Synthesis, properties and application of nanocomposites based on gemcitabine in oncotherapy

  • S. P. Turanska Chuiko Institute of Surface Chemistry, NAS of Ukraine
  • N. M. Opanashchuk Chuiko Institute of Surface Chemistry, NAS of Ukraine
  • A. L. Petranovska Chuiko Institute of Surface Chemistry, NAS of Ukraine
  • N. V. Kusyak Chuiko Institute of Surface Chemistry, NAS of Ukraine
  • B. I. Tarasiuk National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnical Institute”
  • S. V. Gorobets’ National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnical Institute”
  • V. V. Turov Chuiko Institute of Surface Chemistry, NAS of Ukraine
  • P. P. Gorbyk Chuiko Institute of Surface Chemistry, NAS of Ukraine
  • M. V. Abramov Chuiko Institute of Surface Chemistry, NAS of Ukraine
Keywords: magnetite, nanocomposites, gemcitabine, adsorption, release

Abstract

The aim of the work is to review scientific papers on the synthesis, study of properties and application of nanocomposites based on gemcitabine, promising for use in the targeted delivery method, in medicine, in particular oncotherapy.

A generally recognized alternative to traditional chemotherapy with gemcitabine (GC) is the use of targeted delivery methods that allow one to create a therapeutic dose of the drug in a disease nidus, to carry out therapy at a much lower its total dose and minimize toxico-allergic reactions in patients. Currently, among the variety of modern methods of targeted drug delivery and local treatment of diseases at the level of organs, cells and genes, the methods have received the highest development using magnetosensitive nanostructures conjugated with antitumor agents of various mechanisms of action.

Currently, the concept has been substantiated for chemical construction of magnetically sensitive nanocomposites (NC) with a multi-level hierarchical nanoarchitecture, which are characterized by the functions of "nanoclinics" and biomedical nanorobots: recognition of microbiological objects in biological environments; targeted drug delivery to specific cells and organs, and deposition; complex local chemo-, immuno-, neutron capture, hyperthermic, photodynamic therapy and magnetic resonance imaging diagnostics in real-time regime, detoxification of an organism by adsorption of cellular decomposition residues, viral particles, heavy metal ions, etc. and their removal using a magnetic field.

For the manufacture of magnetically sensitive multifunctional NC, a considerable interest of researchers is drawn by core-shell type nanostructures based on single-domain magnetite (Fe3O4), which are characterized by a unique complex of physical, chemical and biological properties, the possibility to create magnetic liquids based on them, containing oncological remedies of various functional purpose and mechanisms of action.

It has been shown that one of the main problems of modern antitumor therapy with gemcitabine is the toxicity and poor bioavailability of the drug. In recent years, an interest has been significantly increased to use the natural mechanisms of endocytosis and various types of nanostructures for delivering of drugs to tumors, involving ligands such as hormones, vitamins, and growth factors directed against tumor-associated receptors that are excessively present on the surface of tumor cells and have a limited distribution in normal tissues. Currently, using methods of modern nanotechnology, magnetically sensitive and non-magnetic conjugates are actively developed for targeted delivery of GC to malignant cells, which will reduce its systemic toxicity. The advantage gained by the drug conjugation on the surface of nanoparticles for drug delivery in vivo is the slow release of the drug, potentially providing a longer presence of the drug in the blood stream at the required level. A positive result of the use of hyperthermia in combination with the release of drugs can be an improvement in the patient's condition and a decrease in the frequency of drug administration.

Despite a significant number of successful studies on the use of magnetic nanoparticles as a theranostic material, as well as repeated successful results in small animal models, they still do not satisfy clinical needs. However, upon reaching a high capacity in relation to the drug, increasing specificity and affinity for tumor cells, in a combination of imaging and multimodal local therapy, magnetic nanoparticles may become convenient for clinical use in the near future and significantly affect the effectiveness of cancer treatment.

References

Internet resource: Ministry of Health of Ukraine. 02/02/2019 Access point: https://www.kmu.gov.ua/ua/news/moz-pro-te-yak-zminyuyutsya-pidhodi-do-viyavlennya-onkologichnih-hvorob-i-likuvannya-raku

Internet resource: Wikipedia. Gemcitabine. Access point: https://uk.wikipedia.org

Manzyuk L.V. Gemcitabine in chemotherapy of some solid tumors. Russian Medical Journal. 2003. 11: 637. [in Russian].

Gutorov S.L. Gemcitabine and pemetrexed: new results from chemotherapy for solid tumors. Pharmateka. 2005. 21: 16. [in Russian].

Gutorov S.L, Semenova N.N, Zagrekova E.I. New drugs in the treatment of solid tumors. Russian Medical Journal. 2001. 9(22): 1017. [in Russian].

Plentz R.R., Malek N.P. Systemic therapy of Cholangiocarcinoma. Visceral Medicine. 2016. 32(6): 427. https://doi.org/10.1159/000453084

Jain A., Kwong L.N., Javle M. Genomic profiling of biliary tract cancers and implications for clinical practice. Current treatment options in oncology. 2016. 17(11): 58. https://doi.org/10.1007/s11864-016-0432-2

Internet resource. Gemcitabine. Recent stages II and III clinical trials in metastatic pancreatic cancer. Trans. with English. N. D. Firsova (2017). Access point: https://www.meir-health.ru

Kang T.W., Yevsa T., Woller N., Hoenicke L., Wuestefeld T., Dauch D., Hohmeyer A., Gereke M., Rudalska R., Potapova A., Iken M., Vucur M., Weiss S., Heikenwalder M., Khan S., Gil J., Bruder D., Manns M., Schirmacher P., Tacke F., Ott M., Luedde T., Longerich T., Kubicka S., Zender L. Senescence surveillance of premalignant hepatocytes limits liver cancer development. Nature. 2011. 9: 547. https://doi.org/10.1038/nature10599

Yevsa T., Kang T.W., Zender L. Immune surveillance of pre-cancerous senescent hepatocytes limits hepatocellular carcinoma development. Oncoimmunology. 2012. 1: 398. https://doi.org/10.4161/onci.19128

Schneider C., Teufel A., Yevsa T., Staib F., Hohmeyer A., Walenda G., Zimmermann H.W., Vucur M., Huss S., Gassler N., Wasmuth H.E., Lira S.A., Zender L., Luedde T., Trautwein C., Tacke F. Adaptive immunity suppresses formation and progression of diethylnitrosamine-induced liver cancer. Gut. 2012. 61: 1733. https://doi.org/10.1136/gutjnl-2011-301116

Reinhardt A., Yevsa T., Worbs T., Lienenklaus S., Sandrock I., Oberdorfer L., Korn T., Weiss S., Forster R., Prinz I. Interleukin-23-dependent γ/δ t cells produce interleukin-17 and accumulate in the enthesis, aortic valve, and ciliary body in mice. Arthritis Rheumatol. 2016. 68(10): 2476. https://doi.org/10.1002/art.39732

Wolf B., Krieg K., Falk C., Breuhahn K., Keppeler H., Biedermann T., Schmid E., Warmann S., Fuchs J., Vetter S., Thiele D., Nieser M., Avci-Adali M., Skokowa Y., Schöls L., Hauser S., Ringelhahn M., Yevsa T., Heikenwalder M., Kossatz-Boehlert U. Inducing differentiation of premalignant hepatic cells as a novel therapeutic strategy in hepatocarcinoma. Cancer Res. 2016. 76(18): 5550. https://doi.org/10.1158/0008-5472.CAN-15-3453

Gorobets S.V, Gorobets O. Yu., Gorbуk P.P., Uvarova I.V. Functional bio- and nanomaterials for medical purposes. (Kіev: Condor, 2018). [in Ukrainian]

Uvarova I.V., Gorbуk P.P., Gorobets S.V., Ivashchenko O.A., Ulyanchenko N.V. Medical nanomaterials.(Kiev: Naukova Dumka, 2014).[in Ukrainian]

Roco M.C., Williams R.S., Alivisatos Р. Vision for Nanotechnology R&D in the Next Decade. (Dordrecht: Kluwer Acad. Publ., 2002).

Levy L., Sahoo Y., Earl B. J. Synthesis and сharacterization of multifunctional nanoclinics for biological applications. Chem. Mater. 2002. 14: 3715. https://doi.org/10.1021/cm0203013

Gorbyk PP, Dubrovin IV, Petranovskaya AL, Turelik MP Magneto-controlled transport of drugs: the current state of development and prospects. Surface. 2010. 2(17): 287. [in Russian].

Gorbуk PP, Petranovskaya AL, Turelik MP,. Abramov NV, Turanskaya SP, Pilipchuk EV, Chekhun VF, Lukyanova NY, Shpak AP, Korduban AM The problem of directed transport of medicines: state and prospects.Chemistry, physics and technology of the surface. 2011. 2(4): 433. [in Ukrainian].

Alyautdin R.N., Kroiter J., Kharkevich DA Delivery of drugs to the brain by nanoparticles. Experim. and a wedge. pharmacology. 2003. 66(2): 65. [in Russian].

Gorbуk PP, Petranovskaya AL, Storozhuk LP and others. Magnetite Based Nanocomposites. Ukr. chemical. J. 2007. 73(5): 24. [in Ukrainian].

Berezov T., Yaglova N., Dmitrieva T., etc. Directed transport of drugs with liposomes. Vest. Ross. AMS. 2004. 3: 42. [in Russian].

Bregadze V.I., Sivaev I.B. Sniper drug or chemical sight for a neutron. Nature. 2004. 4: 1. [in Russian].

Grechko LG, Gorbуk PP, Lerman LB, Chuiko OO The possibility of using magnetic nanoparticles as a means of transport and retention of drugs in the target organ. Add. NAS of Ukraine. - 2006. 2: 181. [in Ukrainian].

Gorbуk P.P., Dubrovin I.V., Petranovskaya A.L. etc. Magnetically sensitive drug carrier based on ultrafine magnetite polyacrylamide particles. Add. NAS of Ukraine. 2005. 4: 224. [in Ukrainian].

Fedorenko O.M., Petranovskaya A.L., Dzubenko L.S., Gorbуk P.P. etc. Liquid-phase modification of the magnetite surface of γ-APS. Add. NAS of Ukraine. 2006. 1: 157. [in Ukrainian].

Usov D.G., Petranovskaya A.L., Turelik M.P., Gorbik P.P. etc. Synthesis and physicochemical properties of nanocomposites based on magnetite modified with meso-2, 3-dimercaptosuccinic acid. Surface. 2009: 320. [in Ukrainian].

Gorbуk P.P., Mishchenko V.M., Petranovskaya A.L. etc. Synthesis of magnetite / hydroxyapatite nanocomposites and investigation of their properties. Nanosystems, nanomaterials, nanotechnologies. 2009. 6(4): 1273. [in Ukrainian].

Shpak A., Gorbуk P. Physico-chemistry of nanomaterials and supramolecular structures. (Kiev: Naukova Dumka, 2007). [in Russian].

Nanomaterials and Supramolecular Structures: рhysics сhemistry and аpplications / еd. by A. P. Shpak, P. P. Gorbyk. (Nederlands: Springer, 2009).

Gorbyk P.P. Nanocomposites with functions of medico-biological nanorobots: synthesis, properties, application. Nanosystems, nanomaterials, nanotechnologies. 2013. 11(2): 323. [in Ukrainian].

Patent UA 99211. Gorbik P.P., Petranovskaya A.L., Turelyk M.P. and others. Nanocapsule with functions of a nanorobot. 2012. [in Ukrainian].

Gorbyk P.P., Lerman L.B., Petranovska A.L., Turanska S.P. Magnetosensitive Nanocomposites with Functions of Medico-Biological Nanorobots: synthesis and properties. Advances in Semiconductor Research: рhysics of nanosystems, spintronics and technological applications. 2014: 161.

Gorbyk P.P., Lerman L.B., Petranovska A.L. et al. Magnetosensitive Nanocomposites with Hierarchical Nanoarchitecture as Biomedical Nanorobots: synthesis, properties and application. Fabrication and Self-Assembly of Nanobiomaterials, Applications of Nanobiomaterials. 2016: 289. https://doi.org/10.1016/B978-0-323-41533-0.00010-6

Abramov M.V., Kusyak A.P., Kaminskiy O.M., Turanska S.P., Petranovska A.L., Kusyak N.V., Gorbyk P.P. Magnetosensitive Nanocomposites Based on Cisplatin and Doxorubicin for Application in Oncology / Horizons in World Physics. - 2017. -Р. 1-56.

Pylypchuk E., Kolodynska D., Gorbyk P.P. Gd(III) Adsorption on the DTPA-functionalized chitosan/magnetite nanocomposites. Separation Science and Technology. 2018. 53(7): 1006. https://doi.org/10.1080/01496395.2017.1330830

Petranovska A.L., Abramov N.V., Turanska S.P., Gorbyk P.P., Kaminskiy A.N., Kusyak N.V. Adsorption of cis-dichlorodiammineplatinum by nanostructures based on single-domain magnetite. J. Nanostruct. Chem. 2015. 5: 275. https://doi.org/10.1007/s40097-015-0159-9

Abramov N.V., Turanska S.P., Kusyak A.P., Petranovska A.L., Gorbyk P.P. Synthesis and properties of magnetite/hydroxyapatite/doxorubicin nanocomposites and magnetic fluids based on them. J. Nanostruct. Chem. 2016. 6: 223. https://doi.org/10.1007/s40097-016-0196-z

Gorbyk Р.Р., Chekhun V. F. Nanocomposites of Medicobiologic Destination: reality and perspectives for oncology. Funct. Mater. 2012. 19(2): 145.

Pylypchuk I.V., Abramov M.V., Petranovska A. L., Turanksa S. P., Budnyak T. M., Kusyak N.V., Gorbyk P.P. Multifunctional Magnetic Nanocomposites on the Base of Magnetite and Hydroxyapatite for Oncology Applications. In book International Conference on Nanotechnology and Nanomaterials. 2017: 35. https://doi.org/10.1007/978-3-319-92567-7_2

Gorbуk P.P., Makhno S.M., Dubrovin I.V. and others. Synthesis and properties of nanostructures absorbing ultra-high frequency electromagnetic and neutron radiation. Nanosystems, nanomaterials, nanotechnologies. 2017. 15(1): 47. [in Ukrainian].

Gorbуk P.P., Abramov M.V., Dubrovin I.V. etc. Synthesis and properties of nanoscale single-domain spinel ferrites. Uspekhi fiz. met. 2017. 18(1): 59. [in Ukrainian]. https://doi.org/10.15407/ufm.18.01.059

Abramov M.V., Turanskaya S.P., Gorbуk P.P. Magnetic properties of super-paramagnetic kernel-shell nanocomposites. Metallophys. the latest technol. 2018. 40(4): 423. [in Ukrainian].

Abramov M.V., Turanskaya S.P., Gorbуk P.P. Magnetic properties of liquids based on polyfunctional nanocomposites such as superparamagnetic nucleus - multilevel shell. Metallophys. the latest technol. 2018. 40(10): 1283. https://doi.org/10.15407/mfint.40.10.1283

Internet resource: Antitumor nanocomposite "Ferroplat". Access point: http://files.nas.gov.ua/NASDevelopmentsBook/PDF/0760.pdf

Lukyanova N.Yu. Doctoral (Biol). Thesis. (Kiev, 2015). [in Ukrainian].

Patent UA 78473 Pyton B.E., Gorbik P.P., Petranovskaya A.L., Turelyk M.P., Abramov M.V., Vasilyeva O.A., Chekhun V.F., Lukyanov N.Yu. Magnetic antitumor fluid. 2013.

Patent UA 112490 Chekhun V.F., Luk'yanova N.Y., Gorbik P.P., Todor I.M., Petranovskaya A.L., Boshitskaya N.V., Bozhko I.V. Antitumor ferromagnetic nanocomposite. 2016.

Abramov M.V., Kusyak A.P., Kaminsky O.M., Turanskaya S.P., Petranovskaya A.L., Kusyak N.V., Turov V.V., Gorbik P.P. Synthesis and properties of magnetically sensitive polyfunctional nanocomposites for use in oncology. Surface. - 2017. 9(24): 165. [in Ukrainian]. https://doi.org/10.15407/Surface.2017.09.165

Kusiak A.P., Turanskaya S.P.,. Nguyen M.H., Gorbуk P.P. Interaction of magnetically sensitive nanomaterials and nanocomposites with cells, viruses, bioactive molecules, heavy metal ions. Surface. 2017. 9(24): 211. [in Ukrainian]. https://doi.org/10.15407/Surface.2017.09.211

Abramov M.V., Petranovskaya A.L., Pilipchuk E.V., Turanskaya S.P., Opanashchuk N.M., Kusyak N.V., Gorobets S.V., Gorbуk P.P. Magnetosensitive polyfunctional nanocomposites based on magnetite and hydroxyapatite for use in oncology. Surface. 2018. 10(25): 245. [in Ukrainian]. https://doi.org/10.15407/Surface.2018.10.245

Arias J.L., Reddy L.H., Couvreur P. Fe3O4/chitosan nanocomposite for magnetic drug targeting to cancer. J. Mater. Chem. 2012. 22: 7622. https://doi.org/10.1039/c2jm15339d

Popescu R.C., Andronescu E., Vasile B.S., Truscă R., Boldeiu A., Mogoantă L., Mogosanu G.D., Temelie M., Radu M., Grumezescu A. M., Savu D. Fabrication and Cytotoxicity of Gemcitabine-Functionalized Magnetite Nanoparticles. Molecules. 2017. 22(7): 1080. https://doi.org/10.3390/molecules22071080

Iglesias G.R., Reyes-Ortega F., Checa Fernandez B.L., Delgado Á.V. Hyperthermia-Triggered Gemcitabine Release from Polymer-Coated Magnetite Nanoparticles. Polymers. 2018. 10(3): 269. https://doi.org/10.3390/polym10030269

Patent UA 118524 Gorbуk P.P., Petranovska A.L., Abramov M.V., Turanskaya S.P., Pilipchuk E.V., Opanashchuk N.M., Kulish M.P., Dmitrenko O.P., Busko T.O., Pavlenko O.L., Gorobets S.V. Nanocomposite material. 2019

Meijia Wu, Shengwu Huang. Magnetic nanoparticles in cancer diagnosis, drug delivery and treatment (Review). Molecular and clinical oncology. 2017. 7: 738.

Lazhen Shen, Bei Li, Yongsheng Qiao. Fe3O4 Nanoparticles in Targeted Drug/Gene Delivery Systems. Materials. 2018. 11: 1. https://doi.org/10.3390/ma11020324

Bae Y.B., Park K. Targeted drug delivery to tumors: Myths, reality and possibility. J. Controll. Release. 2011. 153: 198. https://doi.org/10.1016/j.jconrel.2011.06.001

Popescu R.C., Grumezescu A.M. Magnetite Nanostructures with Applications in Cancer Therapy. Curr. Proteom. 2014. 11: 128. https://doi.org/10.2174/157016461102140917122621

Joubert F., Martin L., Perrier, S., Pasparakis G. Development of a gemcitabine-polymer conjugate with prolonged cytotoxicity against a pancreatic cancer cell line. ACS Macro Lett. 2017. 6: 535. https://doi.org/10.1021/acsmacrolett.7b00160

Viota J.L., Carazo A., Munoz-Gamez J.A., Rudzka K., Gómez-Sotomayor R., Ruiz-Extremera A., Salmerón J., Delgado A.V. Functionalized magnetic nanoparticles as vehicles for the delivery of the antitumor drug gemcitabine to tumor cells. Physicochemical in vitro evaluation. Mater. Sci. Eng. C Mater. Biol. Appl. 2013. 33: 1183. https://doi.org/10.1016/j.msec.2012.12.009

Li H., Ke F., An Y., Hou X., Zhang H., Lin M., Zhang D. Gemcitabine-loaded magnetic albumin nanospheres for cancer chemohyperthermia. J. Nanopart. Res. 2013. 15:1513. https://doi.org/10.1007/s11051-013-1513-9

Wang L., An Y., Yuan C., Zhang H., Liang C., Ding F., Gao Q., Zhang D. GEM-loaded magnetic albumin nanospheres modified with cetuximab for simultaneous targeting, magnetic resonance imaging, and double-targeted thermochemotherapy of pancreatic cancer cells. Int. J. Nanomed. 2014. 10: 2507. https://doi.org/10.2147/IJN.S77642

Massart R. Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE trans. Magn. 1981. 17: 1247. https://doi.org/10.1109/TMAG.1981.1061188

Mayti D., Agrawal D.C. Synthesis of Iron Oxide Nanoparticles under Oxidizing Environment and Their Stabilization in Aqueous and Non-Aqueous Media. J. Magn. Magn. Mater. 2007. 308: 46. https://doi.org/10.1016/j.jmmm.2006.05.001

Jiang W., Lai K.L., Hu H., Zeng X.-B., Lan F., Liu F., Liu K.-X., Wu Y., Gu Z.-W. The effect of [Fe3+]/[Fe2+] molar ratio and iron salts concentration on the properties of superparamagnetic iron oxide nanoparticles in the water/ethanol/toluene system. J. Nanopart. Res. 2011. 13: 5135. https://doi.org/10.1007/s11051-011-0495-8

Malik M.A., Wani M.Y., Hashim M.A. Microemulsion method: A novel route to synthesize organic and inorganic nanomaterials. 1st Nano Update. Arabian J. Chem. 2012. 5: 397. https://doi.org/10.1016/j.arabjc.2010.09.027

Moore T.L., Rodriguez-Lorenzo L., Hirsch V., Balog S., Dominic Urban D., Jud C., Rothen-Rutishauser B., Lattuada M., Petri-Fink A. Nanoparticle colloidal stability in cell culture media and impact on cellular interactions. Chem. Soc. Rev. 2015. 44: 6287. https://doi.org/10.1039/C4CS00487F

Ahlberg S., Antonopulos A., Diendorf J., Dringen R., Epple M., Flöck R., Goedecke W., Graf C., Haberl N., Helmlinger J., et al. PVP-Coated, negatively charged silver nanoparticles. J. Nanotechnol. 2014. 5: 1944. https://doi.org/10.3762/bjnano.5.205

Yu S.-M., Laromaine A., Roig A. Enhanced stability of superparamagnetic iron oxide nanoparticles in biological media using a pH adjusted-BSA adsorption protocol. J. Nanopart. Res. 2014. 16: 2484. https://doi.org/10.1007/s11051-014-2484-1

Wiogo H., Lim M., Bulmus V., Gutiérrez L., Woodward R.C., Amal R. Insight into Serum Protein Interactions with Functionalized Magnetic Nanoparticles in Biological Media. Langmuir. 2012. 28: 4346. https://doi.org/10.1021/la204740t

Popescu R.C., Andronescu E., Grumezescu A.M. In vivo evaluation of Fe3O4 nanoparticles. Rom. J. Morphol. Embryol. 2014. 55: 1013.

Mahdavi M., Ahmad M.B., Haron M.J., Namvar F., Nadi B., Rahman M.Z.A., Amin J. Synthesis, Surface Modification and Characterisation of Biocompatible Magnetic Iron Oxide Nanoparticles for Biomedical Applications. Molecules. 2013. 18: 7533. https://doi.org/10.3390/molecules18077533

Chen D.Z., Tang Q.S., Li X.D., Zhou X.J., Zhang J., Xue W.Q., Xiang J.Y., Guo C.Q. Biocompatibility of magnetic Fe3O4 nanoparticles and their cytotoxic effect on MCF-7 cells. Int. J. Nanomed. 2012. 7: 4973. https://doi.org/10.2147/IJN.S35140

Sabella S., Carney R.P., Brunetti V., Malvindi M.A., Al-Juffali N., Vecchio G., Janes S.M., Bakr O.M., Cingolani R., Stellacci F., et al. A general mechanism for intracellular toxicity of metal-containing nanoparticles. Nanoscale. 2014. 6: 7052. https://doi.org/10.1039/c4nr01234h

Cottin S., Ghani K., de Campos-Lima P.O., Caruso M. Gemcitabine intercellular diffusion mediated by gap junctions: New implications for cancer therapy. Mol. Cancer. 2010. 9: 141. https://doi.org/10.1186/1476-4598-9-141

Quinto C.A., Mohindra P., Tong S., Bao G. Multifunctional superparamagnetic iron oxide nanoparticles forcombined chemotherapy and hyperthermia cancer treatment. Nanoscale. 2015. 7:12728. https://doi.org/10.1039/C5NR02718G

Schlorf T., Meincke M., Kossel E., Glueer C.C., Jansen O., Mentlein R. Biological Properties of Iron Oxide Nanoparticles for Cellular and Molecular Magnetic Resonance Imaging. Int. J. Mol. Sci. 2011. 12: 12. https://doi.org/10.3390/ijms12010012

Singh R., Shakya A.K., Naik R., Shalan N. Stability-Indicating HPLC Determination of Gemcitabine in Pharmaceutical Formulations. Int. J. Anal. Chem. 2015: 862592. https://doi.org/10.1155/2015/862592

Parsian M., Unsoy G., Mutlu P., Yalcin S., Tezcaner A., Gunduz U. Loading of Gemcitabine on chitosan magnetic nanoparticles increases the anti-cancer efficacy of the drug. Eur. J. Pharmacol. 2016. 784: 121. https://doi.org/10.1016/j.ejphar.2016.05.016

Dash S., Murthy P.N., Nath L., Chowdhury P. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol. Pharm.-Drug Res. 2010. 67: 217.

Jaidev L.R., Krishnan U.M., Sethuraman S. Gemcitabine loaded biodegradable PLGA nanospheres for in vitro pancreatic cancer therapy. Mater. Sci. Eng. C Mater. Biol. Appl. 2015. 47: 40. https://doi.org/10.1016/j.msec.2014.11.027

Cherie Ann Kruger, Heidi Abrahamse. Utilisation of Targeted Nanoparticle Photosensitiser Drug Delivery Systems for the Enhancement of Photodynamic Therapy. Molecules. 2018. 23: 1. https://doi.org/10.3390/molecules23102628

Qingxin Mu, Guanyou Lin, Victoria K. Patton, Kui Wang, Oliver W. Press, Miqin Zhang. Gemcitabine and chlorotoxin conjugated iron oxide nanoparticles for glioblastoma therapy. Journal of Materials Chemistry. 2016.

Petranovska А.L., Abramov М.V., Opanashchuk N.М., Turanska S.P., Kusyak N.V., Gorbyk P.P. Synthesis and properties of magnetically sensitive nanocomposites based on magnetite and gemcitabine. Chemistry, Physics and Technology of Surface. 2018. 9(4): 353.

Petranovskaya A.L., Abramov M.V., Opanashuk N.M., Pavlovskaya A.F., Kusyak N.V., Gorbik P.P., Lukyanova N.Y., Chekhun V.F. Synthesis of magnetic fluids based on magnetite, gemcitabine and CD340 antibodies and study of their properties. Materials of Conf. "Modern Materials Science: Physics, Chemistry, Technology" 2019: 201.

Opanaschuk N.M., Petranovska A.L., Gorbyk P.P., Kusyak N.V., Lukianova N.Y., Chehun V.F. The investigation into a cytotoxic action of vector magnetic liquids with adsorbed gemcitabine in vitro. Ukrainian Conference with International Participation Chemistry, рhysics and technology of surface and workshop metal-based biocompatible nanoparticles: Synthesis And Applications. Book of abstracts. 2019: 133.

Freshne R.Ya. Animal cell culture: a practical (Moscow: BINOM. Laboratory of Knowledge, 2010).[in Russian].

Zelentsov V.I., Datsko T.Ya. Application of adsorption models for the description of equilibrium in an aluminum oxyhydroxide system - fluorine. Electronic material processing. 2012. 48(6): 65. [in Russian].

Chen D.-X., Sun N., Gu H.-C. Size analysis of carboxydextran coated superparamagnetic iron oxide particles used as contrast agent of magnetic resonance imaging. J. App. Phys.2009. 106(6): 63906. https://doi.org/10.1063/1.3211307

Petranovska А.L., Abramov М.V., Opanashchuk N.М., Kusyak N.V., Kusyak А.P., Turanska S.P., Gorobets S.V., Gorbyk P.P., Lukianova N.Yu., Chekhun V.F. Magnetically sensitive nanocomposites and magnetic fluids based on magnetite, gemcitabine and HER2 antibody. Ukrainian Conference with International Participation Chemistry, рhysics and technology of surface and workshop metal-based biocompatible nanoparticles: synthesis and applications. Book of abstracts. 2019: 134.

Gianfranco Pasut, Fabiana Canal, Lisa Dalla Via, Silvia Arpicco, Francesco M. Veronese, Oddone Schiavon. Antitumoral activity of PEG - gemcitabine prodrugs targeted by folic acid. Journal of Controlled Release. 2008: 239. https://doi.org/10.1016/j.jconrel.2008.02.002

Shmeeda H., Mak L., Tzemach D., Astrahan P., Tarshish M., Gabizon A. Intracellular uptake and intracavitary targeting of folate-conjugated liposomes in a mouse lymphoma model with up-regulated folate receptors. Mol. Cancer Ther. 2006. 5(4): 818. https://doi.org/10.1158/1535-7163.MCT-05-0543

Chitta Ranjan Patra, Resham Bhattacharya, Enfeng Wang, Aaron Katarya, Julie S. Lau, Shamit Dutta, Michael Muders, Shanfeng Wang, Sarah A. Buhrow, Stephanie L. Safgren, Michael J. Yaszemski, Joel M. Reid, Matthew M. Ames, Priyabrata Mukherjee, Debabrata Mukhopadhyay. Targeted Delivery of Gemcitabine to Pancreatic Adenocarcinoma Using Cetuximab as a Targeting Agent. Cancer Res. 2008. 6: 68. https://doi.org/10.1158/0008-5472.CAN-07-6102

Wei-Ting Kuo, Jian-Yuan Huang, Min-Hua Chen, Ching-Yun Chen, Yan-Jye Shyong, Ko-Chung Yen, Yu-Jun Sun, Cherng-Jyh Ke, Yung-Hsin Cheng, Feng-Huei Lin. Development of gelatin nanoparticles conjugated with phytohemagglutinin erythroagglutinating loaded with gemcitabine for inducing apoptosis in non-small cell lung cancer cells. J. Mater. Chem. 2016.

Atyabi F., Hosseinzadeh H., Dinarvand R., Ostad S. Preparation and characterization of gemcitabine nanoparticles. Research in Pharmaceutical Sciences. 2012. 7(5): 236

Caixia Wang, Yuanqiang Zheng, Michael A. Sandoval, Solange A. Valdes, Zhe Chen, Dharmika S. Lansakara-P, Maolin Du, Yanchun Shi, Zhengrong Cui. Oral 4-(N)-stearoyl gemcitabine nanoparticles inhibit tumor growth in mouse models. Oncotarget. 2017. 8(52): 89876. https://doi.org/10.18632/oncotarget.21264

Zhongyi Guo, Feng Wang, Yang Di, Lie Yao, Xinzhe Yu, Deliang Fu, Ji Li, Chen Jin. Antitumor effect of gemcitabine-loaded albumin nanoparticle on gemcitabine-resistant pancreatic cancer induced by low hENT1 expression. Int J Nanomedicine. 2018. 13: 4869. https://doi.org/10.2147/IJN.S166769

Xiao J , Yu H. Gemcitabine Conjugated Chitosan and Double Antibodies (Abc-GC-Gemcitabine Nanoparticles) Enhanced Cytoplasmic Uptake of Gemcitabine and Inhibit Proliferation and Metastasis In Human SW1990 Pancreatic Cancer Cells. International Medical Journal of Experimental and Clinical Research. 2017. 23: 1613. https://doi.org/10.12659/MSM.901292

Zhang R, Ru Y, Gao Y, Li J, Mao S. Layer-by-layer nanoparticles co-loading gemcitabine and platinum (IV) prodrugs for synergistic combination therapy of lung cancer. Drug Des Devel Ther. 2017. 11: 2631. https://doi.org/10.2147/DDDT.S143047

Laurent Louis, Ghyselen Bruno, Fermon Claude and other Nanosciences and Nanotechnology: Evolution or Revolution? - Springer, 2016: 438. ISBN-13: 978-3319193595

Published
2019-10-30
How to Cite
Turanska, S. P., Opanashchuk, N. M., Petranovska, A. L., Kusyak, N. V., Tarasiuk, B. I., Gorobets’, S. V., Turov, V. V., Gorbyk, P. P., & Abramov, M. V. (2019). Synthesis, properties and application of nanocomposites based on gemcitabine in oncotherapy. Surface, (11(26), 577-616. https://doi.org/10.15407/Surface.2019.11.577
Section
Medical and biological problems of surface