МЕХАНОХИМИЧЕСКИЙ СИНТЕЗ НАНОЧАСТИЦ ТИТАНАТА БАРИЯ В СЕГНЕТОЭЛЕКТРИЧЕСКОЙ ФАЗЕ

Б.М. Горелов¹, В.А. Зажигалов², Е.В. Котенок¹, С.Н. Махно¹, В.В.Сидорчук², С.В.Халамейда²

 1 Институт химии поверхности им. А.А. Чуйко НАН Украины, Ген. Наумова, 17, Киев 2 Институт сорбции и проблем эндоэкологии НАН Украины, Ген. Наумова 13, Киев

Оптимизированы параметры механохимического синтеза наночастии титаната бария из титанил оксалата бария. Методами рентгеновского фазового ИК-спектроскопии. комбинационного рассеяния. анализа. дифференииальной сканирующей калориметрии, спектроскопии диэлектриков показано, что наночастицы содержат кубическую и тетрагональную модификации кристаллической решетки. Переход сегнетоэлектрическая- параэлектрическая фаза проявляется при $133~^{\circ}C$. Спектр примесей в частицах полученных механохимическим синтезом и терморазложением титанил оксалата бария или смеси оксидов бария и титана одинаков.

Ввеление

Титанат бария BaTiO₃ (ТБ) - один из наиболее используемых материалов в современных электронных и технических устройствах [1,2]. Перспектива улучшения параметров устройств, используя наноразмерный BaTiO₃, выдвигает повышенные требования к чистоте, дефектности и величине диэлектрических параметров материала. Поскольку структура и диэлектрические параметры ТБ существенно зависят от размера частиц [3,4], то наряду с модернизацией традиционной керамической технологии, перспективным методом является механохимический синтез [5,6], который позволяет получать с меньшими энергетическими затратами наночастицы ТБ с высокой реакционностью поверхности и достаточной чистоты.

Механохимический синтез реализуется в процессе механического воздействия на исходные соединения, которое активирует реагенты, понижая энергетический барьер химического взаимодействия, и стимулирует химическую реакцию между соединениями [5-7]. Продукты, полученные при механохимической обработке, как правило, многофазны, содержат множество дефектов и примесей, которые стабилизируют несегнетоэлектрическую кубическую модификацию $BaTiO_3$. Поэтому заключительной фазой синтеза сегнетоэлектрической фазы является термообработка продукта, при которой отжигаются дефекты и примеси в кристаллической решетке.

Для механохимического синтеза существенным является выбор исходных реагентов и их соотношения. Известно использование в качестве исходных продуктов смеси оксидов бария и титана (анатаз), активация которых механическим воздействием позволяет понизить температуру заключительной термической обработки [8-10]. При этом в механохимическом синтезе $BaTiO_3$ практически не использован титанил оксалат бария $BaTiO(C_2O_4)_2\cdot 4H_2O$ (TOБ). Преимуществами синтеза из титанил оксалата бария, несмотря на вероятность внесения примесей карбонатов в решетку $BaTiO_3$, являются стехиометрическое соотношение компонентов, необходимое для получения $BaTiO_3$, и их

повышенная реакционная способность из-за эффекта Хедвалла, которая ведет к снижению температуры реакции [9,10].

Следует отметить, что титанил оксалат бария, смесь оксидов титана (анатаз) и бария используются для получения нанокристаллического титаната бария твердофазным синтезом в процессе термической обработки. При этом в случае $BaTiO(C_2O_4)_2 \cdot 4H_2O$ сначала протекает реакция разложения. В обоих случаях заключительный твердофазный синтез протекает при температурах $T \ge 1200$ °C. Однако термообработка при высоких температурах препятствует получению наночастиц титаната бария из-за агрегирования, агломерирования частиц и роста зерен кристаллитов [11-13].

Целью настоящей работы была оптимизация механохимического синтеза наноразмерных частиц титаната бария в тетрагональной сегнетоэлектрической фазе, используя в качестве исходного реагента титанил оксалата бария, определение спектра дефектов в частицах и влияния дефектов и примесей на диэлектрические параметры частиц. Для сравнения влияния условий синтеза и исходных реагентов на фазовый состав, спектр примесей и дефектов, диэлектрические характеристики частиц нанокристаллический титанат бария получали также термической обработкой титанил оксалата бария и смеси ультрадисперсных оксидов титана и бария и механохимическим синтезом из смеси оксидов. При этом в качестве оксида титана использовались две модификации TiO2 – анатаз с высокой реакционностью поверхности и смесь анатаза и брукита, обладающего более низкими удельной поверхностью и реакционностью. Основные исследования выполнены с помощью рентгеновского фазового анализа, ИКспектроскопии, комбинационного рассеяния (КР), дифференциальной сканирующей калориметрии (ДСК), термогравиметрического анализа и стандартных методов измерения диэлектрической проницаемости диэлектриков.

Объекты и экспериментальные методы

Исходным реагентом для оксалатного способа синтеза ТБ был 4-водный титанил оксалат бария (фирма "Ferro"). При синтезе $BaTiO_3$ из оксидов бария и титана использован диоксид титана в виде смеси анатаза и брукита с удельной поверхностью 54 M^2 /г или только анатаз с удельной поверхностью 103 M^2 /г, полученный прокаливанием при 500 °C метатитановой кислоты (реактивы марки «чда»).

Механохимическая обработка проведена в планетарной шаровой мельнице Pulverisette-6 (фирма "Fritsch") при частоте 600 об/мин на воздухе и в дистиллированной воде при соотношении масс реагент/вода 0.1 в течение 2 -10 ч. Емкость (250 мл) и шары (10 штук диаметром 15 мм, общей массой 130 г) были изготовлены из Si_3N_4 . Использовано два режима обработки, когда отношение массы шаров к навеске было 13 (режим I) и 26 (режим II).

Образцы ТБ, полученные после механохимической обработки титанил оксалата бария, термообрабатывали на воздухе при температурах 500-800 °C в течение 2 ч. Образцы $BaTiO_3$ получали после термообработки титанил оксалата бария при 700 и 800 °C в течении 5 ч, а также после механохимической обработки смеси оксидов в режиме I в течение 5 ч и последующего отжига при 600, 800, 1100 и 1200 °C в течение 2 ч.

Фазовый состав соединений определяли с помощью дифрактометра Philips PW 1830 (Си $K\alpha$ - излучение). Размер кристаллитов D рассчитан по уширению наиболее интенсивных рефлексов на дифрактограммах по уравнению Дебая - Шеррера [20]. Термогравиметрический анализ проведен используя "Derivatograph - C" системы F. Paulik, J. Paulik, L. Erdey при скорости нагрева 10 °С/мин в воздухе.

Удельная поверхность частиц $BaTiO_3$ определена по термодесорбции аргона S_{Ar} с хроматографическим контролем и методом БЭТ из низкотемпературных изотерм адсорбции азота S_{BET} с помощью газометра $\Gamma X-1$. Гранулометрический состав порошков

получен, используя седиментацию в этиленгликоле с помощью анализатора "ZETASIZER-2000" (Malvern Instruments).

ИК -спектры диффузного отражения (DRIFT) в области 4000-400 см $^{-1}$ получены с помощью спектрофотометра "Spectrum-One" (Perkin-Elmer). Спектры комбинационного рассеяния получены на спектрографе "RENISHAW system" при комнатной температуре, с использованием для возбуждения Ar-лазер с λ = 514 нм. Кривые дифференциальной сканирующей калориметрии записаны с помощью калориметра Perkin - Elmer Instruments Pyris Diamond DSC в интервале температур 20 - 250°C при массе образца ~ 30 мг и скорости сканирования 20 °C/мин.

Диэлектрическая проницаемость порошков $\varepsilon = \varepsilon'$ - $i\varepsilon''$ (ε' и ε'' – действительная и мнимая части проницаемости) измерена на частоте 10 ГГц при насыпной плотности образцов 1.7 - 2.1 г/см³, скорости нагрева 1 °C/мин стандартным методом спектроскопии диэлектриков [14], используя для определения разности фаз и КСВН измерители РФК2-18 и Я2Р-67.

Экспериментальные результаты и обсуждение

Механохимическая обработка разрушает кристаллическую структуру титанил оксалата бария и формирует дефектную структуру титаната бария. Термическая обработка механически активированного продукта при 550 °C совершенствует кристаллическую решетку. Рентгенофазовый анализ подтверждает синтез кубической модификации кристаллической структуры титаната бария. Сформированная структура совпадает со структурой ТБ, полученного терморазложением и твердофазной реакцией при 700 и 800 °C титанил оксалата бария. В пользу кубической модификации титаната бария свидетельствуют отсутствие расщепления рефлекса (200/002), которое характерно для тетрагональной модификации [12,13], и типичные для кубической модификации соотношения интенсивностей рефлексов I_{101}/I_{002} (таблица). На дифрактограмме ТБ, полученного механохимическим синтезом из смеси оксидов с использованием анатаза, расщепление рефлекса (200/002) с $2\theta \approx 45^\circ$, проявляется после отжига дефектов при 1250 предположить, что на дифрактограммах отсутствие тетрагональной модификации решетки после механохимического синтеза связано с высокой степенью дефектности образцов и уширением рефлексов.

Характеристики образцов титаната бария, полученных после механохимического синтеза и термообработки представлены в таблице. Видно, что размер частиц ТБ составляет 12.0 - 34.5 нм. Частицы рентгеновски однофазны, содержат кубическую фазу (в двух образцах после механохимического синтеза в воде и одном после термообработки при 700 °C обнаружены остатки титанил оксалата бария). Эффективный размер частиц $D_s = 6 \cdot 10^3/(\rho \cdot S_{Ar})$ [нм], ($\rho = 6.0 \text{ г/см}^3$ – плотность образца), полученный по величине удельной поверхности, превышает размер кристаллитов, определенный из уравнения Дебая-Шеррера, что свидетельствует об агрегировании частиц. Наночастицы с высокой удельной поверхностью, малым размером и практически отсутствием агломерации получаются после механохимического синтеза из оксидов ВаО, TiO_2 (анатаз или смесь брукит, анатаз). Использование в синтезе модификации TiO_2 брукита, при прочих равных условиях синтеза, по-видимому, проявляется в слабом росте размера частиц Ва TiO_3 . Термическая обработка частиц при температурах свыше $\sim 700\,^{\circ}\text{C}$ сопровождается ростом размера кристаллитов и увеличением D_s , обусловленных агрегацией частиц.

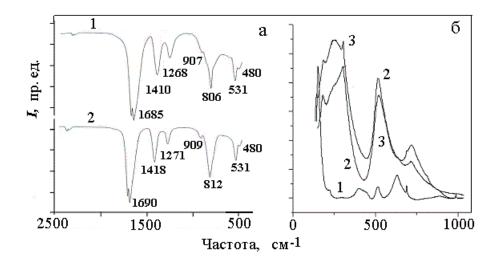
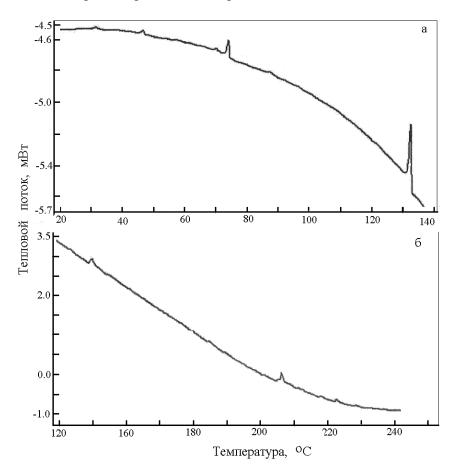

Механохимический синтез титаната бария в плотной среде (вода) приводит к фазовой неоднородности состава и росту дисперсности частиц, что, по-видимому, связано с нарушением энергетического баланса реакции синтеза из-за диссипации энергии шаров в водную среду.

Таблица. Влияние условий механохимического синтеза (МС) на воздухе (А) и в воде (В), термической обработки (ТО) титанил оксалата бария и смеси оксидов на характеристики полученного титаната бария.*

Образцы и	Фазов.	I_{101}/I_{002}	$D_{101,}$	D_{002} ,	D_{111} ,	S_{Ar}	S_{BET} ,	$D_{s,}$
параметры	состав	1101/1002	HM	HM	HM	$M^2 \Gamma^{-1}$	$M^2 \Gamma^{-1}$	HM
обработки	частиц						IVI I	111V1
MC -A2 -I	ТБ	0/100	_	34.5	24,0	17,2	17,1	58
MC -A2 -I-550	ТБ	100/27	19.5	17.0	20.6	15,2	14,6	66
MC -A2 -I-700	ТБ	100/30	22.0	20.5	22.5	13,0	13,1	77
MC -A2 -I-800	ТБ	100/30	24.5	22.0	23.9	10,2	10,4	98
MC -A5 -I	ТБ	0/100	21.3	25.5	19,0	23,1	24,1	43
MC -A5 -I-550	ТБ	100/29	15.0	12.0	16,5	19,6	19,9	51
MC -A5 -I-700	ТБ	100/31	16.5	13.5	18.6	17,5	17,1	57
MC -A5 -I-800	ТБ	100/36	18.5	16.5	19.7	14,2	14,0	70
MC -A5 -II	ТБ	0/100	-	27.5	16,6	12,8	12,2	78
MC -A5-II -500	ТБ	100/39	-	12.8	14.1	17,6	18,5	56
MC -A5-II -700	ТБ	100/30	-	13.8	15.0	17,0	16,8	59
MC -A10 -II	ТБ	0/100	-	20.4	19,4	25,5	25,0	39
MC -A10 -II-500	ТБ	100/40	16.2	13.5	17,8	21,2	22,0	47
MC -A10 -II-700	ТБ	100/26	17.4	14.7	18.8	20,4	19,8	49
MC – B5 -I	ТОБ,	0/35	-	24.0	-	13,1	12,5	76
	ТБ					ŕ	ĺ	
MC -B5- I-550	ТОБ,	0/39	-	25.0	14.0	10,3	10,6	97
	ТБ							
MC -B5- I-700	ТБ	100/33	16.0	12.5	15,8	8,0	7,7	125
MC- B5- I -800	ТБ	100/35	19.5	15.5	17.7	6,2	6,6	161
TO -700	ТОБ,	100/31	15.7	16.0	16.2	6,8	6,7	147
	ТБ							
TO -800	ТБ	100/26	16.8	17.5	17,6	5,3	4,8	208
MC-A5- I	ТБ	100/28	18,0	16,3	14,4	48		21
ВаО, брук.,анатаз								
MC- A5 -I	ТБ	100/36	15,1	16,3	13,6	45		22
(ВаО, анатаз)								
MC-A5 -I- 1250	ТБ	100/23	21,5	22,7	18,5	3		333
(ВаО, анатаз)								

^{*}В наименовании образцов арабские и римские цифры обозначают время, температуру и режим обработки, D_{101} , D_{002} , D_{111} — размер кристаллитов в соответствующих кристаллографических направлениях.

Превращение титанил оксалата бария в титанат бария кубической модификации при механохимической обработке иллюстрируют ИК-спектры (рис. 1 а). ИК -спектры образцов полученных после 2 и 5 ч механохимического синтеза аналогичны. При этом спектры титаната бария, полученного после механохимического синтеза из титанил оксалата бария, смеси оксидов (BaO, TiO_2 (брукит, анатаз)) и термической обработки $BaTiO(C_2O_4)_2\cdot 4H_2O$ аналогичны (рис. 1 а). Спектры характеризуется полосами с максимумами поглощения при ~ 480 , 531, 806, 907, 1268, 1410 и 1685 см⁻¹. Полосы в интервале 800 - 475 см⁻¹ связаны с модой TO связи Ti-O и свидетельствуют о наличии кубической модификации $BaTiO_3$. Полоса ~ 806 (812) см⁻¹ соответствует колебаниям связи Ti-OH в решетке. Полосы ~ 1268 (1271) и 1410 (1418) см⁻¹ связаны с примесями карбонатов, полоса ~ 1685 (1690) см⁻¹ связана с группами OH^- . Кроме того, во всех образцах проявляется широкая полоса с максимумом ~ 3500 см⁻¹, которая связана с


Рис.1. ИК- спектры (а) титаната бария полученного из титанил оксалата бария после термической обработки при $700~^{\circ}$ C (1) и механохимической обработки смеси оксидов бария и титана (смесь брукита и анатаза) (2). Спектры комбинационного рассеяния (б) титанил оксалата бария до (1) и после механохимической обработки в течение 5 ч (2) и последующей термообработки при $550~^{\circ}$ C (3).

растягивающими колебаниями OH^- групп, локализованными в кристаллической решетке [15-17]. Следовательно, в частицах $BaTiO_3$ независимо от способа синтеза и состава исходных реагентов состав примесей одинаков и включает карбонаты CO_3^{2-} и гидроксильные группы. Следует отметить смещение в сторону низких частот полос поглощения по мере роста размера частиц, которое ярко проявляется в образцах титаната бария с разными размерами частиц, полученных термической обработкой и механохимическим синтезом (рис. 1 а).

Термогравиметрический анализ свидетельствует, что молекулы воды локализованы на поверхности и в объеме частиц титаната бария. На кривой потери массы проявляется два интервала температур падения массы: ~60 -140 °C и ~300 -650 °C, которые сопровождает поглощение тепла. Низкотемпературный интервал соответствует десорбции с поверхности наночастиц слабо и сильносвязанной воды, ОН групп, тогда как падение массы в высокотемпературном интервале, преимущественно, обусловлено отжигом гидроксильных групп, локализованных в кристаллической решетке [18].

Спектры комбинационного рассеяния, в отличие от рентгенофазового анализа и ИК-спектроскопии, указывают образование тетрагональной модификации титаната бария в процессе механохимического синтеза (рис. 1 б). Так, после 5 ч механохимической реакции спектр ТОБ (рис. 1 б, кр.1) трансформируется в спектр ТБ с характерными для тетрагональной модификации полосами, симметрией и модами колебаний ~ 193, 303 B₁, E(LO+TO), 520 E(TO), A₁(TO) и 717 E(LO), A₁(LO) см⁻¹ (рис. 1 б, кр. 2). Полоса ~ 193 см-1 связана с карбонат содержащими примесями в кристаллической решетке. Термическая обработка, понижает количество кубической фазы и повышает содержание тетрагональной фазы, что ведет к уширению и росту интенсивности пика 717 см⁻¹, появлению широкого пика 247 см⁻¹, который соотносится с модой ТО симметрии A_1 , и практически не изменяет интенсивность пика 520 см⁻¹ (рис. 1 б, кр. 3). При этом полосы ~ 520 и 717 см⁻¹ проявляются в спектре наночастиц $BaTiO_3$ как кубической, так и тетрагональной модификации, что связывается с наличием в кристаллической решетке кубической фазы центров с локальной симметрией тетрагональной фазы, появление которых обусловлено разупорядочением локализации атомов Ті в решетке [15-19]. Наличие сегнетоэлектрической тетрагональной фазы в

наночастицах ВаТіО₃ подтверждают полосы 247 и 303 см⁻¹, которые чувствительны к фазовому переходу сегнето — параэлектрик с повышением температуры [19]. Таким образом, при механохимическом синтезе получаются наночастицы кубической модификации титаната бария с включениями тетрагональной фазы и дефектов решетки - центров локальной симметрии тетрагональной фазы.

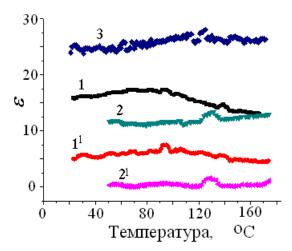


Рис. 2. Кривые ДСК при охлаждении (а) и нагревании (б) титаната бария, полученного механохимической обработкой смеси оксидов.

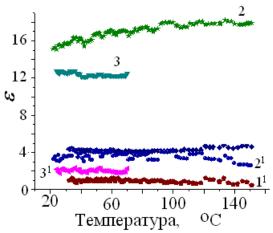
Кроме того, образование тетрагональной фазы титаната бария в процессе механохимического синтеза подтверждают кривые дифференциальной сканирующей калориметрии. На кривых проявляется гистерезис фазового перехода сегнето - параэлектрик с точкой Кюри $T_c \sim 143$ °C при нагревании и ~ 133 °C при охлаждении (рис. 2). Кроме того, на кривых ДСК проявляется несколько пиков при ~ 32 , 48, 75 и 207 °C, которые, вероятно, связаны с фазовыми превращениями и свидетельствуют о фазовой неоднородности структуры. Изменение энтальпии фазового перехода с $T_c \sim 133$ °C составляет $\Delta H \sim 3$ мДж/г. Такая величина ΔH существенно ниже значения $\Delta H \sim 550$ мДж/г, полученного при фазовом переходе в однофазных частицах ВаТіО $_3$ с размером 250 нм и других условиях эксперимента [20]. Поэтому, полученное после механохимического синтеза, количество сегнетоэлектрической фазы можно оценить как малое.

На температурных зависимостях действительной ε' и мнимой ε'' частей диэлектрической проницаемости, полученных при нагревании и охлаждении, фазовый переход проявляется как увеличение параметров ε' и ε'' в окрестности 123-143 °C. При этом зависимости $\varepsilon'(T)$ и $\varepsilon''(T)$, полученные при прямом и обратном ходе измерений,

значительно отличаются, что обусловлено отжигом адсорбированной воды и OH^- групп, связанных на поверхности, при повышении температуры. Отжиг диполей H_2O и OH^-

Рис. 3. Температурные зависимости действительной (1, 2, 3) и мнимой $(1^1, 2^1)$ частей диэлектрической проницаемости титаната бария, полученного механохимической обработкой смеси оксидов при нагревании $(1, 1^1)$ и охлаждении $(2, 2^1)$ и последующего отжига при 850 °C (3).

групп понижает потери на поляризацию диполей ε " и ослабляет отклик ε ' при $T \le 90$ °C. На зависимостях $\varepsilon'(T)$ и $\varepsilon''(T)$, полученных при нагреве, имеют место особенности поведения параметров при температурах пиков сигнала ДСК, а также немонотонный рост ε' и ε'' в диапазоне 90-98 °C (рис. 3, кр.1,1¹). После отжига поверхностных состояний воды и ОН групп ε' и ε'' существенно понижаются (рис. 3, кр. 2, 2¹). Вблизи перехода сегнето - параэлектрик ε' и ε'' подчиняются закону Кюри – Вейсса


$$\varepsilon = C/(T-T_o)$$
,

где C - постоянная Кюри [$C \approx (1\text{-}5)\cdot 10^3$ K], T_o — характеристическая температура [21]. Величина параметра значительно ниже значения $C \approx 1\cdot 10^5$ K, характерного для монокристаллических образцов [21], и свидетельствует о незначительном объеме тетрагональной фазы в частицах. После отжига порошка при 850 °C в течение 3.5 ч ε ′ и ε ″ существенно растут до значений 25 -30 и 9-15 в интервале 30 < T< 170 °C. (рис. 3, кр. 3). При этом постоянная Кюри повышается до $\sim 1\cdot 10^4$ K, что может свидетельствовать о росте объема сегнетоэлектрической фазы. Высокие значения ε ″ и корреляция изменений ε ′ и ε ″ показывают, что поведение диэлектрической проницаемости связано с возрастанием числа дипольных дефектов в частицах после отжига.

Механохимическая обработка дисперсного ТОБ дает нанодисперсный ВаТіО $_3$ со значениями параметров $\varepsilon'=4$ -6 и $\varepsilon''=1.2$ - 4.5 в интервале температур 30-160 °C. На температурных зависимостях ε' и ε'' , как правило, проявляются скачкообразные изменения параметров связанные с фазовым переходом сегнетоэлектрик- параэлектрик с $T_c \sim 133$ °C и переходами вблизи ~ 32 , 48, 75 °C (рис. 4, кр. 1, 1^1).

Термическая обработка дисперсных титанил оксалата бария и оксидов бария и титана при 700 и 800 °C позволяет получать порошки $\mathrm{BaTiO_3}$ со значениями $\varepsilon' = 2$ -5 и $\varepsilon'' = 0.2$ - 2.3 при 30 <T <160 °C (рис. 4). На температурных зависимостях слабо выражены изменения поведения ε' и ε'' вблизи $T_c \sim 110$ °C. Следовательно, наночастицы титаната бария, полученные механохимической обработкой, имеют более высокие значения параметра ε'' и числа дипольных дефектов, чем частицы TE , полученные твердофазным

синтезом. Отметим, что вблизи T_c поведение $\varepsilon'(T)$ и $\varepsilon''(T)$ частиц, полученных обоими способами синтеза можно аппроксимировать законом Кюри- Вейсса с постоянной Кюри $C = (1-1.4)\cdot 10^3$ К.

Рис. 4. Температурные зависимости действительной (1, 2, 3) и мнимой $(1^1, 2^1, 3^1)$ частей диэлектрической проницаемости титаната бария, полученного механохимической обработкой титанал оксалата бария $(1, 1^1)$ и последующего отжига при 850 °C $(2, 2^1)$ и отжига при 640 °C $(3, 3^1)$.

Для изучения влияния ОН $^-$ групп, локализованных в кристаллической решетке, с поверхности частиц отжигались связанные состояния воды и ОН $^-$ групп прокаливанием порошка ВаТіО $_3$ при 800 $^{\rm o}$ С в течение 2 ч. Предварительный отжиг ведет к росту параметров частиц, полученных механохимическим и твердофазным синтезом, до значений ε' = 15- 18 и ε'' = 2.5- 4 в диапазоне 30 <T<160 $^{\rm o}$ С (рис. 4, кр. 2,2 $^{\rm i}$). Последующий отжиг ОН $^-$ групп из кристаллической решетки при 650 $^{\rm o}$ С приводит к существенному падению диэлектрической проницаемости до ε' = 12 -13 и ε'' = 2 -3, что подобно поведению ε' и ε'' после отжига поверхностных состояний воды и ОН групп и показывает значительный вклад ОН $^-$ диполей в величину ε' и ε'' (рис. 4, кр. 3, 3 $^{\rm i}$).

Следующий отжиг порошков $BaTiO_3$ проведен при 850 °C в течение 2.5 часов. Отжиг сопровождает залечивание вакансий бария и ведет к росту действительной и мнимой частей ε до значений $\varepsilon'=22$ - 26 и $\varepsilon''=10$ - 12. Пропорциональный рост ε' и ε'' после отжига вакансий в решетке указывает увеличение числа дипольных дефектов, которые могут быть локализованы как на поверхности, так и в объеме частиц. К росту ε' и ε'' могут приводить дипольные дефекты, появляющиеся при образовании пор, межзеренных границ, из-за агломерации частиц. Наряду с ростом ε' и ε'' после отжига постоянная Кюри повышается до значения $\sim 5\cdot 10^3$ K, что указывает незначительный рост объема сегнетоэлектрической фазы в частицах. Отметим, что поведение параметров ε' и ε'' после отжига ОН групп и вакансий бария в наночастицах $BaTiO_3$, полученных термической обработкой и механохимическим синтезом из титанил оксалата бария и механохимическим синтезом из титана, идентично.

Сравнение диэлектрических параметров в СВЧ диапазоне частиц $BaTiO_3$, полученных без механической активации реакции синтеза, в частности золь— гельной технологией, которая дает частицы с ϵ '= 17 и ϵ " =9 [22], и механохимическим синтезом и термической обработкой ТОБ при 700-800 °C показывает высокие значения ϵ " и диэлектрических потерь в частицах с размером 12-27.5 нм. При этом более высокие величины ϵ ' частиц полученных после механической активации свидетельствуют о большем количестве сегнетоэлектрической фазы в частицах.

Выводы

Таким образом, механохимический синтез из титанил оксалата бария позволяет получать наночастицы титаната бария. Частицы содержат как кубическую, так и тетрагональную модификацию кристаллической решетки. Спектр дефектов частиц, полученных механохимическим синтезом из титанил оксалата бария или смеси оксидов и термообработкой $BaTiO(C_2O_4)_2 \cdot 4H_2O$ одинаков и включает гидроксильные группы, локализованные на поверхности и в объеме решетки, карбонаты, по-видимому, ${\rm CO_3}^2$, и искажения решетки тетрагональной симметрии. Фазовый переход сегнетоэлектрик-параэлектрик проявляется после механохимического синтеза, без термической обработки, на кривых ДСК и температурных зависимостях действительной и мнимой частей диэлектрической проницаемости. Группы ОН, локализованные как на поверхности частиц, так и в кристаллической решетке, вносят значительный вклад в величины ε' и ε'' . Отжиг ОН групп ведет к пропорциональному понижению обоих частей диэлектрической проницаемости. Высокотемпературный отжиг вакансий бария приводит к повышению обоих частей диэлектрической проницаемости и количества сегнетоэлектрической фазы. После отжига значения диэлектрических параметров частиц не зависят от способа получения и исходных реагентов и составляют $\varepsilon' = 20$ - 26 и $\varepsilon'' =$ 4.5- 12.

Литература

- 1. Pitham C., Hennings D., Wases R. Progress in synthesis of nanocrystalline BaTiO₃ powders for MLCC // Int. J. Appl. Ceram. Technol.- 2005. -V. 2. -№ 1. -P.1 -14.
- 2. Dawber M., Rabe K.M., Scott J.F. Physics of thin-film ferroelectric oxides // Rev. Mod. Phys. -2005. -V. 77. -№ 4. -P. 1083 -1130.
- 3. Frey M.H., Payne D.A. Grain –size effect on structure and phase transformation for barium titanate // Phys. Rev. B. -1996. -V. 54, -№ 5. -P. 3158 -3168.
- 4. Ren S.B., Lu C.J., Liu J.S. et al. Size related ferroelectric domain structure transition in a polycrystalline PbTiO3 thin film // Phys. Rev. B. -1996. -V.54. -№ 20. -P. R14337 R14339.
- 5. Boldyrev V.V. Mechanochemistry and mechanical activation // Mater. Sci. Forum. 1996. -V. 225-227. -P. 511 -520.
- 6. Зырянов В.В. Механохимический синтез сложных оксидов // Успехи химии. 2008. -Т. 77. -№ 8. -С. 107 -137.
- 7. Xue J., Wang J., Wan D. Nanosized barium titanate powder by mechanical activation // J. Amer. Ceram. Soc. -2000. -V. 83. -№ 1. -P. 232 -234.
- 8. Громов О.Г., Кузьмин А.П., Куншина Г.Б. и др. Получение порошкообразного титаната бария // Неорг. материалы. -2006. -Т. 42. -№ 2. -С. 212 -217.
- 9. Brzozovski E., Castro M.A. Lowering the synthesis temperature of high-purity BaTiO₃ powders by modifications in the processing conditions // Thermochim. Acta. -2003. -V. 398. -№ 1-2.- P. 123 -129.
- 10. Зажигалов В.А., Сидорчук В.В., Халамейда С.В., Кузнецова Л.С. Синтез ВаТіО $_3$ путем механохимической обработки титанилоксалата бария // Неорг. материалы. 2008. –Т. 44. -№ 6. -С. 734 -739.
- 11. Stojanovic B.D., Simoes A.Z., Paiva-Santos C.O. et al. Mechanochemical synthesis of barium titanate // J. Eur. Ceram. Soc. -2005. -V. 25. -№ 12. -P. 1985 -1989.
- 12. Wada S., Narahata M., Hoshina T. et al. Preparation of nm-sized BaTiO₃ particles using a new 2-step thermal decomposition of barium titanyl oxalate // J. Mat. Sci. -2003. -V. 38. -№ 12. -P. 2655 -2660.

- 13. Huang L., Chen Z., Wilson J.D. et al. Barium titanate nanocrystals and nanocrystal thin films: Synthesis, ferroelectricity, and dielectric properties // J. Appl. Phys. -2006. -V. 100. -№ 3. -P. 034316 -10.
- 14. Брандт А.А. Исследование диэлектриков на СВЧ. -Москва. Госиздат Физ.- мат. лит.1963, -336 с.
- 15. Zhang Xu-ping, Xu Ling-li, Wang Qing-liang. Electro reolitical effect of BaTiO₃ particles coated with urea // J. China Univ. Mining and Technol. -2007. -V. 17. -№ 4. P. 0576 -0581.
- 16. Almeida A.F.L., Fechine P.B.A., Sasaki J.M. et al. Optical and electrical properties of barium titanyl-hydro composite screen-printed-chick films // Sol. St. Sciences. -2004. V. 6. -№ 3. -P. 267- 278.
- 17. Wada M., Ohruki T. Infrared study of BaTiO3- thin films // Physica B. -1996. -V. 219-220. -P. 635 -637.
- 18. Hoshina T., Kakemoto H., Tsurumi T. et al. Size and temperature induced phase transition behavior of barium titanate nanoparticles // J. Appl. Phys. -2006. -V. 99. -№ 5. -P. 054311-8.
- 19. Smith M.B., Page K., Siegrist T. et al. Crystal structure and the paraelectric to-ferroelectric phase transition of nanoscale BaTiO₃ // J. Am. Chem. Soc. -2008. -V. 130. -№ 22. -P. 6955-6963.
- 20. Badheka P., Qi L., Lee B. Phase trnsition in barium titanate nanocrystals by chemical treatment // J. Eur. Ceram. Soc. -2006. -V. 26. -№ 8. -P. 1393-1400.
- 21. Лайнс М., Глас А. Сегнетоэлектрики и родственные им материалы. -Москва. Мир. 1981. -736 с.
- 22. Wang G., Chen X., Duan Y., Liu S. Electromagnetic characteristics of barium titanate/epoxy resin composites in X and K bands // J. Alloys and Compounds. -2008. -V. 454. № 1-2. -P. 340 346.

МЕХАНОХІМІЧНИЙ СИНТЕЗ НАНОЧАСТИНОК ТИТАНАТУ БАРІЮ В СЕГНЕТОЕЛЕКТРИЧНІЙ ФАЗІ

Б.М. Горєлов 1 , В.А. Зажигалов 2 , О.В. Котенок 1 , С.М. Махно 1 , В.В.Сидорчук 2 , С.В.Халамейда 2

 1 Інститут хімії поверхні ім. О.О. Чуйка НАН України, Ген. Наумова, 17, Київ 2 Інститут сорбції та проблем ендоекології НАН України, Ген. Наумова 13, Київ

Оптимізовані параметри механохімічного синтезу наночастинок титанату барію розміром 12-22.4 нм із титаніл оксалату барію. Методами рентгенівського фазового аналізу, ІЧ-спектроскопії, комбінаційного розсіювання, диференціальної скануючої калориметрії, спектроскопії диелектриків показано, что наночастинки містять кубічну та тетрагональну модифікації кристалічної гратки. Перехід сегнетоелектрична- параелектрична фаза виявляється при 133 °С. Спектр домішок в частинках отриманих механохімічним синтезом та термічним розкладом титаніл оксалату барию або суміші оксидів барію та титану однаковий.

MECHANOCHEMICAL SYNTHESIS OF BARIUM TITANATE NANOPARTICLES IN FERROELECTRIC PHASE

B.M. Gorelov¹, V.A. Zazhigalov², O.V. Kotenok¹, S.N. Makhno¹, V.V. Sidorchuk², S.V.Khalameida²

¹Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine General Naumov street 17, 03164, Kyiv-164 ² Institute for Sorption and Problems of Endoecology National Academy of Sciences of Ukraine General Naumov street 17, 03164, Kyiv-164

Parameters of mechanochemical synthesis of barium titanate particles with size of 12-22.4 nm from barium titanyl oxalate were determined. Using X-ray diffraction, IR-spectroscopy (DRIFT), Raman spectroscopy, differential scanning calorimetry and spectroscopy of dielectrics it was shown that the particles contain the cubic and tetragonal modifications of the crystal lattice. The paraelectric- to- ferroelectric phase transition occurs at 133 °C. The particles prepared by mechanochemical synthesis and thermal decomposition of barium titanyl oxalate or mixture of barium and titane oxides contain the same impurity composition.