Properties, preparation methods and use of cerium nanooxide

  • А. M. Grinko National University of "Kyiv-Mohyla Academy" / Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine https://orcid.org/0000-0002-7033-3375
  • А. V. Brichka Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine
  • О. М. Bakalinska Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine
  • М. Т. Каrtel Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine
Keywords: nanoscale cerium oxide, reactive oxygen species, enzyme mimetic activity, surface defects

Abstract

The prevalence of Cerium compounds, economic affordability, and unique redox properties determine the wide range of cerium oxide applications. The transition to nanosized particles of cerium oxide allows these materials to reversibly absorb and release oxygen, which determined the use of nano-CeO2 in biomedical technologies in the treatment of diseases associated with lesions due to oxidative stress.

The review analyzed the state of modern scientific literature regarding the properties, methods for producing and using cerium nanooxide. The main characteristics of cerium oxide and the features of its structure are described, the mechanisms of action of the enzyme-like properties of nanoceria are given. It was shown that the coexistence of Ce3+ and Ce4+ ions on the surface is compensated by the formation of oxygen vacancies, which are essentially surface defects. Their number depends on the particle size, morphology and crystallinity of the material. These surface defects are catalytic centers that are capable of exhibiting the enzyme-like properties of nanoceria and effectively absorbing free radicals, which include reactive oxygen species.

Physicochemical properties of nanoparticles depend on the synthesis parameters. These include the nature and type of precursor, stabilizing agent and solvent, the duration and temperature of the reaction, and the pH of the reactive mixture. So, microgravity affects morphology, average particle size, crystallinity; an increase in the aging time leads to the synthesis of large particles and crystallites, increases the degree of crystallinity. The synthesis temperature affects the size and structure of crystallites, agglomeration, surface defects and oxidation state. Varying the synthesis parameters and their control during the reaction allows one to obtain particles with desired physicochemical properties. The main methods are analyzed in detail: deposition, hydrothermal, microemulsion, combustion, sol-gel and green.

It has been established that, due to its unique properties, nanosized cerium oxide has a wide range of applications. It is used as an abrasive powder for polishing glass and protecting it from corrosion; commercial sunscreens are produced on its basis, biosensors and solid oxide fuel cells are constructed, and catalysts are synthesized. Cerium oxide nanoparticles and materials based on it are widely used in environmental, industrial, bioanalytical and biomedical fields. Recently, the biomedical use of nanosized cerium oxide has been rapidly developing. The non-stoichiometric composition of cerium oxide nanoparticles allows it to effectively neutralize reactive oxygen species while protecting the body from oxidative stress. Nano-CeO2 is used in the treatment of inflammatory, cardiovascular and neurodegenerative diseases, it increases the activity of antimicrobials, is an agent for the delivery of therapeutic drugs to cancer cells.

References

Dahle J., Arai Y. Environmental geochemistry of cerium: applications and toxicology of cerium oxide nanoparticles. Int. J. Environ. Res. Public Health. 2015. 12(2): 1253. https://doi.org/10.3390/ijerph120201253

Huang C.-H., Bian Z. Introduction in rare earth coordination chemistry: fundamentals and applications. In: Rare earth coordination chemistry, fundamentals and applications. (Wiley, Singapore, 2010). https://doi.org/10.1002/9780470824870

Gangopadhyay S., Frolov D.D., Masunov A.E., Seal S. Structure and properties of cerium oxides in bulk and nanoparticulate forms. J. Alloys Compd. 2014. 584: 199. https://doi.org/10.1016/j.jallcom.2013.09.013

Patnaik P. Handbook of inorganic chemicals. (NY, USA: McGraw-Hill Professional, 2003.

Chen B.-H., Inbaraj B.S. Various physicochemical and surface properties controlling the bioactivity of cerium oxide nanoparticles, Crit. Rev. Biotechnol. 2018. 38(7): 1003. https://doi.org/10.1080/07388551.2018.1426555

Korsvik C., Patil S., Seal S., Self W.T. Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chem Commun. 2007. 10:1056. https://doi.org/10.1039/b615134e

Shoko E., Smith M.F., McKenzie R.H. Charge distribution near bulk oxygen vacancies in cerium oxides. J. Phys. Condens. Matter. 2010. 22(22): 223201. https://doi.org/10.1088/0953-8984/22/22/223201

Deshpande S., Patil S., Kuchibhatla S.V., Seal S. Size dependency variation in lattice parameter and valency states in nanocrystalline cerium oxide. Appl. Phys. Lett. 2005. 87(13):133113. https://doi.org/10.1063/1.2061873

Xu J., Harmer J., Li G., Chapman T., Collier P., Longworth S., Tsang S. C. Size dependent oxygen buffering capacity of ceria nanocrystals. ChemComm. 2010. 46(11): 1887. https://doi.org/10.1039/b923780a

Reed K., Cormack A., Kulkarni A., Mayton M., Sayle D., Klaessig F., Stadler B. Exploring the properties and applications of nanoceria: is there still plenty of room at the bottom? Environ. Sci.: Nano. 2015. 1(5): 390. https://doi.org/10.1039/C4EN00079J

Ma Y., Gao W., Zhang Z., Zhang S., Tian Z., Liu Y., Ho J.C., Qu Y. Regulating the surface of nanoceria and its applications in heterogeneous catalysis. Surf. Sci. Rep. 2018. 73(1): 1. https://doi.org/10.1016/j.surfrep.2018.02.001

Trovarelli A., Llorca, J. Ceria catalysts at nanoscale: how do crystal shapes shape catalysis? ACS Catalysis. 2017. 7(7): 4716. https://doi.org/10.1021/acscatal.7b01246

Datta S., Torrente-Murciano L. Nanostructured faceted ceria as oxidation catalyst. Current Opinion in Chemical Engineering. 2018. 20: 99. https://doi.org/10.1016/j.coche.2018.03.009

Aneggi E., Boaro M., Colussi S., de Leitenburg C., Trovarelli A. Ceria-based materials in catalysis. Handbook on the Physics and Chemistry of Rare Earths. 2016. 50: 209. https://doi.org/10.1016/bs.hpcre.2016.05.002

Li Y., Shen W. Morphology-dependent nanocatalysts: Rod-shaped oxides. Chem. Soc. Rev. 2014. 43(5): 1543. https://doi.org/10.1039/C3CS60296F

Jeyaranjan A., Sakthivel T.S., Molinari M., Sayle D.C., Seal S. Morphology and crystal planes effects on supercapacitance of CeO2 nanostructures: electrochemical and molecular dynamics studies. Part. Part. Syst. Charact. 2018. 35(10): 1800176. https://doi.org/10.1002/ppsc.201800176

Zhang M., Zhao L., Du F., Wu Y., Cai1 R., Xu L., Jin H., Zou S., Gong A., Du1 F. Facile synthesis of cerium-doped carbon quantum dots as a highly efficient antioxidant for free radical scavenging. Nanotechnology. 2019. 30(32): 325101. https://doi.org/10.1088/1361-6528/ab12ef

Circu M.L., Aw T.Y. Reactive oxygen species, cellular redox systems, and apoptosis. Free Radical Biology and Medicine. 2010. 48(6): 749. https://doi.org/10.1016/j.freeradbiomed.2009.12.022

Forrester S.J., Kikuchi D.S., Hernandes M.S., Xu Q., Griendling K.K. Reactive oxygen species in metabolic and inflammatory signaling. Circulation Research. 2018. 122(6): 877. https://doi.org/10.1161/CIRCRESAHA.117.311401

Ighodaro O.M., Akinloye O.A. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria Journal of Medicine. 2018. 54: 287. https://doi.org/10.1016/j.ajme.2017.09.001

Glorieux C., Calderon P.B. Catalase, a remarkable enzyme: targeting the oldest antioxidant enzyme to find a new cancer treatment approach. Biological Chemistry. 2017. 398(10): 1095. https://doi.org/10.1515/hsz-2017-0131

Turkan I. ROS and RNS: key signalling molecules in plants. J Exp Bot. 2018. 69(14): 3313. https://doi.org/10.1093/jxb/ery198

Walkey C., Das S., Seal S., Erlichman J., Heckman K., Ghibelli L., Traversae E., McGinnisf J.F., Self W.T. Catalytic properties and biomedical applications of cerium oxide nanoparticles. Environ Sci Nano. 2015. 2(1): 33. https://doi.org/10.1039/C4EN00138A

Wang G., Zhang J., He X., Zhang Z., Zhao Y. Ceria nanoparticles as enzyme mimetics. Chin. J. Chem. Phys. 2017. 35(6): 791. https://doi.org/10.1002/cjoc.201600845

Nicolini V., Gambuzzi E., Malavasi G., Menabue L., Menziani M.C., Lusvardi G., Pedone A., Benedetti F., Luches P., D'Addato S., Valeri S. Evidence of catalase mimetic activity in Ce3+/Ce4+ doped bioactive glasses. J Phys Chem B. 2015. 119(10): 4009. https://doi.org/10.1021/jp511737b

Singh S. Cerium oxide based nanozymes: Redox phenomenon at biointerfaces. Biointerphases. 2016. 11(4): 4009. https://doi.org/10.1116/1.4966535

Celardo I., Pedersen J.Z., Traversa E., Ghibelli L. Pharmacological potential of cerium oxide nanoparticles. Nanoscale. 2011. 3(4): 1411. https://doi.org/10.1039/c0nr00875c

Pirmohamed T., Dowding J.M., Singh S., Wasserman B., Heckert E., Karakoti A.S., King J.E., Seal S., Self W.T. Nanoceria exhibit redox state-dependent catalase mimetic activity. Chem Commun, 2010. 46(16): 2736. https://doi.org/10.1039/b922024k

Heckert E.G., Karakoti A.S., Seal S., Self W.T. The role of cerium redox state in the SOD mimetic activity of nanoceria. Biomaterials. 2008. 29(18): 2705-2709. https://doi.org/10.1016/j.biomaterials.2008.03.014

Reed K., Bush N., Burns Z., Doherty G., Foley T., Milone M., L Maki K., Cromer M. Modeling the kinetic behavior of reactive oxygen species with cerium dioxide nanoparticles. Biomolecules. 2019. 9(9): 447. https://doi.org/10.3390/biom9090447

Baldim V., Bedioui F., Mignet N., Margaill I., Berret J.-F. The enzyme-like catalytic activity of cerium oxide nanoparticles and its dependency on Ce3+ surface area concentration. Nanoscale. 2018. 10(15): 6971. https://doi.org/10.1039/C8NR00325D

Li J., Zhang Z., Tian Z., Zhou X., Zheng Z., Ma Y., Qu Y. Low pressure induced porous nanorods of ceria with high reducibility and large oxygen storage capacity: synthesis and catalytic applications. J. Mater. Chem. A. 2014. 2(39): 16459. https://doi.org/10.1039/C4TA03718A

Liu I.T., Hon M.H., Teoh L.G. Structure and optical properties of CeO2 nanoparticles synthesized by precipitation. J. Electron. Mater. 2013. 42: 2536. https://doi.org/10.1007/s11664-013-2617-9

Calvache-Munoz J., Prado F.A., Rodriguez-Paez J.E. Cerium oxide nanoparticles: Synthesis, characterization and tentative mechanism of particle formation. Colloids Surf. A. 2017. 529: 146. https://doi.org/10.1016/j.colsurfa.2017.05.059

Tiseanu C., Parvulescu V.I., Boutonnet M., Cojocaru B., Primus P.A., Teodorescu C.M. Surface versus volume effects in luminescent ceria nanocrystals synthesized by an oil-in-water microemulsion method. Phys Chem Chem Phys. 2011. 13(38): 17135-45. https://doi.org/10.1039/c1cp21135h

Ravishankar T.N., Ramakrishnappa T., Nagaraju G., Rajanaika H. Synthesis and characterization of CeO2 nanoparticles via solution combustion method for photocatalytic and antibacterial activity studies. ChemistryOpen. 2015. 4(2): 146. https://doi.org/10.1002/open.201402046

Ansaria A.A., Solanki P.R., Malhotra B.D. Sol-gel derived nanostructured cerium oxide film for glucose sensor. Appl. Phys. Lett. 2008. 92(26): 263901. https://doi.org/10.1063/1.2953686

Sangsefidi F.S., Salavati-Niasari M., Khojasteh H., Shabani-Nooshabadi M. Synthesis, characterization and investigation of the electrochemical hydrogen storage properties of CuO-CeO2 nanocomposites synthesized by green method. Int. J. Hydrog. Energy. 2017. 42(21): 14608. https://doi.org/10.1016/j.ijhydene.2017.04.103

Thanh N.T.K., Maclean N., Mahiddine S. Mechanisms of nucleation and growth of nanoparticles in solution. Chem. Rev. 2014. 114: 7610. https://doi.org/10.1021/cr400544s

Sun C., Li H., Chen L. Nanostructured ceria-based materials: synthesis, properties, and applications. Energy Environ. Sci. 2012. 5(9): 8475. https://doi.org/10.1039/c2ee22310d

Thakur N., Manna P., Das J. Synthesis and biomedical applications of nanoceria, a redox active nanoparticle. J Nanobiotechnol. 2019. 17: 1. https://doi.org/10.1186/s12951-019-0516-9

Wu Q., Zhang F., Xiao P., Tao H., Wang X., Hu Z., Lu Y. Great influence of anions for controllable synthesis of CeO2 nanostructures: from nanorods to nanocubes. J. Phys. Chem. C. 2008. 112(44): 17076. https://doi.org/10.1021/jp804140e

Tok A.I.Y., Boey F.Y.C., Dong Z., Sun X.L. Hydrothermal synthesis of CeO2 nanoparticles. J. Mater. Process Tech. 2007. 190: 217. https://doi.org/10.1016/j.jmatprotec.2007.02.042

Xue Y., Zhai Y., Zhou, K., Wang, L., Tan, H., Luan, Q., Yao, X. The vital role of buffer anions in the antioxidant activity of CeO2 nanoparticles. Chemistry - A European Journal. 2012. 18(35):11115. https://doi.org/10.1002/chem.201200983

Singh, S., Dosani T., Karakoti A.S., Kumar A., Seal S., Self W.T. A phosphate-dependent shift in redox state of cerium oxide nanoparticles and its effects on catalytic properties. Biomaterials. 2011. 32(28): 6745. https://doi.org/10.1016/j.biomaterials.2011.05.073

Kuchma M.H., Komanski C.B., Colon J., Teblum A., Masunov A.E., Alvarado B., Baker C.H. Phosphate ester hydrolysis of biologically relevant molecules by cerium oxide nanoparticles. Nanomedicine. 2010. 6(6): 738. https://doi.org/10.1016/j.nano.2010.05.004

Romer I., Briffa S.M., Rojas aA., Dasilva Y., Hapiuk D., Trouillet V., Palmer R.E., Valsami-Jones E. Impact of particle size, oxidation state and capping agent of different cerium dioxide nanoparticles on the phosphate-induced transformations at different pH and concentration. Plos One. 2019. 14(6): e0217483. https://doi.org/10.1371/journal.pone.0217483

Singh R., Singh S. Role of phosphate on stability and catalase mimetic activity of cerium oxide nanoparticles. Colloids Surf. B. 2015. 132: 78. https://doi.org/10.1016/j.colsurfb.2015.05.005

Soykal I., Sohn H., Bayram B., Gawade P., Snyder M., Levine S., Oz H., Ozkan U. Effect of microgravity on synthesis of nano ceria. Catalysts. 2015. 5(3): 1306. https://doi.org/10.3390/catal5031306

Jalilpour M. Effect of aging time and calcination temperature on the cerium oxide nanoparticles synthesis via reverse co-precipitation method. Int. J. Phys. Sci. 2012. 7(6): 944. https://doi.org/10.5897/IJPS11.131

Karakoti A.S., Munusamy P., Hostetler K., Kodali V., Kuchibhatla S., Orr G., Baer D.R. Preparation and characterization challenges to understanding environmental and biological impacts of ceria nanoparticles. Surf. Interface Anal. 2012. 44(8): 882. https://doi.org/10.1002/sia.5006

Ramachandran M., Subadevi R., Sivakumar M. Role of pH on synthesis and characterization of cerium oxide (CeO2) nano particles by modified co-precipitation method. Vacuum. 2019. 161: 220. https://doi.org/10.1016/j.vacuum.2018.12.002

Filippi A., Liu F., Wilson J., Lelieveld S., Korschelt K., Wang T., Wang Y., Reich T., Poschl U., Tremel W., Tong H. Antioxidant activity of cerium dioxide nanoparticles and nanorods in scavenging hydroxyl radicals. RSC Adv. 2019. 9: 11077. https://doi.org/10.1039/C9RA00642G

Kitsou I., Roussi E., Tsetsekou A. Synthesis of aqueous nanodispersed nanocrysralline ceria suspensions by a novel organic/inorganic precipitation method. Ceram. Internat. 2017. 43(4): 3861. https://doi.org/10.1016/j.ceramint.2016.12.047

Pujar M.S., Hunagund S.M., Desai V.R., Patil S., Sidarai A.H. One-step synthesis and characterizations of cerium oxide nanoparticles in an ambient temperature via Co-precipitation method In: AIP Conference Proceedings (2018). P. 1942(1):050026. https://doi.org/10.1063/1.5028657

Chang H.-Y., Chen H.-I. Morphological evolution for CeO2 nanoparticles synthesized by precipitation technique. J. Cryst. Growth. 2005. 283(3-4): 457-468. https://doi.org/10.1016/j.jcrysgro.2005.06.002

Zhang Q.L., Yang Z.M., Ding B.J. Synthesis of cerium oxide nanoparticles by the precipitation method. Mater Sci Forum. 2009. 610-613(3):233. https://doi.org/10.4028/www.scientific.net/MSF.610-613.233

Gupta A., Das S., Neal C. J., Seal S. Controlling the surface chemistry of cerium oxide nanoparticles for biological applications. J. Mater. Chem. B. 2016. 4(19): 3195. https://doi.org/10.1039/C6TB00396F

Zhang D., Du X., Shi L., Gao R. Shape-controlled synthesis and catalytic application of ceria nanomaterials. Dalton Transactions. 2012. 41(48): 14455. https://doi.org/10.1039/c2dt31759a

Sakthivel T.S., Reid D.L., Bhatta U.M., Mobus G., Sayle D.C., Seal S. Engineering of nanoscale defect patterns in CeO2 nanorods via ex situ and in situ annealing. Nanoscale. 2015. 7(12): 5169. https://doi.org/10.1039/C4NR07308H

Huang P.X., Wu F., Zhu B.L., Gao X.P., Zhu H.Y., Yan T.Y., Huang W.P., Wu S.H., Song D.Y. CeO2 Nanorods and gold nanocrystals supported on CeO2 nanorods as catalyst. The Phys. Chem. B. 2005. 109(41): 19169. https://doi.org/10.1021/jp052978u

Fu X.Q., Wang C., Yu H.C., Wang Y.G., Wang T.H. Fast humidity sensors based on CeO2 nanowires. Nanotechnology. 2007. 18(14) 145503. https://doi.org/10.1088/0957-4484/18/14/145503

Ji Z., Wang X., Zhang H., Lin S., Meng H., Sun B., Zink, J.I. Designed synthesis of CeO2 nanorods and nanowires for studying toxicological effects of high aspect ratio nanomaterials. ACS Nano. 2012. 6(6): 5366. https://doi.org/10.1021/nn3012114

Tang C.C., Bando Y., Liu B.D., Golberg D. Cerium oxide nanotubes prepared from cerium hydroxide nanotubes. Advanced Materials. 2005. 17(24): 3005-3009. https://doi.org/10.1002/adma.200501557

Han W.-Q., Wu L., Zhu Y. Formation and oxidation state of CeO2-x nanotubes. J AM CHEM SOC. 2005. 127(37): 12814. https://doi.org/10.1021/ja054533p

Lin Y., Wu Z., Wen J., Poeppelmeier K.R., Marks L.D. Imaging the atomic surface structures of CeO2 nanoparticles. Nano Letters. 2013. 14(1): 191. https://doi.org/10.1021/nl403713b

Lakshmi R.V., Pal K., Mandal T.K., Aruna S.T. Multifunctional properties of ceria nanocubes synthesized by a hydrothermal method. Bull. Mater. Sci. 2019. 42(5): 210. https://doi.org/10.1007/s12034-019-1862-9

Zhang H., Yang B., Li H., Wu C., Wang W., Zhang B., Zhang C. Controllable synthesis and growth mechanism of ceria nanocubes by template-free hydrothermal method. Cryst Res Tech. 2017. 53(1): 1700233. https://doi.org/10.1002/crat.201700233

Zheng K., Boccaccini A.R. Sol-gel processing of bioactive glass nanoparticles: a review. Adv. Colloid Interface Sci. 2017. 249: 363. https://doi.org/10.1016/j.cis.2017.03.008

Rao B.G., Mukherjee D., Reddy B.M. Novel approaches for preparation of nanoparticles. (New York: Elsevier Inc. 2017). https://doi.org/10.1016/B978-0-323-46142-9.00001-3

Darroudi M., Hakimi M., Sarani M., Kazemi Oskuee R., Khorsand Zak A., Gholami L. Facile synthesis, characterization, and evaluation of neurotoxicity effect of cerium oxide nanoparticles. Ceram. Int. 2013. 39(6): 6917. https://doi.org/10.1016/j.ceramint.2013.02.026

Richard B., Lemyre J.-L., Ritcey A.M. Nanoparticle size control in microemulsion synthesis. Langmuir. 2017. 33(19): 4748. https://doi.org/10.1021/acs.langmuir.7b00773

Malik M.A., Wani M.Y., Hashim M.A. Microemulsion method: a novel route to synthesize organic and inorganic nanomaterials 1st nano update. Arab J Chem. 2012. 5(4):397-417. https://doi.org/10.1016/j.arabjc.2010.09.027

Shlapa Y., Sarnatskaya V., Timashkov I., Yushko L., Antal I., Gerashchenko B., Nychyporenko I., Belous A., Nikolaev V., Timko M. Synthesis of CeO2 nanoparticles by precipitation in reversal microemulsions and their physical-chemical and biological properties. Appl. Phys. A. 2019. 125: 412. https://doi.org/10.1007/s00339-019-2706-6

Annu Ali A., Gadkari R., Sheikh J.N., Ahmed S. Phytomediated synthesis of cerium oxide nanoparticles and their applications. (Nanomaterials and plant potential, 2019). https://doi.org/10.1007/978-3-030-05569-1_10

Charbgoo F., Ahmad M.B., Darroudi M. Cerium oxide nanoparticles: Green synthesis and biological applications. Int. J. Nanomed. 2017. 12: 1401. https://doi.org/10.2147/IJN.S124855

Singh A., Hussain I., Singh N.B., Singh H. Uptake, translocation and impact of green synthesized nanoceria on growth and antioxidant enzymes activity of Solanum lycopersicum L. Ecotox Environ Safe. 2019. 182: 109410. https://doi.org/10.1016/j.ecoenv.2019.109410

Arumugam A., Karthikeyan C., Haja Hameed A.S., Gopinath K., Gowri S., Karthika V. Synthesis of cerium oxide nanoparticles using Gloriosa superba L. leaf extract and their structural, optical and antibacterial properties. Mater. Sci. Eng. C. 2015. 49: 408-415. https://doi.org/10.1016/j.msec.2015.01.042

Kannan S.K., Sundrarajan M. A green approach for the synthesis of a cerium oxide nanoparticle: characterization and antibacterial activity. Int. J. Nanosci. 2014. 13(3): 1450018. https://doi.org/10.1142/S0219581X14500185

Dutta D., Mukherjee R., Patra M., Banik M., Dasgupta R., Mukherjee M., Basu T. Green synthesized cerium oxide nanoparticle: A prospective drug against oxidative harm. Colloids Surf B. 2016. 147: 45. https://doi.org/10.1016/j.colsurfb.2016.07.045

Maqbool Q., Nazar M., Naz S., Hussain T., Jabeen N., Kausar R., Jan T. Antimicrobial potential of green synthesized CeO2 nanoparticles from Olea europaea leaf extract. Int. J. Nanomed. 2016. 11: 5015. https://doi.org/10.2147/IJN.S113508

Maensiri S., Labuayai S., Laokul P., Klinkaewnarong J., Swatsitang E. Structure and optical properties of CeO2 nanoparticles prepared by using lemongrass plant extract solution. Jpn. J. Appl. Phys. 2014. 53(6S): 06JG14. https://doi.org/10.7567/JJAP.53.06JG14

Elahi B., Mirzaee M., Darroudi M., Sadri K., Oskuee R.K. Bio-based synthesis of nano-ceria and evaluation of its bio-distribution and biological properties. Colloids Surf B. 2019. 181:830. https://doi.org/10.1016/j.colsurfb.2019.06.045

Sreekanth T.V.M., Dillip G.R., Lee Y.R. Picrasma quassioides mediated cerium oxide nanostructures and their post-annealing treatment on the microstructural, morphological and enhanced catalytic performance. Ceram. Int. 2016. 42(6): 6610. https://doi.org/10.1016/j.ceramint.2015.12.171

Surendra T.V., Roopan S.M. Photocatalytic and antibacterial properties of phytosynthesized CeO2 NPs using Moringa oleifera peel extract. J. Photochem. Photobiol B. 2016. 161: 122. https://doi.org/10.1016/j.jphotobiol.2016.05.019

Khan S.A., Ahmad A. Fungus mediated synthesis of biomedically important cerium oxide nanoparticles. Mater. Res. Bull. 2013. 48(10) : 4134. https://doi.org/10.1016/j.materresbull.2013.06.038

Munusamy S., Bhakyaraj K., Vijayalakshmi L., Stephen A., Narayanan V. Synthesis and characterization of cerium oxide nanoparticles using Curvularia lunata and their antibacterial properties. Int J Innov Res Sci Eng. 2014. 2(1): 318.

Gopinath K., Karthika V., Sundaravadivelan C., Gowri S., Arumugam A. Mycogenesis of cerium oxide nanoparticles using Aspergillus niger culture filtrate and their applications for antibacterial and larvicidal activities. J Nanostructure Chem. 2015. 5(3): 295. https://doi.org/10.1007/s40097-015-0161-2

Kumar K.M., Mahendhiran M., Diaz M.C., Hernandez-Como N., Hernandez-Eligio A., Torres-Torres G., Gomez L.M. Green synthesis of Ce3+ rich CeO2 nanoparticles and its antimicrobial studies. Materials Letters. 2018. 214: 15. https://doi.org/10.1016/j.matlet.2017.11.097

Fereydouni N., Sadeghnia H.R., Mobarhan M.G., Movaffagh J., Rahimi V.B., Hashemzadeh A., Mardani Z., Darroudi M. Nanoceria: Polyphenol-based green synthesis, mechanism of formation, and evaluation of their cytotoxicity on L929 and HFFF2 cells. J. Mol. Struct. 2019. 1186: 23. https://doi.org/10.1016/j.molstruc.2019.03.014

Patil S.N., Paradeshi J.S., Chaudhari P.B., Mishra S.J., Chaudhari B.L. Bio-therapeutic potential and cytotoxicity assessment of pectin-mediated synthesized nanostructured cerium oxide. Appl Biochem Biotechnol. 2016. 180(4): 638. https://doi.org/10.1007/s12010-016-2121-9

Hasanzadeh L., Oskuee R.K., Sadri K., Nourmohammadi E., Mohajeri M., Mardani Z., Darroudi M. Green synthesis of labeled CeO2 nanoparticles with 99mTc and its biodistribution evaluation in mice. Life Sci. 2018. 212: 233. https://doi.org/10.1016/j.lfs.2018.10.010

Kargar H., Ghazavi H., Darroudi M. Size-controlled and bio-directed synthesis of ceria nanopowders and their in vitro cytotoxicity effects. Ceram. Intern. 2015. 41(3): 4123. https://doi.org/10.1016/j.ceramint.2014.11.108

Darroudi M., Hoseini S.J., Kazemi Oskuee R., Hosseini H.A., Gholami L., Gerayli S. Food-directed synthesis of cerium oxide nanoparticles and their neurotoxicity effects. Ceram. Intern. 2014. 40(5): 7425. https://doi.org/10.1016/j.ceramint.2013.12.089

Elahi B., Mirzaee M., Darroudi M., Oskuee R.K., Sadri K., Amiri M.S. Preparation of cerium oxide nanoparticles in Salvia macrosiphon boiss seeds extract and investigation of their photo-catalytic activities. Ceram. Intern. 2018. 45: 4790. https://doi.org/10.1016/j.ceramint.2018.11.173

Kumar A., Das S., Munusamy P., Self W., Baer D., Sayle D., Seal S. Behavior of nanoceria in biologically-relevant environments. Environ Sci Nano. 2014. 1(6): 516. https://doi.org/10.1039/C4EN00052H

Ravishankar T.N., Ramakrishnappa T., Nagaraju G., Rajanaika H. Synthesis and characterization of CeO2 nanoparticles via solution combustion method for photocatalytic and antibacterial activity studies. ChemistryOpen. 2015. 4(2): 146. https://doi.org/10.1002/open.201402046

Nair R.R., Arulraj J., Sunaja Devi K.R. Ceria doped titania nano particles: Synthesis and photocatalytic activity. Materials Today: Proceedings. 2016. 3(6): 1643. https://doi.org/10.1016/j.matpr.2016.04.054

Akbari-Fakhrabadi A., Meruane V., Jamshidijam M., Gracia-Pinilla M.A., Mangalaraja R.V. Effect of rare earth dopant son structural and mechanical properties of nanoceria synthesized by combustion nmethod. Mater. Sci. Eng. A. 2016. 649: 168-173. https://doi.org/10.1016/j.msea.2015.09.125

Wen W., Wu J.-M. Nanomaterials via solution combustion synthesis: a step nearer to controllability. RSC Adv. 2014. 4(101): 58090. https://doi.org/10.1039/C4RA10145F

Fatouraie M., Eagle W.E., Li D., Morishita M., Barres J., Wagner J.G., Wooldridge M.S. Combustion synthesis of CeO2 nanoparticles for aging and inhalation exposure studies. Journal of Aerosol Science. 2017. 106: 24. https://doi.org/10.1016/j.jaerosci.2016.12.004

Bakkiyaraj R., Balakrishnan M. Physical, optical and photochemical properties of CeO2 nanoparticles synthesized by solution Ccombustion method. Journal of Advanced Physics. 2017. 6(1):41. https://doi.org/10.1166/jap.2017.1295

Patil S., Dasari H.P. Effect of fuel and solvent on soot oxidation activity of Ceria nanoparticles synthesized by solution combustion method. Mater Sci Ener Technol. 2019. 2(3): 485-489. https://doi.org/10.1016/j.mset.2019.05.005

Janos P. Chemical mechanical glass polishing with cerium oxide: Effect of selected physico-chemical characteristics on polishing efficiency. Wear Volumes. 2016. 362:114. https://doi.org/10.1016/j.wear.2016.05.020

Ivanov V.K., Shcherbakov A., Usatenko A. Structure-sensitive properties and biomedical applications of nanodispersed cerium dioxide. Russ. Chem. Rev. 2009. 78: 855. https://doi.org/10.1070/RC2009v078n09ABEH004058

Parwaiz S., Khan M.M., Pradhan D. CeO2-based nanocomposites: An advanced alternative to TiO2 and ZnO in sunscreens. Materials Express. 2019. 9(3): 85. https://doi.org/10.1166/mex.2019.1495

Charbgoo F., Ramezani M., Darroudi M. Bio-sensing applications of cerium oxide nanoparticles: Advantages and disadvantages. Biosensors and Bioelectronics. 2017. 96: 33. https://doi.org/10.1016/j.bios.2017.04.037

Maca K., Trunec M., Cihlar J. Injection moulding and sintering of ceria ceramics. Ceram Internat. 2002. 28: 337-44. https://doi.org/10.1016/S0272-8842(01)00100-6

Raza Naqvi S.T., Shirinfar B., Majeed S., Najam-ul-Haq M., Hussain D., Iqbal T., Ahmed N. Synthesis, designing and analytical applications of nanostructured ceria based materials. Analyst. 2018. 143: 5610. https://doi.org/10.1039/C8AN01268G

Sung M.-C., Lee G.-H., Kim, D.-W. CeO2/Co(OH)2 hybrid electrocatalysts for efficient hydrogen and oxygen evolution reaction. Journal of Alloys and Compounds. 2019. 800: 450. https://doi.org/10.1016/j.jallcom.2019.06.047

Ng J.W.D., García-Melchor M., Bajdich M., Chakthranont P., Kirk C., Vojvodic A., Jaramillo T.F. Gold-supported cerium-doped NiOx catalysts for water oxidation. Nature Energy. 2016. 1(5): 16053. https://doi.org/10.1038/nenergy.2016.53

Xu L., Wang J. Magnetic nanoscaled Fe3O4/CeO2 composite as an efficient fenton-like heterogeneous catalyst for degradation of 4-chlorophenol. Environmental Science & Technology. 2012. 46(18): 10145. https://doi.org/10.1021/es300303f

Ghanbari F., Ahmadi M., Gohari F. Heterogeneous activation of peroxymonosulfate via nanocomposite CeO2-Fe3O4 for organic pollutants removal: The effect of UV and US irradiation and application for real wastewater. Separation and Purification Technology. 2019. 228: 115732. https://doi.org/10.1016/j.seppur.2019.115732

Sultana S.S.P., Kishore D.H.V., Kuniyil M., Khan M., Alwarthan A., Prasad K.R.S., Labis J.P., Adil S.F. Ceria doped mixed metal oxide nanoparticles as oxidation catalysts: Synthesis and their characterization. Arabian Journal of Chemistry. 2015. 8(6): 766. https://doi.org/10.1016/j.arabjc.2015.05.008

Hu J., Zou C., Su Y., Li M., Ye X., Cai B., Kong E.S.-W., Yang Z., Zhang Y. Light-assisted recovery for a highly-sensitive NO2 sensor based on RGO-CeO2 hybrids. Sensors and Actuators B: Chemical. 2018. 270: 119. https://doi.org/10.1016/j.snb.2018.05.027

Motaung D.E., Mhlongo G.H., Makgwane P.R., Dhonge B.P., Cummings F.R., Swart H.C., Ray S.S. Ultra-high sensitive and selective H2 gas sensor manifested by interface of n-n heterostructure of CeO2-SnO2 nanoparticles. Sensors and Actuators B: Chemical. 254: 984. https://doi.org/10.1016/j.snb.2017.07.093

Zhang L., Fang Q., Huang Y., Xu K., Chu P.K., Ma F. Oxygen vacancy enhanced gas-sensing performance of CeO2/Graphene heterostructure at room temperature. Analytical Chemistry. 90(16): 9821. https://doi.org/10.1021/acs.analchem.8b01768

Subbiah D.K., Kulandaisamy A.J., George R.B., Shankar P., Mani G.K., Jayanth Babu K., Rayappan J.B.B. Nano ceria as xylene sensor - Role of cerium precursor. J. Alloys Compd. 753: 771. https://doi.org/10.1016/j.jallcom.2018.04.248

Patil J.Y., Nadargi D.Y., Mulla I.S., Suryavanshi S. S. Cerium doped MgFe2O4 nanocomposites: highly sensitive and fast response-recoverable acetone gas sensor. Heliyon. 5(6):e01489. https://doi.org/10.1016/j.heliyon.2019.e01489

Divya T., Nikhila M.P., Anju M., Arsha Kusumam T.V., Akhila A.K., Ravikiran, Y.T., Renuka N.K. Nanoceria based thin films as efficient humidity sensors. Sensors and Actuators A: Physical, 261: 85-93. https://doi.org/10.1016/j.sna.2017.05.008

Maca K, Trunec M., Cihlar J. Injection moulding and sintering of ceria ceramics. Ceramics International. 28(3): 337. https://doi.org/10.1016/S0272-8842(01)00100-6

Shin T.H., Ida S., Ishihara T. Doped CeO2-LaFeO3 composite oxide as an active anode for direct hydrocarbon-type solid oxide fuel cells. J. Am. Chem. Soc. 2011. 133(48): 19399. https://doi.org/10.1021/ja206278f

Ujjain S.K., Das A., Srivastava G., Ahuja P., Roy M., Arya A, Bhargava K., Sethy N., Singh S.K., Sharma R.K., Das M. Nanoceria based electrochemical sensor for hydrogen peroxide detection. Biointerphases. 2014. 9(3): 031011. https://doi.org/10.1116/1.4890473

Liu B., Sun Z., Huang P.-J.J., Liu J. Hydrogen peroxide displacing DNA from nanoceria: mechanism and detection of glucose in serum. J. Am. Chem. Soc. 2015. 137(3): 1290. https://doi.org/10.1021/ja511444e

Zhai Y., Zhang Y., Qin F., Yao X. An electrochemical DNA biosensor for evaluating the effect of mix anion in cellular fluid on the antioxidant activity of CeO2 nanoparticles. Biosens Bioelectron. 2015. 70:130. https://doi.org/10.1016/j.bios.2015.03.030

Xue Y., Zhai Y., Zhou K., Wang L., Tan H., Luan Q., Yao X. The vital role of buffer anions in the antioxidant activity of CeO2 nanoparticles. Chemistry. 2012. 18(35): 11115. https://doi.org/10.1002/chem.201200983

Singh M., Nesakumar N., Sethuraman S., Krishnan U.M., Rayappan J.B.B. Electrochemical biosensor with ceria-polyaniline core shell nano-interface for the detection of carbonic acid in blood. J. Colloid Interface Sci. 2014. 425: 52. https://doi.org/10.1016/j.jcis.2014.03.041

Fallatah A., Almomtan M., Padalkar S. Cerium oxide based glucose biosensors: influence of morphology and underlying substrate on biosensor performance. ACS Sustainable Chem En. 2019. 7(9): 8083. https://doi.org/10.1021/acssuschemeng.8b02286

Nayak P., Santhosh P.N., Ramaprabhu S. Cerium oxide nanoparticles decorated graphene nanosheets for selective detection of dopamine. J. Nanosci. 2015. 15(7): 4855. https://doi.org/10.1166/jnn.2015.9812

Sunon P., Wongkaew P., Johns J., Johns N. Characterization of cerium oxide-chitosan nanocomposite-modified screen printed carbon electrode and application in melatonin determination. Inter J Geomate. 2018. 14(42): 151. https://doi.org/10.21660/2018.42.3559

Benjamin S.R., Vilela R.S., Camargo H.S., Guedes M.I., Fernandes K.F., Colmati1 F. Enzymatic electrochemical biosensor based on multiwall carbon nanotubes and cerium dioxide nanoparticles for rutin detection. Int. J. Electrochem. Sci. 2018. 13: 563. https://doi.org/10.20964/2018.01.51

Yang Z.-H., Zhuo Y., Yuan R., Chai Y.-Q. An amplified electrochemical immunosensor based on in situ-produced 1-naphthol as electroactive substance and graphene oxide and Pt nanoparticles functionalized CeO2 nanocomposites as signal enhancer. Biosensors and Bioelectronics. 2015. 69: 321. https://doi.org/10.1016/j.bios.2015.01.035

Andrei V., Sharpe E., Vasilescu A., Andreescu S. A single use electrochemical sensor based on biomimetic nanoceria for the detection of wine antioxidants. Talanta. 2016. 156: 112. https://doi.org/10.1016/j.talanta.2016.04.067

Bulbul G., Hayat A., Mustafa F., Andreescu S. DNA assay based on nanoceria as fluorescence quenchers (NanoCeracQ DNA assay). Nature Scientific Reports. 2018. 8:2426. https://doi.org/10.1038/s41598-018-20659-9

Burns A., Self W.T. Antioxidant inorganic nanoparticles and their potential applications in biomedicine. Smart Nanoparticles for Biomedicine. 2018. 143: 159. https://doi.org/10.1016/B978-0-12-814156-4.00011-2

Dhall A., Self W. Cerium oxide nanoparticles: a brief review of their synthesis methods and biomedical applications. Antioxidants. 2018. 7(8): 97. https://doi.org/10.3390/antiox7080097

Sundararajan V., Dan P., Kumar A., Venkatasubbu G.D., Ichihara S., Ichihara G., Sheik Mohideen S. Drosophila melanogaster as an in vivo model to study the potential toxicity of cerium oxide nanoparticles. Applied Surface Science. 2019. 490: 70. https://doi.org/10.1016/j.apsusc.2019.06.017

Corsi F., Caputo F., Traversa E., Ghibelli L. Not only redox: the multifaceted activity of cerium oxide nanoparticles in cancer prevention and therapy. Frontiers in Oncology. 2018. 8: 1. https://doi.org/10.3389/fonc.2018.00309

Wason M., Lu H., Yu L., Lahiri S., Mukherjee D., Shen C., Zhao J. Cerium oxide nanoparticles sensitize pancreatic cancer to radiation therapy through oxidative activation of the JNK apoptotic pathway. Cancers. 2018. 10(9): 303. https://doi.org/10.3390/cancers10090303

Rubio L., Marcos R., Hernandez A. Nanoceria acts as antioxidant in tumoral and transformed cells. Chem-Bio Interact. 2018. 291: 7. https://doi.org/10.1016/j.cbi.2018.06.002

Jansman M.M.T., Hosta-Rigau L. Cerium- and iron-oxide-based nanozymes in tissue engineering and regenerative medicine. Catalysts. 2019. 9(8): 691. https://doi.org/10.3390/catal9080691

Marino A., Tonda-Turo C., De Pasquale D., Ruini F., Genchi G., Nitti S., Ciofani G. Gelatin/nanoceria nanocomposite fibers as antioxidant scaffolds for neuronal regeneration. BBA. 2017. 1861(2): 386. https://doi.org/10.1016/j.bbagen.2016.11.022

Li J., Wen J., Li B., Li W., Qiao W., Shen J., Chu P.K. Valence state manipulation of cerium oxide nanoparticles on a titanium surface for modulating cell fate and bone formation. Advanced Science. 2017. 5(2): 678. https://doi.org/10.1002/advs.201700678

Wu H., Li F., Wang S., Lu J., Li J., Du Y., Ling D. Ceria nanocrystals decorated mesoporous silica nanoparticle based ROS-scavenging tissue adhesive for highly efficient regenerative wound healing. Biomaterials. 2018. 151: 66. https://doi.org/10.1016/j.biomaterials.2017.10.018

Rather H.A., Thakore R., Singh R., Jhala D., Singh S., Vasita R. Antioxidative study of Cerium Oxide nanoparticle functionalised PCL-Gelatin electrospun fibers for wound healing application. Bioactive Materials. 2018. 3(2): 201. https://doi.org/10.1016/j.bioactmat.2017.09.006

Pesaraklou A., Mahdavi-Shahri N., Hassanzadeh H., Ghasemi M., Kazemi M., Sanjar Mousavi N., Matin M.M. Use of cerium oxide nanoparticles: a good candidate to improve skin tissue engineering. Biomedical Materials. 2019. 14(3): 035008. https://doi.org/10.1088/1748-605X/ab0679

Rai N., Raj R., Kanagaraj S. Radical scavenging of nanoceria in minimizing the oxidative stress induced loss of residual hearing: A Review. J Indian Inst Sci. 2019. 17(1): 1.

Tisi A., Passacantando M., Lozzi L., Riccitelli S., Bisti S., Maccarone R. Retinal long term neuroprotection by Cerium Oxide nanoparticles after an acute damage induced by high intensity light exposure. Experimental Eye Research. 2019. 182: 30. https://doi.org/10.1016/j.exer.2019.03.003

Kumari P., Saifi M.A., Khurana A., Godugu C. Cardioprotective effects of nanoceria in a murine model of cardiac remodeling. J Trace Elem Med Bio. 2018. 50: 198. https://doi.org/10.1016/j.jtemb.2018.07.011

Del Turco S., Ciofani G., Cappello V., Parlanti P., Gemmi M., Caselli C., Mattoli V. Effects of cerium oxide nanoparticles on hemostasis: coagulation, platelets and vascular endothelial cells. J Biomed Mater Res A. 2019. 107(7):1551. https://doi.org/10.1002/jbm.a.36669

Naz S., Beach J., Heckert B., Tummala T., Pashchenko O., Banerjee T., Santra S. Cerium oxide nanoparticles: a "radical" approach to neurodegenerative disease treatment. Nanomedicine. 2017. 12(5): 545-553. https://doi.org/10.2217/nnm-2016-0399

Battaglini M., Tapeinos C., Cavaliere I., Marino A., Ancona A., Garino N., Ciofani G. (2019). Design, fabrication, and in vitro evaluation of nanoceria-loaded nanostructured lipid carriers for the treatment of neurological diseases. ACS Biomater. Sci. Eng. 2019. 5(2): 670. https://doi.org/10.1021/acsbiomaterials.8b01033

Zeng F., Wu Y., Li X., Ge X., Guo Q., Lou X., Li C. Custom-made ceria nanoparticles show a neuroprotective effect by modulating phenotypic polarization of the microglia. Angewandte Chemie International Edition. 2018. 57(20): 5808. https://doi.org/10.1002/anie.201802309

Kondiah P.P.D., Choonara Y.E., Kondiah P.J., Marimuthu T., Kumar P., du Toit L.C., Pillay V. Nanocomposites for therapeutic application in multiple sclerosis. In: Applications of Nanocomposite Materials in Drug Delivery. (2018). https://doi.org/10.1016/B978-0-12-813741-3.00017-0

Zhou D., Fang T., Lu L., Yi L. Neuroprotective potential of cerium oxide nanoparticles for focal cerebral ischemic stroke. J Huazhong U Sci-Med. 2016. 36(4): 480. https://doi.org/10.1007/s11596-016-1612-9

Kwon H.J., Kim D., Seo K., Kim Y.G., Han S.I., Kang T., Hyeon T. Ceria nanoparticle systems for selective scavenging of mitochondrial, intracellular, and extracellular reactive oxygen species in Parkinson's disease. Angewandte Chemie International Edition. 2018. 57(30): 9408. https://doi.org/10.1002/anie.201805052

Kwon H.J., Cha M.-Y., Kim D., Kim D.K., Soh M., Shin K., Mook-Jung I. Mitochondria-targeting ceria nanoparticles as antioxidants for Alzheimer's disease. ACS Nano. 2016. 10(2): 2860. https://doi.org/10.1021/acsnano.5b08045

Bellio P., Luzi C., Mancini A., Cracchiolo S., Passacantando M., Di Pietro L., Celenza G. Cerium oxide nanoparticles as potential antibiotic adjuvant. Effects of CeO2 nanoparticles on bacterial outer membrane permeability. Biochim Biophys Acta Biomembr. 2018. 1860(11):2428. https://doi.org/10.1016/j.bbamem.2018.07.002

Rice K.M., Bandarupalli V.V.K., Manne N.D.P.K., Blough E.R. Spleen data: Cerium oxide nanoparticles attenuate polymicrobial sepsis induced spenic damage in male Sprague Dawley rats. Data in Brief. 2018. 18: 740. https://doi.org/10.1016/j.dib.2018.03.073

Gao R., Mitra R.N., Zheng M., Wang K., Dahringer J.C., Han Z. Developing nanoceria-based pH-dependent cancer-directed drug delivery system for retinoblastoma. Advanced Functional Materials. 2018. 180: 248. https://doi.org/10.1002/adfm.201806248

Singh R.K., Patel K.D., Mahapatra C., Parthiban S.P., Kim T.-H., Kim H.-W. Combinatory cancer therapeutics with nanoceria-capped mesoporous silica nanocarriers through pH-triggered drug release and redox activity. ACS Appl Mater Interfaces. 2019. 11(1):288-299. https://doi.org/10.1021/acsami.8b17958

Published
2019-10-30
How to Cite
GrinkoА. M., BrichkaА. V., BakalinskaО. М., & КаrtelМ. Т. (2019). Properties, preparation methods and use of cerium nanooxide. Surface, (11(26), 436-471. https://doi.org/10.15407/Surface.2019.11.436
Section
Nanomaterials and nanotechnologies