraw-Hill Professional, 2003.

Chen B.-H., Inbaraj B.S. Various physicochemical and surface properties controlling the bioactivity of cerium oxide nanoparticles, Crit. Rev. Biotechnol. 2018. 38(7): 1003.

Korsvik C., Patil S., Seal S., Self W.T. Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chem Commun. 2007. 10:1056.

Shoko E., Smith M.F., McKenzie R.H. Charge distribution near bulk oxygen vacancies in cerium oxides. J. Phys. Condens. Matter. 2010. 22(22): 223201.

Deshpande S., Patil S., Kuchibhatla S.V., Seal S. Size dependency variation in lattice parameter and valency states in nanocrystalline cerium oxide. Appl. Phys. Lett. 2005. 87(13):133113.

Xu J., Harmer J., Li G., Chapman T., Collier P., Longworth S., Tsang S. C. Size dependent oxygen buffering capacity of ceria nanocrystals. ChemComm. 2010. 46(11): 1887.

Reed K., Cormack A., Kulkarni A., Mayton M., Sayle D., Klaessig F., Stadler B. Exploring the properties and applications of nanoceria: is there still plenty of room at the bottom? Environ. Sci.: Nano. 2015. 1(5): 390.

Ma Y., Gao W., Zhang Z., Zhang S., Tian Z., Liu Y., Ho J.C., Qu Y. Regulating the surface of nanoceria and its applications in heterogeneous catalysis. Surf. Sci. Rep. 2018. 73(1): 1.

Trovarelli A., Llorca, J. Ceria catalysts at nanoscale: how do crystal shapes shape catalysis? ACS Catalysis. 2017. 7(7): 4716.

Datta S., Torrente-Murciano L. Nanostructured faceted ceria as oxidation catalyst. Current Opinion in Chemical Engineering. 2018. 20: 99.

Aneggi E., Boaro M., Colussi S., de Leitenburg C., Trovarelli A. Ceria-based materials in catalysis. Handbook on the Physics and Chemistry of Rare Earths. 2016. 50: 209.

Li Y., Shen W. Morphology-dependent nanocatalysts: Rod-shaped oxides. Chem. Soc. Rev. 2014. 43(5): 1543.

Jeyaranjan A., Sakthivel T.S., Molinari M., Sayle D.C., Seal S. Morphology and crystal planes effects on supercapacitance of CeO2 nanostructures: electrochemical and molecular dynamics studies. Part. Part. Syst. Charact. 2018. 35(10): 1800176.

Zhang M., Zhao L., Du F., Wu Y., Cai1 R., Xu L., Jin H., Zou S., Gong A., Du1 F. Facile synthesis of cerium-doped carbon quantum dots as a highly efficient antioxidant for free radical scavenging. Nanotechnology. 2019. 30(32): 325101.

Circu M.L., Aw T.Y. Reactive oxygen species, cellular redox systems, and apoptosis. Free Radical Biology and Medicine. 2010. 48(6): 749.

Forrester S.J., Kikuchi D.S., Hernandes M.S., Xu Q., Griendling K.K. Reactive oxygen species in metabolic and inflammatory signaling. Circulation Research. 2018. 122(6): 877.

Ighodaro O.M., Akinloye O.A. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria Journal of Medicine. 2018. 54: 287.

Glorieux C., Calderon P.B. Catalase, a remarkable enzyme: targeting the oldest antioxidant enzyme to find a new cancer treatment approach. Biological Chemistry. 2017. 398(10): 1095.

Turkan I. ROS and RNS: key signalling molecules in plants. J Exp Bot. 2018. 69(14): 3313.

Walkey C., Das S., Seal S., Erlichman J., Heckman K., Ghibelli L., Traversae E., McGinnisf J.F., Self W.T. Catalytic properties and biomedical applications of cerium oxide nanoparticles. Environ Sci Nano. 2015. 2(1): 33.

Wang G., Zhang J., He X., Zhang Z., Zhao Y. Ceria nanoparticles as enzyme mimetics. Chin. J. Chem. Phys. 2017. 35(6): 791.

Nicolini V., Gambuzzi E., Malavasi G., Menabue L., Menziani M.C., Lusvardi G., Pedone A., Benedetti F., Luches P., D'Addato S., Valeri S. Evidence of catalase mimetic activity in Ce3+/Ce4+ doped bioactive glasses. J Phys Chem B. 2015. 119(10): 4009.

Singh S. Cerium oxide based nanozymes: Redox phenomenon at biointerfaces. Biointerphases. 2016. 11(4): 4009.

Celardo I., Pedersen J.Z., Traversa E., Ghibelli L. Pharmacological potential of cerium oxide nanoparticles. Nanoscale. 2011. 3(4): 1411.

Pirmohamed T., Dowding J.M., Singh S., Wasserman B., Heckert E., Karakoti A.S., King J.E., Seal S., Self W.T. Nanoceria exhibit redox state-dependent catalase mimetic activity. Chem Commun, 2010. 46(16): 2736.

Heckert E.G., Karakoti A.S., Seal S., Self W.T. The role of cerium redox state in the SOD mimetic activity of nanoceria. Biomaterials. 2008. 29(18): 2705-2709.

Reed K., Bush N., Burns Z., Doherty G., Foley T., Milone M., L Maki K., Cromer M. Modeling the kinetic behavior of reactive oxygen species with cerium dioxide nanoparticles. Biomolecules. 2019. 9(9): 447.

Baldim V., Bedioui F., Mignet N., Margaill I., Berret J.-F. The enzyme-like catalytic activity of cerium oxide nanoparticles and its dependency on Ce3+ surface area concentration. Nanoscale. 2018. 10(15): 6971.

Li J., Zhang Z., Tian Z., Zhou X., Zheng Z., Ma Y., Qu Y. Low pressure induced porous nanorods of ceria with high reducibility and large oxygen storage capacity: synthesis and catalytic applications. J. Mater. Chem. A. 2014. 2(39): 16459.

Liu I.T., Hon M.H., Teoh L.G. Structure and optical properties of CeO2 nanoparticles synthesized by precipitation. J. Electron. Mater. 2013. 42: 2536.

Calvache-Munoz J., Prado F.A., Rodriguez-Paez J.E. Cerium oxide nanoparticles: Synthesis, characterization and tentative mechanism of particle formation. Colloids Surf. A. 2017. 529: 146.

Tiseanu C., Parvulescu V.I., Boutonnet M., Cojocaru B., Primus P.A., Teodorescu C.M. Surface versus volume effects in luminescent ceria nanocrystals synthesized by an oil-in-water microemulsion method. Phys Chem Chem Phys. 2011. 13(38): 17135-45.

Ravishankar T.N., Ramakrishnappa T., Nagaraju G., Rajanaika H. Synthesis and characterization of CeO2 nanoparticles via solution combustion method for photocatalytic and antibacterial activity studies. ChemistryOpen. 2015. 4(2): 146.

Ansaria A.A., Solanki P.R., Malhotra B.D. Sol-gel derived nanostructured cerium oxide film for glucose sensor. Appl. Phys. Lett. 2008. 92(26): 263901.

Sangsefidi F.S., Salavati-Niasari M., Khojasteh H., Shabani-Nooshabadi M. Synthesis, characterization and investigation of the electrochemical hydrogen storage properties of CuO-CeO2 nanocomposites synthesized by green method. Int. J. Hydrog. Energy. 2017. 42(21): 14608.

Thanh N.T.K., Maclean N., Mahiddine S. Mechanisms of nucleation and growth of nanoparticles in solution. Chem. Rev. 2014. 114: 7610.

Sun C., Li H., Chen L. Nanostructured ceria-based materials: synthesis, properties, and applications. Energy Environ. Sci. 2012. 5(9): 8475.

Thakur N., Manna P., Das J. Synthesis and biomedical applications of nanoceria, a redox active nanoparticle. J Nanobiotechnol. 2019. 17: 1.

Wu Q., Zhang F., Xiao P., Tao H., Wang X., Hu Z., Lu Y. Great influence of anions for controllable synthesis of CeO2 nanostructures: from nanorods to nanocubes. J. Phys. Chem. C. 2008. 112(44): 17076.

Tok A.I.Y., Boey F.Y.C., Dong Z., Sun X.L. Hydrothermal synthesis of CeO2 nanoparticles. J. Mater. Process Tech. 2007. 190: 217.

Xue Y., Zhai Y., Zhou, K., Wang, L., Tan, H., Luan, Q., Yao, X. The vital role of buffer anions in the antioxidant activity of CeO2 nanoparticles. Chemistry - A European Journal. 2012. 18(35):11115.

Singh, S., Dosani T., Karakoti A.S., Kumar A., Seal S., Self W.T. A phosphate-dependent shift in redox state of cerium oxide nanoparticles and its effects on catalytic properties. Biomaterials. 2011. 32(28): 6745.

Kuchma M.H., Komanski C.B., Colon J., Teblum A., Masunov A.E., Alvarado B., Baker C.H. Phosphate ester hydrolysis of biologically relevant molecules by cerium oxide nanoparticles. Nanomedicine. 2010. 6(6): 738.

Romer I., Briffa S.M., Rojas aA., Dasilva Y., Hapiuk D., Trouillet V., Palmer R.E., Valsami-Jones E. Impact of particle size, oxidation state and capping agent of different cerium dioxide nanoparticles on the phosphate-induced transformations at different pH and concentration. Plos One. 2019. 14(6): e0217483.

Singh R., Singh S. Role of phosphate on stability and catalase mimetic activity of cerium oxide nanoparticles. Colloids Surf. B. 2015. 132: 78.

Soykal I., Sohn H., Bayram B., Gawade P., Snyder M., Levine S., Oz H., Ozkan U. Effect of microgravity on synthesis of nano ceria. Catalysts. 2015. 5(3): 1306.

Jalilpour M. Effect of aging time and calcination temperature on the cerium oxide nanoparticles synthesis via reverse co-precipitation method. Int. J. Phys. Sci. 2012. 7(6): 944.

Karakoti A.S., Munusamy P., Hostetler K., Kodali V., Kuchibhatla S., Orr G., Baer D.R. Preparation and characterization challenges to understanding environmental and biological impacts of ceria nanoparticles. Surf. Interface Anal. 2012. 44(8): 882.

Ramachandran M., Subadevi R., Sivakumar M. Role of pH on synthesis and characterization of cerium oxide (CeO2) nano particles by modified co-precipitation method. Vacuum. 2019. 161: 220.

Filippi A., Liu F., Wilson J., Lelieveld S., Korschelt K., Wang T., Wang Y., Reich T., Poschl U., Tremel W., Tong H. Antioxidant activity of cerium dioxide nanoparticles and nanorods in scavenging hydroxyl radicals. RSC Adv. 2019. 9: 11077.

Kitsou I., Roussi E., Tsetsekou A. Synthesis of aqueous nanodispersed nanocrysralline ceria suspensions by a novel organic/inorganic precipitation method. Ceram. Internat. 2017. 43(4): 3861.

Pujar M.S., Hunagund S.M., Desai V.R., Patil S., Sidarai A.H. One-step synthesis and characterizations of cerium oxide nanoparticles in an ambient temperature via Co-precipitation method In: AIP Conference Proceedings (2018). P. 1942(1):050026.

Chang H.-Y., Chen H.-I. Morphological evolution for CeO2 nanoparticles synthesized by precipitation technique. J. Cryst. Growth. 2005. 283(3-4): 457-468.

Zhang Q.L., Yang Z.M., Ding B.J. Synthesis of cerium oxide nanoparticles by the precipitation method. Mater Sci Forum. 2009. 610-613(3):233.

Gupta A., Das S., Neal C. J., Seal S. Controlling the surface chemistry of cerium oxide nanoparticles for biological applications. J. Mater. Chem. B. 2016. 4(19): 3195.

Zhang D., Du X., Shi L., Gao R. Shape-controlled synthesis and catalytic application of ceria nanomaterials. Dalton Transactions. 2012. 41(48): 14455.

Sakthivel T.S., Reid D.L., Bhatta U.M., Mobus G., Sayle D.C., Seal S. Engineering of nanoscale defect patterns in CeO2 nanorods via ex situ and in situ annealing. Nanoscale. 2015. 7(12): 5169.

Huang P.X., Wu F., Zhu B.L., Gao X.P., Zhu H.Y., Yan T.Y., Huang W.P., Wu S.H., Song D.Y. CeO2 Nanorods and gold nanocrystals supported on CeO2 nanorods as catalyst. The Phys. Chem. B. 2005. 109(41): 19169.

Fu X.Q., Wang C., Yu H.C., Wang Y.G., Wang T.H. Fast humidity sensors based on CeO2 nanowires. Nanotechnology. 2007. 18(14) 145503.

Ji Z., Wang X., Zhang H., Lin S., Meng H., Sun B., Zink, J.I. Designed synthesis of CeO2 nanorods and nanowires for studying toxicological effects of high aspect ratio nanomaterials. ACS Nano. 2012. 6(6): 5366.

Tang C.C., Bando Y., Liu B.D., Golberg D. Cerium oxide nanotubes prepared from cerium hydroxide nanotubes. Advanced Materials. 2005. 17(24): 3005-3009.

Han W.-Q., Wu L., Zhu Y. Formation and oxidation state of CeO2-x nanotubes. J AM CHEM SOC. 2005. 127(37): 12814.

Lin Y., Wu Z., Wen J., Poeppelmeier K.R., Marks L.D. Imaging the atomic surface structures of CeO2 nanoparticles. Nano Letters. 2013. 14(1): 191.

Lakshmi R.V., Pal K., Mandal T.K., Aruna S.T. Multifunctional properties of ceria nanocubes synthesized by a hydrothermal method. Bull. Mater. Sci. 2019. 42(5): 210.

Zhang H., Yang B., Li H., Wu C., Wang W., Zhang B., Zhang C. Controllable synthesis and growth mechanism of ceria nanocubes by template-free hydrothermal method. Cryst Res Tech. 2017. 53(1): 1700233.

Zheng K., Boccaccini A.R. Sol-gel processing of bioactive glass nanoparticles: a review. Adv. Colloid Interface Sci. 2017. 249: 363.

Rao B.G., Mukherjee D., Reddy B.M. Novel approaches for preparation of nanoparticles. (New York: Elsevier Inc. 2017).

Darroudi M., Hakimi M., Sarani M., Kazemi Oskuee R., Khorsand Zak A., Gholami L. Facile synthesis, characterization, and evaluation of neurotoxicity effect of cerium oxide nanoparticles. Ceram. Int. 2013. 39(6): 6917.

Richard B., Lemyre J.-L., Ritcey A.M. Nanoparticle size control in microemulsion synthesis. Langmuir. 2017. 33(19): 4748.

Malik M.A., Wani M.Y., Hashim M.A. Microemulsion method: a novel route to synthesize organic and inorganic nanomaterials 1st nano update. Arab J Chem. 2012. 5(4):397-417.

Shlapa Y., Sarnatskaya V., Timashkov I., Yushko L., Antal I., Gerashchenko B., Nychyporenko I., Belous A., Nikolaev V., Timko M. Synthesis of CeO2 nanoparticles by precipitation in reversal microemulsions and their physical-chemical and biological properties. Appl. Phys. A. 2019. 125: 412.

Annu Ali A., Gadkari R., Sheikh J.N., Ahmed S. Phytomediated synthesis of cerium oxide nanoparticles and their applications. (Nanomaterials and plant potential, 2019).

Charbgoo F., Ahmad M.B., Darroudi M. Cerium oxide nanoparticles: Green synthesis and biological applications. Int. J. Nanomed. 2017. 12: 1401.

Singh A., Hussain I., Singh N.B., Singh H. Uptake, translocation and impact of green synthesized nanoceria on growth and antioxidant enzymes activity of Solanum lycopersicum L. Ecotox Environ Safe. 2019. 182: 109410.

Arumugam A., Karthikeyan C., Haja Hameed A.S., Gopinath K., Gowri S., Karthika V. Synthesis of cerium oxide nanoparticles using Gloriosa superba L. leaf extract and their structural, optical and antibacterial properties. Mater. Sci. Eng. C. 2015. 49: 408-415.

Kannan S.K., Sundrarajan M. A green approach for the synthesis of a cerium oxide nanoparticle: characterization and antibacterial activity. Int. J. Nanosci. 2014. 13(3): 1450018.

Dutta D., Mukherjee R., Patra M., Banik M., Dasgupta R., Mukherjee M., Basu T. Green synthesized cerium oxide nanoparticle: A prospective drug against oxidative harm. Colloids Surf B. 2016. 147: 45.

Maqbool Q., Nazar M., Naz S., Hussain T., Jabeen N., Kausar R., Jan T. Antimicrobial potential of green synthesized CeO2 nanoparticles from Olea europaea leaf extract. Int. J. Nanomed. 2016. 11: 5015.

Maensiri S., Labuayai S., Laokul P., Klinkaewnarong J., Swatsitang E. Structure and optical properties of CeO2 nanoparticles prepared by using lemongrass plant extract solution. Jpn. J. Appl. Phys. 2014. 53(6S): 06JG14.

Elahi B., Mirzaee M., Darroudi M., Sadri K., Oskuee R.K. Bio-based synthesis of nano-ceria and evaluation of its bio-distribution and biological properties. Colloids Surf B. 2019. 181:830.

Sreekanth T.V.M., Dillip G.R., Lee Y.R. Picrasma quassioides mediated cerium oxide nanostructures and their post-annealing treatment on the microstructural, morphological and enhanced catalytic performance. Ceram. Int. 2016. 42(6): 6610.

Surendra T.V., Roopan S.M. Photocatalytic and antibacterial properties of phytosynthesized CeO2 NPs using Moringa oleifera peel extract. J. Photochem. Photobiol B. 2016. 161: 122.

Khan S.A., Ahmad A. Fungus mediated synthesis of biomedically important cerium oxide nanoparticles. Mater. Res. Bull. 2013. 48(10) : 4134.

Munusamy S., Bhakyaraj K., Vijayalakshmi L., Stephen A., Narayanan V. Synthesis and characterization of cerium oxide nanoparticles using Curvularia lunata and their antibacterial properties. Int J Innov Res Sci Eng. 2014. 2(1): 318.

Gopinath K., Karthika V., Sundaravadivelan C., Gowri S., Arumugam A. Mycogenesis of cerium oxide nanoparticles using Aspergillus niger culture filtrate and their applications for antibacterial and larvicidal activities. J Nanostructure Chem. 2015. 5(3): 295.

Kumar K.M., Mahendhiran M., Diaz M.C., Hernandez-Como N., Hernandez-Eligio A., Torres-Torres G., Gomez L.M. Green synthesis of Ce3+ rich CeO2 nanoparticles and its antimicrobial studies. Materials Letters. 2018. 214: 15.

Fereydouni N., Sadeghnia H.R., Mobarhan M.G., Movaffagh J., Rahimi V.B., Hashemzadeh A., Mardani Z., Darroudi M. Nanoceria: Polyphenol-based green synthesis, mechanism of formation, and evaluation of their cytotoxicity on L929 and HFFF2 cells. J. Mol. Struct. 2019. 1186: 23.

Patil S.N., Paradeshi J.S., Chaudhari P.B., Mishra S.J., Chaudhari B.L. Bio-therapeutic potential and cytotoxicity assessment of pectin-mediated synthesized nanostructured cerium oxide. Appl Biochem Biotechnol. 2016. 180(4): 638.

Hasanzadeh L., Oskuee R.K., Sadri K., Nourmohammadi E., Mohajeri M., Mardani Z., Darroudi M. Green synthesis of labeled CeO2 nanoparticles with 99mTc and its biodistribution evaluation in mice. Life Sci. 2018. 212: 233.

Kargar H., Ghazavi H., Darroudi M. Size-controlled and bio-directed synthesis of ceria nanopowders and their in vitro cytotoxicity effects. Ceram. Intern. 2015. 41(3): 4123.

Darroudi M., Hoseini S.J., Kazemi Oskuee R., Hosseini H.A., Gholami L., Gerayli S. Food-directed synthesis of cerium oxide nanoparticles and their neurotoxicity effects. Ceram. Intern. 2014. 40(5): 7425.

Elahi B., Mirzaee M., Darroudi M., Oskuee R.K., Sadri K., Amiri M.S. Preparation of cerium oxide nanoparticles in Salvia macrosiphon boiss seeds extract and investigation of their photo-catalytic activities. Ceram. Intern. 2018. 45: 4790.

Kumar A., Das S., Munusamy P., Self W., Baer D., Sayle D., Seal S. Behavior of nanoceria in biologically-relevant environments. Environ Sci Nano. 2014. 1(6): 516.

Ravishankar T.N., Ramakrishnappa T., Nagaraju G., Rajanaika H. Synthesis and characterization of CeO2 nanoparticles via solution combustion method for photocatalytic and antibacterial activity studies. ChemistryOpen. 2015. 4(2): 146.

Nair R.R., Arulraj J., Sunaja Devi K.R. Ceria doped titania nano particles: Synthesis and photocatalytic activity. Materials Today: Proceedings. 2016. 3(6): 1643.

Akbari-Fakhrabadi A., Meruane V., Jamshidijam M., Gracia-Pinilla M.A., Mangalaraja R.V. Effect of rare earth dopant son structural and mechanical properties of nanoceria synthesized by combustion nmethod. Mater. Sci. Eng. A. 2016. 649: 168-173.

Wen W., Wu J.-M. Nanomaterials via solution combustion synthesis: a step nearer to controllability. RSC Adv. 2014. 4(101): 58090.

Fatouraie M., Eagle W.E., Li D., Morishita M., Barres J., Wagner J.G., Wooldridge M.S. Combustion synthesis of CeO2 nanoparticles for aging and inhalation exposure studies. Journal of Aerosol Science. 2017. 106: 24.

Bakkiyaraj R., Balakrishnan M. Physical, optical and photochemical properties of CeO2 nanoparticles synthesized by solution Ccombustion method. Journal of Advanced Physics. 2017. 6(1):41.

Patil S., Dasari H.P. Effect of fuel and solvent on soot oxidation activity of Ceria nanoparticles synthesized by solution combustion method. Mater Sci Ener Technol. 2019. 2(3): 485-489.

Janos P. Chemical mechanical glass polishing with cerium oxide: Effect of selected physico-chemical characteristics on polishing efficiency. Wear Volumes. 2016. 362:114.

Ivanov V.K., Shcherbakov A., Usatenko A. Structure-sensitive properties and biomedical applications of nanodispersed cerium dioxide. Russ. Chem. Rev. 2009. 78: 855.

Parwaiz S., Khan M.M., Pradhan D. CeO2-based nanocomposites: An advanced alternative to TiO2 and ZnO in sunscreens. Materials Express. 2019. 9(3): 85.

Charbgoo F., Ramezani M., Darroudi M. Bio-sensing applications of cerium oxide nanoparticles: Advantages and disadvantages. Biosensors and Bioelectronics. 2017. 96: 33.

Maca K., Trunec M., Cihlar J. Injection moulding and sintering of ceria ceramics. Ceram Internat. 2002. 28: 337-44.

Raza Naqvi S.T., Shirinfar B., Majeed S., Najam-ul-Haq M., Hussain D., Iqbal T., Ahmed N. Synthesis, designing and analytical applications of nanostructured ceria based materials. Analyst. 2018. 143: 5610.

Sung M.-C., Lee G.-H., Kim, D.-W. CeO2/Co(OH)2 hybrid electrocatalysts for efficient hydrogen and oxygen evolution reaction. Journal of Alloys and Compounds. 2019. 800: 450.

Ng J.W.D., García-Melchor M., Bajdich M., Chakthranont P., Kirk C., Vojvodic A., Jaramillo T.F. Gold-supported cerium-doped NiOx catalysts for water oxidation. Nature Energy. 2016. 1(5): 16053.

Xu L., Wang J. Magnetic nanoscaled Fe3O4/CeO2 composite as an efficient fenton-like heterogeneous catalyst for degradation of 4-chlorophenol. Environmental Science & Technology. 2012. 46(18): 10145.

Ghanbari F., Ahmadi M., Gohari F. Heterogeneous activation of peroxymonosulfate via nanocomposite CeO2-Fe3O4 for organic pollutants removal: The effect of UV and US irradiation and application for real wastewater. Separation and Purification Technology. 2019. 228: 115732.

Sultana S.S.P., Kishore D.H.V., Kuniyil M., Khan M., Alwarthan A., Prasad K.R.S., Labis J.P., Adil S.F. Ceria doped mixed metal oxide nanoparticles as oxidation catalysts: Synthesis and their characterization. Arabian Journal of Chemistry. 2015. 8(6): 766.

Hu J., Zou C., Su Y., Li M., Ye X., Cai B., Kong E.S.-W., Yang Z., Zhang Y. Light-assisted recovery for a highly-sensitive NO2 sensor based on RGO-CeO2 hybrids. Sensors and Actuators B: Chemical. 2018. 270: 119.

Motaung D.E., Mhlongo G.H., Makgwane P.R., Dhonge B.P., Cummings F.R., Swart H.C., Ray S.S. Ultra-high sensitive and selective H2 gas sensor manifested by interface of n-n heterostructure of CeO2-SnO2 nanoparticles. Sensors and Actuators B: Chemical. 254: 984.

Zhang L., Fang Q., Huang Y., Xu K., Chu P.K., Ma F. Oxygen vacancy enhanced gas-sensing performance of CeO2/Graphene heterostructure at room temperature. Analytical Chemistry. 90(16): 9821.

Subbiah D.K., Kulandaisamy A.J., George R.B., Shankar P., Mani G.K., Jayanth Babu K., Rayappan J.B.B. Nano ceria as xylene sensor - Role of cerium precursor. J. Alloys Compd. 753: 771.

Patil J.Y., Nadargi D.Y., Mulla I.S., Suryavanshi S. S. Cerium doped MgFe2O4 nanocomposites: highly sensitive and fast response-recoverable acetone gas sensor. Heliyon. 5(6):e01489.

Divya T., Nikhila M.P., Anju M., Arsha Kusumam T.V., Akhila A.K., Ravikiran, Y.T., Renuka N.K. Nanoceria based thin films as efficient humidity sensors. Sensors and Actuators A: Physical, 261: 85-93.

Maca K, Trunec M., Cihlar J. Injection moulding and sintering of ceria ceramics. Ceramics International. 28(3): 337.

Shin T.H., Ida S., Ishihara T. Doped CeO2-LaFeO3 composite oxide as an active anode for direct hydrocarbon-type solid oxide fuel cells. J. Am. Chem. Soc. 2011. 133(48): 19399.

Ujjain S.K., Das A., Srivastava G., Ahuja P., Roy M., Arya A, Bhargava K., Sethy N., Singh S.K., Sharma R.K., Das M. Nanoceria based electrochemical sensor for hydrogen peroxide detection. Biointerphases. 2014. 9(3): 031011.

Liu B., Sun Z., Huang P.-J.J., Liu J. Hydrogen peroxide displacing DNA from nanoceria: mechanism and detection of glucose in serum. J. Am. Chem. Soc. 2015. 137(3): 1290.

Zhai Y., Zhang Y., Qin F., Yao X. An electrochemical DNA biosensor for evaluating the effect of mix anion in cellular fluid on the antioxidant activity of CeO2 nanoparticles. Biosens Bioelectron. 2015. 70:130.

Xue Y., Zhai Y., Zhou K., Wang L., Tan H., Luan Q., Yao X. The vital role of buffer anions in the antioxidant activity of CeO2 nanoparticles. Chemistry. 2012. 18(35): 11115.

Singh M., Nesakumar N., Sethuraman S., Krishnan U.M., Rayappan J.B.B. Electrochemical biosensor with ceria-polyaniline core shell nano-interface for the detection of carbonic acid in blood. J. Colloid Interface Sci. 2014. 425: 52.

Fallatah A., Almomtan M., Padalkar S. Cerium oxide based glucose biosensors: influence of morphology and underlying substrate on biosensor performance. ACS Sustainable Chem En. 2019. 7(9): 8083.

Nayak P., Santhosh P.N., Ramaprabhu S. Cerium oxide nanoparticles decorated graphene nanosheets for selective detection of dopamine. J. Nanosci. 2015. 15(7): 4855.

Sunon P., Wongkaew P., Johns J., Johns N. Characterization of cerium oxide-chitosan nanocomposite-modified screen printed carbon electrode and application in melatonin determination. Inter J Geomate. 2018. 14(42): 151.

Benjamin S.R., Vilela R.S., Camargo H.S., Guedes M.I., Fernandes K.F., Colmati1 F. Enzymatic electrochemical biosensor based on multiwall carbon nanotubes and cerium dioxide nanoparticles for rutin detection. Int. J. Electrochem. Sci. 2018. 13: 563.

Yang Z.-H., Zhuo Y., Yuan R., Chai Y.-Q. An amplified electrochemical immunosensor based on in situ-produced 1-naphthol as electroactive substance and graphene oxide and Pt nanoparticles functionalized CeO2 nanocomposites as signal enhancer. Biosensors and Bioelectronics. 2015. 69: 321.

Andrei V., Sharpe E., Vasilescu A., Andreescu S. A single use electrochemical sensor based on biomimetic nanoceria for the detection of wine antioxidants. Talanta. 2016. 156: 112.

Bulbul G., Hayat A., Mustafa F., Andreescu S. DNA assay based on nanoceria as fluorescence quenchers (NanoCeracQ DNA assay). Nature Scientific Reports. 2018. 8:2426.

Burns A., Self W.T. Antioxidant inorganic nanoparticles and their potential applications in biomedicine. Smart Nanoparticles for Biomedicine. 2018. 143: 159.

Dhall A., Self W. Cerium oxide nanoparticles: a brief review of their synthesis methods and biomedical applications. Antioxidants. 2018. 7(8): 97.

Sundararajan V., Dan P., Kumar A., Venkatasubbu G.D., Ichihara S., Ichihara G., Sheik Mohideen S. Drosophila melanogaster as an in vivo model to study the potential toxicity of cerium oxide nanoparticles. Applied Surface Science. 2019. 490: 70.

Corsi F., Caputo F., Traversa E., Ghibelli L. Not only redox: the multifaceted activity of cerium oxide nanoparticles in cancer prevention and therapy. Frontiers in Oncology. 2018. 8: 1.

Wason M., Lu H., Yu L., Lahiri S., Mukherjee D., Shen C., Zhao J. Cerium oxide nanoparticles sensitize pancreatic cancer to radiation therapy through oxidative activation of the JNK apoptotic pathway. Cancers. 2018. 10(9): 303.

Rubio L., Marcos R., Hernandez A. Nanoceria acts as antioxidant in tumoral and transformed cells. Chem-Bio Interact. 2018. 291: 7.

Jansman M.M.T., Hosta-Rigau L. Cerium- and iron-oxide-based nanozymes in tissue engineering and regenerative medicine. Catalysts. 2019. 9(8): 691.

Marino A., Tonda-Turo C., De Pasquale D., Ruini F., Genchi G., Nitti S., Ciofani G. Gelatin/nanoceria nanocomposite fibers as antioxidant scaffolds for neuronal regeneration. BBA. 2017. 1861(2): 386.

Li J., Wen J., Li B., Li W., Qiao W., Shen J., Chu P.K. Valence state manipulation of cerium oxide nanoparticles on a titanium surface for modulating cell fate and bone formation. Advanced Science. 2017. 5(2): 678.

Wu H., Li F., Wang S., Lu J., Li J., Du Y., Ling D. Ceria nanocrystals decorated mesoporous silica nanoparticle based ROS-scavenging tissue adhesive for highly efficient regenerative wound healing. Biomaterials. 2018. 151: 66.

Rather H.A., Thakore R., Singh R., Jhala D., Singh S., Vasita R. Antioxidative study of Cerium Oxide nanoparticle functionalised PCL-Gelatin electrospun fibers for wound healing application. Bioactive Materials. 2018. 3(2): 201.

Pesaraklou A., Mahdavi-Shahri N., Hassanzadeh H., Ghasemi M., Kazemi M., Sanjar Mousavi N., Matin M.M. Use of cerium oxide nanoparticles: a good candidate to improve skin tissue engineering. Biomedical Materials. 2019. 14(3): 035008.

Rai N., Raj R., Kanagaraj S. Radical scavenging of nanoceria in minimizing the oxidative stress induced loss of residual hearing: A Review. J Indian Inst Sci. 2019. 17(1): 1.

Tisi A., Passacantando M., Lozzi L., Riccitelli S., Bisti S., Maccarone R. Retinal long term neuroprotection by Cerium Oxide nanoparticles after an acute damage induced by high intensity light exposure. Experimental Eye Research. 2019. 182: 30.

Kumari P., Saifi M.A., Khurana A., Godugu C. Cardioprotective effects of nanoceria in a murine model of cardiac remodeling. J Trace Elem Med Bio. 2018. 50: 198.

Del Turco S., Ciofani G., Cappello V., Parlanti P., Gemmi M., Caselli C., Mattoli V. Effects of cerium oxide nanoparticles on hemostasis: coagulation, platelets and vascular endothelial cells. J Biomed Mater Res A. 2019. 107(7):1551.

Naz S., Beach J., Heckert B., Tummala T., Pashchenko O., Banerjee T., Santra S. Cerium oxide nanoparticles: a "radical" approach to neurodegenerative disease treatment. Nanomedicine. 2017. 12(5): 545-553.

Battaglini M., Tapeinos C., Cavaliere I., Marino A., Ancona A., Garino N., Ciofani G. (2019). Design, fabrication, and in vitro evaluation of nanoceria-loaded nanostructured lipid carriers for the treatment of neurological diseases. ACS Biomater. Sci. Eng. 2019. 5(2): 670.

Zeng F., Wu Y., Li X., Ge X., Guo Q., Lou X., Li C. Custom-made ceria nanoparticles show a neuroprotective effect by modulating phenotypic polarization of the microglia. Angewandte Chemie International Edition. 2018. 57(20): 5808.

Kondiah P.P.D., Choonara Y.E., Kondiah P.J., Marimuthu T., Kumar P., du Toit L.C., Pillay V. Nanocomposites for therapeutic application in multiple sclerosis. In: Applications of Nanocomposite Materials in Drug Delivery. (2018).

Zhou D., Fang T., Lu L., Yi L. Neuroprotective potential of cerium oxide nanoparticles for focal cerebral ischemic stroke. J Huazhong U Sci-Med. 2016. 36(4): 480.

Kwon H.J., Kim D., Seo K., Kim Y.G., Han S.I., Kang T., Hyeon T. Ceria nanoparticle systems for selective scavenging of mitochondrial, intracellular, and extracellular reactive oxygen species in Parkinson's disease. Angewandte Chemie International Edition. 2018. 57(30): 9408.

Kwon H.J., Cha M.-Y., Kim D., Kim D.K., Soh M., Shin K., Mook-Jung I. Mitochondria-targeting ceria nanoparticles as antioxidants for Alzheimer's disease. ACS Nano. 2016. 10(2): 2860.

Bellio P., Luzi C., Mancini A., Cracchiolo S., Passacantando M., Di Pietro L., Celenza G. Cerium oxide nanoparticles as potential antibiotic adjuvant. Effects of CeO2 nanoparticles on bacterial outer membrane permeability. Biochim Biophys Acta Biomembr. 2018. 1860(11):2428.

Rice K.M., Bandarupalli V.V.K., Manne N.D.P.K., Blough E.R. Spleen data: Cerium oxide nanoparticles attenuate polymicrobial sepsis induced spenic damage in male Sprague Dawley rats. Data in Brief. 2018. 18: 740.

Gao R., Mitra R.N., Zheng M., Wang K., Dahringer J.C., Han Z. Developing nanoceria-based pH-dependent cancer-directed drug delivery system for retinoblastoma. Advanced Functional Materials. 2018. 180: 248.

Singh R.K., Patel K.D., Mahapatra C., Parthiban S.P., Kim T.-H., Kim H.-W. Combinatory cancer therapeutics with nanoceria-capped mesoporous silica nanocarriers through pH-triggered drug release and redox activity. ACS Appl Mater Interfaces. 2019. 11(1):288-299.

How to Cite
GrinkoА. M., BrichkaА. V., BakalinskaО. М., & КаrtelМ. Т. (2019). Properties, preparation methods and use of cerium nanooxide. Surface, (11(26), 436-471.
Nanomaterials and nanotechnologies