Physical aspects of carbon dispersion in a thermo-vacuum installation

  • V. A. Kutovyi National Science Center "Kharkov Institute of Physics and Technology"
  • D. G. Malykhin National Science Center "Kharkov Institute of Physics and Technology"
  • A. S. Kalchenko National Science Center "Kharkov Institute of Physics and Technology"
  • R. L. Vasilenko National Science Center "Kharkov Institute of Physics and Technology"

Abstract

Based on the combination of the vacuuming and high-speed thermal heating, the scientific and technical development of the high-performance thermo-vacuum method, which is an environmentally friendly process, was carried out with the continuous production of nanodispersed carbon. An analysis of the physical processes that affect a carbon material – a coarse-grained powder of graphite grade C1 – in a thermo-vacuum installation has been carried out. In the study of the structural composition of the graphite in initial state and processed in a thermo-vacuum installation, X-ray diffraction analysis and electron microscopy were used.

The results of X-ray analysis showed that the original C1 grade graphite has two known modifications: hexagonal structure with lattice periods a = 0.2461±0.0002, c = 0.6705±0.0007 nm, and about 30% of rhombohedral structure with periods a = 0.2461±0.0001 and c = 1.003 ± 0.0002 nm (one and a half period of the main structure of graphite). In graphite treated in a thermo-vacuum installation, a superstructural rhombohedral phase – of the order of percent or fractions of a percent – with periods a = 0.492±0.0001 and c = 1.003±0.0002 nm was additionally detected. A phase with a monoclinic structure and with parameters a = 0.6075±0.0001, b = 0.4477±0.0002, c = 0.4913±0.0003 nm, and β = 99.6 ± 0.1° is also detected approximately with the same amount.

The results of analysis and calculations are generally consistent with TEM images of the reciprocal lattice of processed graphite. As a result, it was shown that in a thermal vacuum installation, carbon undergoes a complex effect of heating, deformation, and ionization, which can significantly accelerate the process of obtaining nanodispersed carbon material with new physicochemical and mechanical properties. The results can be widely used for the industrial production of nanostructural materials.

References

Shishkov N.I., Oparin S.A., Soroka P.I., Zrazhevskij V.I. Issledovanie sovmeshhennyx processov izmelcheniya i sushki v melnice udarnootrazhatelnogo dejstviya. Nauka і osvіta. 2002: 49. [in Russian].

Oparin S.A., Soroka P.G. Sovmeshhennyj process tonkogo izmelcheniya i sushki rastitelnyx otxodov. Nakovі procі odeskoї nac. akademії xarchovix texnologіj. 2014. 45(3): 4. [in Russian].

Oparin S.A., Leshhenko E.V., Soroka P.I. Raschet texnologicheskix parametrov processa izmelcheniya v melnice udarno-otrazhatelnogo dejstviya. Naukovі pracі onaxt. 2010. 37. 118. [in Russian].

Mixajlenko A.V., Smyk S.Yu., Kunickij Yu.A.. Uglerodnye nanostruktury: topologiya, poluchenie, svojstva. Poverxnost. 2011. 3(18): 50. [in Russian].

Brichka S.Ya. Prirodnye alyumosilikatnye nanotrubki: struktura i svojstva. Nanostrukturnoe materialovedenie. 2009. 2: 40. [in Russian].

Zhang. Q, Yoon S.F., Ahn J and others. Carbon films with high density nanotubes produced using microwave plasma assisted CVD. Journal of Physics and Chemistry of Solids. 2000. 61(7): 1179. https://doi.org/10.1016/S0022-3697(99)00383-2

Woo Y.S., Lee N.S., Han D.Y and others. In situ diagnosis of chemical species for the growth of carbon nanjtubes in microwawe plasmaenchanced chemical vapor deposition. Diamond and Related Materials. 2002. 11: 59. https://doi.org/10.1016/S0925-9635(01)00519-2

Pat. 81138 Ukraїna. mpk f26b9/06. Pristrіj dlya termovakuumnogo sushіnnya / Kutovij v.o. - №a200507488; zayavl. 27.07.2005; opubl. 10.12.07. 20: 5. [in Ukrainain].

Isachenko V.I., Osipova V.A., Sukomel A.S. Teploperedacha. M: Energoizdat. 1981: 417. [in Russian].

Bulanov. N.V. Vzryvnoe vskipanie dispergirovannyx zhidkostej. Ekaterinburg. 2011: 232. [in Russian].

Landau L.D., Lifshic E.D. Gidrodinamika. M: Fizmatlit. 2001: 736. [in Russian].

Sysoev N.N., Shugaev F.V. Udarnye volny v gazax i kondensirovannyx sredax. M: Universitet. 1987: 133. [in Russian].

Zeldovich Ya.B., Rajzner Yu.P. Fizika udarnyx voln i vysokotemperaturnyx gidrodinamicheskix yavlenij. M: Nauka. 1966; 686. [in Russian].

Lukyanov A. B. Fizicheskaya i kolloidnaya Chimiya. M: Chimiya. 1988: 288. [in Russian].

Naumenko I.A., Petrovskij I.G. Udarnaya volna atomnogo vzryva. M: Voenizdat. 1956: 160. [in Russian].

Published
2019-10-30
How to Cite
Kutovyi, V. A., Malykhin, D. G., Kalchenko, A. S., & Vasilenko, R. L. (2019). Physical aspects of carbon dispersion in a thermo-vacuum installation. Surface, (11(26), 508-520. https://doi.org/10.15407/Surface.2019.11.508
Section
Nanomaterials and nanotechnologies