НАНОМАТЕРИАЛЫ И НАНОТЕХНОЛОГИИ

УДК 544.723

ВЛИЯНИЕ УСЛОВИЙ СИНТЕЗА НА СТРУКТУРНЫЕ ХАРАКТЕРИСТИКИ ОКСИДНЫХ НАНОКОМПОЗИТОВ NiO/SiO_2

В.М. Богатырев 1 , Л.И. Борисенко 1 , Е.И. Оранская 1 , В.М. Гунько 1 , Р. Лебода 2 , Я. Скубишевска-Зиемба 2

¹Институт химии поверхности им. А.А. Чуйко Национальной академии наук Украины, ул. Генерала Наумова, 17, Киев, 03164, Украина

²Faculty of Chemistry, Maria Curie-Skłodowska University, 20031 Lublin, Poland

Исследовано влияние способа получения нанокомпозитов NiO/SiO_2 (прекурсор — ацетат никеля) на их структурные и текстурные характеристики в зависимости от содержания NiO и источника SiO_2 . Установлено образование кристаллической и рентгеноаморфной форм NiO в зависимости от условий синтеза. Показано, что структурные характеристики NiO/SiO_2 в большей степени зависят от метода получения, чем содержания NiO. Нанокомпозиты на основе пирогенного кремнезема в основном мезопористые, а образцы на основе $T\ThetaC$ — микропористые.

Введение

Двойные оксидные системы, основным компонентом которых является SiO₂, представлены широкой гаммой природных минералов и синтетических материалов, занимающих важное место в многочисленных производственных применениях. Химическое модифицирование поверхности кремнезема, развитое акад. НАН Украины А.А Чуйко с соавт., и совместный высокотемпературный гидролиз паров SiCl₄ и TiCl₄, были использованы для создания высокодисперсных двойных оксидных систем TiO₂/SiO₂ [1–4]. На базе Калушского опытного завода под научным руководством А.А Чуйко было организовано опытно-промышленное производство титансодержащих кремнеземов методом пирогенного синтеза (марка TAC-7, ТУ 88 УССР 231-01-84). Это неоспоримое доказательство, что еще три десятилетия назад были созданы сложные нанооксиды, широкомасштабные исследования и синтез которых рассматриваются как одно из приоритетных нанотехнологических направлений в мире.

Научные интересы А.А. Чуйко распространялись на химическое модифицирования поверхности кремнезема и исследование свойств двойных оксидных систем с соединениями хрома [5, 6], фосфора [7, 8], вольфрама [9, 10], бора [11, 12] и молибдена [13, 14]. Данная работа, связанная с изучением нанокомпозита NiO/SiO₂, является развитием общего научного направления по синтезу и исследованию высокодисперсных двойных оксидных систем на основе кремнезема.

Системы NiO/SiO_2 ввиду своей эффективности и дешевизны привлекают внимание для каталитического окисления органических загрязнителей окружающий среды [15], как самостоятельный катализатор и как предшественник катализатора Ni/SiO_2 с металлическим никелем для парциального окисления метана в CO и H_2 [16, 17] и в реакции дегидрогенизации метанола [18]. На каталитическую активность нанесенного на SiO_2 катализатора влияет количество NiO, природа прекурсора NiO, условия подготовки и методы приготовления оксидной композиции [19]. Важными

практическими приложениями дисперсных материалов и пленок состава NiO/SiO_2 могут быть функционализованные адсорбенты и сенсоры. Нанокомпозитные тонкие пленки NiO/SiO_2 могут работать как оптические детекторы для некоторых газов благодаря сохранению пористости при отжиге пленок до $800\,^{\circ}C$ [20]. Возможно получение цветных золь-гель стекол и пленок с частицами NiO [21, 22].

Цель данной работы состояла в изучении влияния условий синтеза на структурные характеристики двойной оксидной системы NiO/SiO_2 при использовании ацетата никеля (AцH) $Ni(CH_3COO)_2\cdot 4H_2O$ в качестве источника формирования NiO. При изготовлении образцов нанокомпозитов варьировали содержание NiO, источник SiO_2 и метод синтеза.

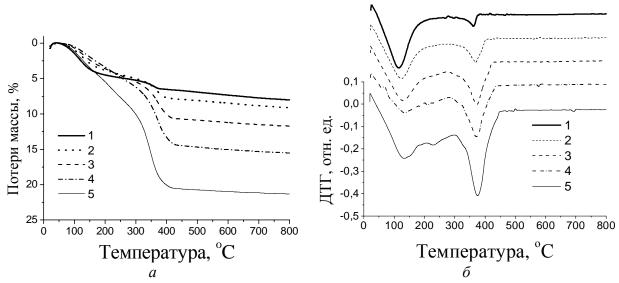
Экспериментальная часть

Основными компонентами рецептуры для синтеза образцов были использованы пирогенный кремнезем марки Аэросил A-380 (Degussa), тетраэтоксисилан (ТЭОС) марки $Si(OC_2H_5)_4$ «осч» ТУ 6-09-5230-85 И ацетат никеля тетрагидрат Ni(CH₃COO)₂·4H₂O «Ч» ТУ 6-09-3848-87. Вспомогательные компоненты: тетраэтиленпентамин (ТЭПА) «tech. grade» «Dow Chemical Corp.», этилендиамин (ЭДА) CAS # 000107-15-3 «Dow Chemical Corp.», касторовое масло «фарм.» («Галичина», Украина) и поливинилпирролидон (ПВП) медицинский («Синтвита», Россия) со средней молекулярной 10700. массой Для приготовления дисперсий использовали дистиллированную воду и изопропиловый спирт (ИПС) «хч» ТУ 6-09-402-87.

В работе синтезировали три серии образцов NiO/SiO₂. Первая серия получена путем приготовления водной дисперсии АцН и пирогенного кремнезема A-380 с различным соотношением компонентов. Содержание АцН составило 0,2, 0,5, 1,0, 2,0 и 3,0 ммоль на 1 г SiO₂. Обозначение образцов этой серии соответствует содержанию никеля – 02Ni, 05Ni, 1Ni, 2Ni и 3Ni. Синтез образцов проводили в несколько стадий. На первой стадии готовили гомогенную дисперсию кремнезема в водном растворе АцН с использованием пропеллерной мешалки «EUROSTAR power-b» при 500 об/мин. Вторая стадия включала высушивание дисперсии в слое толщиной 4–7 мм при температуре 130 °C в течение 5 ч. Далее ксерогель измельчали в фарфоровой ступке и просеивали через сито с ячейкой 0,5 мм. На последней, третьей стадии синтеза порошки прокаливали 2 ч при 600 °C на воздухе. Исходный кремнезем А-380, использованный для контрольных измерений (SiO₂-к), предварительно подвергали обработке по всем стадиям получения нанокомпозита в отсутствие АцН (гомогенизация водной дисперсии, сушка, измельчение, просеивание и прокаливание).

Вторую серию образцов готовили с использованием ТЭОС в качестве источника SiO_2 . Содержание АцН составляло 0,2, 1,0 и 3,0 ммоль в расчете на 1 г SiO_2 . Обозначение образцов второй серии также соответствует содержанию никеля – SG-02Ni, SG-1Ni и SG-3Ni. На первой стадии синтеза расчетное количество АцН растворяли в смеси 20 мл ИПС, 2 мл H_2O и 2 мл ТЭПА. Для образца SG-3Ni использовали 4 мл ТЭПА. Полученные прозрачные растворы имели фиолетовый цвет различной интенсивности в соответствии с содержанием никеля. На второй стадии к раствору никеля при непрерывном перемешивании магнитной мешалкой добавляли 8 мл ТЭОС. В течение нескольких минут начинала образовываться непрозрачная дисперсия, которая через 0,5–2 ч формировалась в нетекучую массу. На третьей стадии образцы сушили 6 ч при 110~°С и растирали в порошок. Далее, на четвертой стадии происходило образование оксидной системы NiO/SiO_2 в процессе прокаливания при 700~°С в течение 1~ в муфельном шкафу. Контрольный образец во второй серии ($SG-SiO_2$) получен по указанным стадиям, но 663~ АцН.

Третью серию образцов получали из ТЭОС с равным содержанием никеля в количестве 1 ммоль/г SiO_2 . Образцы SG-1Ni-е и SG-1Ni-р были получены по схеме образца SG-1Ni. Однако, при синтезе SG-1Ni-е в начальный раствор АцН дополнительно было введено 1,9 г касторового масла. Образец SG-1Ni-р получали, используя для приготовления начального раствора ацетата никеля 20 мл 0,1 М раствора ПВП в ИПС и 3 мл 10 %-ного водного раствора ДЭА. Образцы сушили 4 ч при 140 °C.

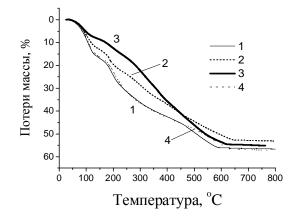

Термоокислительную деструкцию образцов, отобранных в процессе синтеза на промежуточных стадиях после высушивания при 110– $140\,^{\circ}$ C, исследовали методом термогравиметрии с использованием дериватографа марки «Q-1500D» («МОМ», Венгрия) с системой компьютерной регистрации данных.

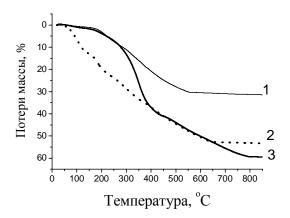
Рентгенофазовый анализ (РФА) проводили методом порошковой дифрактометрии. Дифрактограммы образцов регистрировали на дифрактометре ДРОН-4-07 (ПО «Буревестник», Россия) в излучении CuK_{α} линии анода с Ni фильтром в отраженном пучке и геометрии съемки по Брэггу–Брентано. Средний размер кристаллитов рассчитывали по уравнению Шеррера [23].

Структурно-адсорбционные характеристики определяли по результатам измерений низкотемпературной адсорбции азота на приборе ASAP 2405N (Micromeritics, США).

Результаты и их обсуждение

При синтезе NiO/SiO_2 использованы органические компоненты, которые разрушались в процессе термоокислительной деструкции при температурах 600-700 °C на воздухе. Оптимальные параметры проведения термической обработки определены по результатам термогравиметрических измерений. Для исследования отобраны пробы на промежуточных стадиях синтеза после высушивания образцов при 110-140 °C. На рис. 1 представлены результаты исследования образцов первой серии.



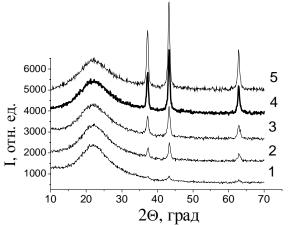

Рис. 1. Кривые ТГ (*a*) и ДТГ (*б*) образцов кремнезема A-380 с адсорбированным ацетатом никеля: 02Ni (1), 05Ni (2), 1Ni (3), 2Ni (4) и 3Ni (5).

Потери массы в образцах возрастают при переходе от 02Ni до 3Ni согласовано с увеличением содержания АцH за счет удаления ацетатных групп. На кривых ДТГ пик в области $100{\text -}120~^\circ\text{C}$ относится к удалению адсорбированной воды, а потери массы в области $215{\text -}600~^\circ\text{C}$ ($T_{\text{макс}}=380~^\circ\text{C}$) связаны с разложением и удалением ацетатных групп [24]. Интересно, что наблюдается антибатность в потерях массы для физически сорбированной воды и ацетатных групп для образцов 02Ni-2Ni. Это согласуется с

результатами исследований адсорбционных комплексов ацетатов металлов поверхности пирогенного кремнезема методом Фурье-ИКС, указывающими затруднение физсорбции воды с возрастанием содержания адсорбированных ацетатов металлов [24].

На рис. 2 и рис. 3 приведены потери массы в полупродуктах образцов, полученных на основе ТЭОС. Полученные данные показывают, что во второй серии количество ацетата никеля в начальном растворе не влияет на потери массы при образцов-предшественников нанокомпозитов NiO/SiO₂. существенно отличается от термоокислительной деструкции ацетатов никеля, адсорбированных на пирогенном кремнеземе. На рис. 2 наблюдается практически полное совпадение кривых ТГ для контрольного образца SG-SiO₂ и образца с наименьшим содержанием никеля SG-02Ni. Вне зависимости от начального содержания АцН в дисперсии конечные потери массы для всех образцов весьма близки. В этом случае основным фактором, влияющим на потери массы, может быть содержание ТЭОС и ТЭПА. Такое различие в характере потери массы для первой и второй серии образцов можно объяснить разрушением ацетата никеля при образовании аминокомплексов Ni с ТЕПА и удалением ацетатных групп в процессе сушки при 110 °C.

использованием ТЭОС: SG-Ni02 (1), SG-Ni1 (2), SG-Ni3 (3) и SG-SiO₂ (4).


Рис. 2. Кривые ТГ образцов, полученных с Рис. 3. Кривые ТГ образцов с равным содержанием ацетата никеля, полученных использованием ТЭОС и дополнительных компонентов: SG-Ni1-р (1), SG-Ni1 (2), SG-Ni1-e (3).

Введение дополнительных компонентов в раствор ацетата никеля использовании ТЭОС также вносит изменения в потери массы, соответственно использованным добавкам (рис. 3).

Термогравиметрические данные показывают полную деструкцию органических компонентов соединений-предшественников оксидных нанокомпозитов температурах 600-700 °C. В результате полного разрушения органической части в условиях окислительной атмосферы воздуха формируется оксидная система NiO/SiO₂, состоящая из нанокристаллических частиц NiO и аморфного SiO₂. Структурные характеристики нанокомпозитов в части определения фазового состава оценивали методом РФА. Дифрактограммы всех образцов NiO/SiO₂ приведены на рис. 4–6.

Для всех образцов нанокомпозитов характерно сохранение кремнеземной компоненты в аморфном состоянии, тогда как для оксида никеля наблюдаются изменения размеров нанокристалитов NiO и степени кристалличности в зависимости от метода получения образцов и температуры термообработки.

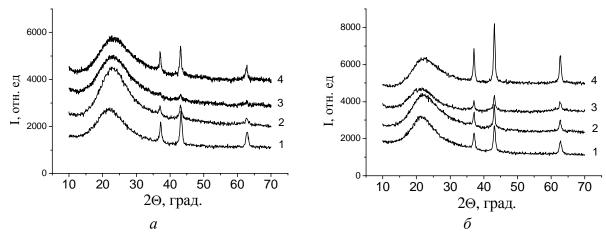
Все образцы, синтезированные на основе пирогенного кремнезема А-380, сохраняют одинаковые размеры нанокристаллитов вне зависимости от содержания никеля в образце. В нанокомпозитах на основе ТЭОС наблюдается увеличение среднего размера кристаллитов, согласованное с увеличением содержания никеля (табл. 1). Существенное влияние на формирование кристаллитов NiO оказывает начальное состояние соединений никеля в составе соединений-предшественников оксидных нанокомпозитов. Дополнительное введение в состав начальной композиции ПВП способствует, по нашему мнению, образованию комплексных соединений Ni с полимером. Можно представить, что продукты термоокислительной деструкции полимерной матрицы затрудняют миграцию атомов никеля и формирование кристаллитов. Для образца SG-1Ni-p, синтезированного с ПВП, наблюдается настолько незначительный пик NiO, что невозможно корректно определить размер кристаллитов (рис. 6, табл. 2).

6000 5000 4000 2000 1000 10 20 30 40 50 60 70 2Θ, град

Рис. 4. Дифрактограммы образцов первой серии NiO/SiO₂ с различным содержанием никеля, полученных термолизом ацетата Ni, адсорбированного на кремнеземе A-380: 02Ni (1), 05Ni (2), 1Ni (3), 2Ni (4) и 3Ni (5).

Рис. 5. Дифрактограммы образцов второй серии NiO/SiO₂, полученных из ТЭОС с различным содержанием никеля: SG-02Ni (1), SG-1Ni (2), SG-3Ni (3) и SG-SiO₂ (4).

Таблица 1. Средний размер кристаллитов и степень кристалличности NiO в нанокомпозитах на основе A-380


Образец	Средний размер	Степень кристалличности		
	кристаллитов NiO, нм	NiO, W, %		
02Ni	14	27		
05Ni	14	63		
1Ni	14	64		
2Ni	14	73		
3Ni	14	78		
SG-02Ni	-	0		
SG-1Ni	15	31		
SG-3Ni	21	69		

В формировании нанокристаллитов NiO принимает участие не весь оксид никеля, распределенный в кремнеземной матрице, т.е. часть NiO находится в рентгеноаморфном

состоянии. Результаты определения степени кристалличности NiO приведены в табл. 1 и 2.

Степень кристалличности определяли по отношению интегральных интенсивностей основного пика NiO (200) при $2\theta = 43.2^{\circ}$ на дифрактограммах исследуемого образца и соответствующей механической смеси пирогенного кремнезема и кристаллического NiO, полученного прокаливанием AцH при 800° C в течение 2 ч на воздухе.

Для нанокомпозитов на основе A-380 степень кристалличности NiO существенно изменяется от 27 до 64 % только при малых степенях заполнения кремнеземной матрицы оксидом никеля от 0,2 до 0,5 ммоль/г SiO_2 . Для нанокомпозитов второй серии на основе ТЭОС наблюдаются существенное различие, как в степени кристалличности, так и в размерах нанокристаллитов NiO с увеличением содержания никеля в образцах. Текстурная пористость пирогенного кремнезема (т.е. пустоты между первичными непористыми частицами SiO_2 в агрегатах) и количество центров кристаллизации определяет размер кристаллитов NiO. При формировании частиц SiO_2 из ТЭОС в присутствии соединений никеля взаимовлияние компонентов носит более сложный характер, что и отражается в более значительных изменениях размеров кристаллитов и степени кристалличности NiO.

Рис. 6. Дифрактограммы нанокомпозитов NiO/SiO₂, полученных термоокислительной деструкцией при 600-700 °C (*a*) и после дериватографических измерений (*б*): 1Ni (1), SG-1Ni (2), SG-1Ni-p (3) и SG-1Ni-e (4).

Таблица 2. Средний размер кристаллитов и степень кристалличности NiO в образцах с равным содержанием никеля в зависимости от температуры обработки

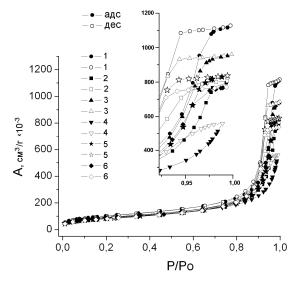
Образец	Температура	Средний размер	Степень	
	обработки, °С	кристаллитов, нм	кристалличности	
			NiO, W, %	
1Ni	600	15	64	
	1000	15	67	
SG-1Ni	600	15	31	
	1000	20	46	
SG-1Ni-p	700	-	11	
-	850	15	37	
SG-1Ni-e	700	18	53	
	850	18	95	

На рис. 6 и в табл. 2 на примере образцов нанокомпозитов с равным содержанием никеля показано влияние температуры отжига оксидных систем NiO/SiO_2 , полученных в разных условиях. Следует отметить, что температурная обработка образцов проходила в

различных временных условиях. Термоокислительную деструкцию при 600–700 °C проводили в течение 1–2 ч. Температурную обработку до 850–1000 °C проводили в режиме программированного нагрева образцов со скоростью 10 град/мин при проведении дериватографических исследований.

Приведенные данные подтверждают предположение, что именно структура кремнеземной матрицы оказывает значительное влияние на размер частиц и степень кристалличности оксида никеля. Для кремнезема A-380, который уже прошел высокотемпературную обработку в процессе синтеза, изменения в структуре кристаллитов NiO незначительны. Для образцов на основе ТЭОС термообработка оказывает существенное влияние на структурные характеристики SiO₂, что отражается и на более значительных изменениях в размере кристаллитов NiO и степени кристалличности. Большее количество аморфной составляющей оксида никеля в образцах на основе ТЭОС позволяет предположить, что аморфная компонента NiO стабилизируется в матрице аморфного SiO₂. Это согласуется с тем, что при малых количествах никеля в присутствии пирогенного кремнезема A-380 доля аморфного оксида никеля выше доли кристаллического (образец 02Ni).

Необходимо отметить, что при температурно-программированном восстановлении оксидной системы NiO/SiO_2 , полученной золь-гель методом из ТЭОС, наблюдается два пика восстановления оксида никеля при $T_{\text{макс}}$ 443 °C и 672 °C [25, 26]. Подобные результаты, но при иных температурах – 307 °C и 459 °C, получены в [17]. Авторы отнесли эти пики к двум формам NiO в оксидной системе. Низкотемпературный пик приписан восстановлению оксида Ni в состоянии индивидуального соединения, а второй пик – оксиду никеля, находящемуся в близком контакте с поверхностью SiO_2 . Это полностью согласуется с нашими результатами о присутствии нанокристаллической и аморфной формы NiO, которая находится вблизи поверхности аморфного кремнезема.


Структурно-адсорбционные характеристики оксидных нанокомпозитов рассчитывали по низкотемпературным изотермам адсорбции—десорбции азота. Общий объем пор оценивали по объему азота, адсорбированного при $p/p_o \approx 0.98...0.99$. Распределение пор по размерам (РПР) рассчитывали по данным десорбции азота. Для наглядного представления РПР функцию f(R) пересчитывали в инкрементальное РПР (ИРПР) [27].

На рис. 7 и 8 приведены изотермы адсорбции—десорбции азота для образцов трех серий. Структурно-адсорбционные характеристики образцов (табл. 3), синтезированных на основе пирогенного кремнезема, демонстрируют закономерное уменьшение удельной поверхности с ростом содержания оксида Ni. Основные изменения $V_{\text{пор}}$ этой серии наблюдаются только в области мезопор. Разброс значений $V_{\text{мезо}}$ может означать, что формирование частиц NiO происходит не только внутри агрегатов первичных частиц SiO_2 , уменьшая размеры мезопор, но и на внешней поверхности агрегатов, создавая новые мезопоры в результате уплотнения агломератов агрегатов. Наименьшее значение $V_{\text{пор}}$ в синтезированных образцах первой серии наблюдается у образца 1Ni, а наибольшее — у 05Ni (табл. 3).

Иная картина наблюдается для образцов полученных из ТЭОС. Изотермы адсорбции—десорбции азота показывают преимущественно микропористый характер образцов (рис. 8). Изменение удельной поверхности $S_{\rm БЭТ}$ носит нелинейных характер с максимальным значением для образца SG-1Ni 544 м²/г (табл. 3). Объем мезопор на порядок меньше, а объем микропор на три порядка больше, чем в нанокомпозитах на основе A-380. Макропористость практически отсутствует.

Введение добавок при синтезе третьей серии образцов использовали для изменения морфологии при одинаковом содержании ацетата никеля в исходных растворах. Известно, что на самоорганизацию смесей неорганических и органических

фаз в условиях золь-гель синтеза оказывают влияние катионоактивные и неионогенные ПАВ, двойные и тройные блоксополимеры, имеющие амфифильный характер, а также органические соединения других классов, не относящиеся к указанным ПАВ [28]. В нашей работе использовано два типа органических соединений. В одном случае это ПВП, имеющий карбонильные группы С=О и способный образовывать многочисленные водородные связи с силанольными группами продуктов гидролиза ТЭОС и комплексы с солями металлов [29–31]. В другом случае – касторовое масло, представляющее собой смесь глицеридов органических кислот (80-90 % рицинолевой кислоты) [32]. Этот компонент выбран как темплат для образования пор по ориентировочной величине молекулярной массы касторового масла и по его растворимости в компонентах использованной рецептуры. В расчете на 100 % рицинолевой кислоты М=984, 5.

180 160 140 cm³/r x10⁻³ 120 100 80 Æ 60 6 40 адс 6 20 дес 0,2 8,0 1,0 0,0 0.4 0,6 P/Po

азота образцами NiO/SiO₂ на основе пирогенного кремнезема A-380: SiO_2 -k (1), 02Ni (2), 05Ni (3), 1Ni (4), 2Ni (5) и 3Ni (6).

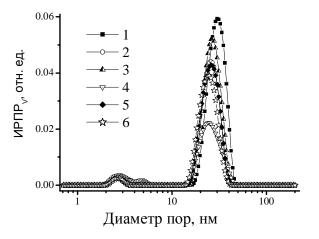

Рис. 7. Изотермы адсорбции-десорбции Рис. 8. Изотермы адсорбции-десорбции азота образцами NiO/SiO₂ на основе ТЭОС: SG-SiO₂ (1); SG-02Ni (2); SG-1Ni (3); SG-3Ni (4); SG-1Ni-р (5) и SG-1Ni-e (6).

Таблица 3. Структурно-адсорбционные характеристики синтезированных оксидных нанокомпозитов NiO/SiO₂

Образцы	$S_{E \ni T}$,	$S_{\text{микро}}$,	S_{me30} ,	$S_{\text{макро}}$,	V_{nop} ,	$V_{\text{микро}}$	V _{me30} ,	V _{макро} ,
	${\rm m}^2/\Gamma$	M^2/Γ	${ m m}^2/\Gamma$	M^2/Γ	cm^3/Γ	cm^3/Γ	cm^3/Γ	cm^3/Γ
SiO ₂ -к	367	1	366	0	1,743	0,001	1,742	0,000
02Ni	329	2	327	0	1,294	0,001	1,293	0,000
05Ni	330	2	327	0	1,485	0,001	1,484	0,000
1Ni	314	8	306	0	0,865	0,004	0,860	0,001
2Ni	307	2	305	0	1,294	0,001	1,293	0,000
3Ni	296	1	295	0	1,191	0,000	1,191	0,000
$SG-SiO_2$	483	356	127	0	0,247	0,135	0,102	0,010
SG-02Ni	500	369	131	0	0,242	0,132	0,100	0,010
SG-1Ni	544	401	143	0	0,268	0,146	0,111	0,011
SG-3Ni	443	327	116	0	0,225	0,123	0,093	0,009
SG-1Ni-p	224	185	39	0	0,111	0,077	0,035	0,005
SG-1Ni-e	466	285	180	1	0,280	0,103	0,161	0,016

Наибольшее влияние на структурно-адсорбционные свойства NiO/SiO₂ в третьей серии оказывает ПВП (образец SG-1Ni-p). Удельная поверхность образца уменьшается вдвое, по сравнению с SG-1Ni, за счет уменьшения объема микропор и мезопор. Для образца SG-1Ni-е происходит перераспределение пористости при сохранении общего объема пор $V_{\text{пор}}$. Уменьшение $V_{\text{микро}}$ сопровождается увеличением $V_{\text{мезо}}$ и $V_{\text{макро}}$ в ~ 1,5 раза (табл. 3), что приводит к снижению удельной поверхности до 466 м²/г, в сравнении с образцом SG-1Ni без добавок.

Нанокомпозиты на основе пирогенного кремнезема A-380 характеризуются распределением пор по размерам и области 8–33 нм с максимумами при 10–20 нм (рис. 9). Для образцов второй и третьей серии на основе ТЭОС диаметр пор для всех нанокомпозитов находится в интервале 0,7–5,0 нм с максимумами в области ~ 2 нм (рис. 10).

0.006 HE 0.004 0.002 0.002 0.000 1 10 100

Рис. 9. Распределение пор по размерам в образцах NiO/SiO_2 , полученных термоокислительной деструкцией ацетата никеля, адсорбированного на пирогенном кремнеземе A-380: SiO_2 -k (1), 02Ni (2), 05Ni (3), 1Ni (4), 2Ni (5) и 3Ni (6).

Рис. 10. Распределение пор по размерам в образцах NiO/SiO₂ на основе ТЭОС: SG-SiO₂ (1), SG-02Ni (2), SG-1Ni (3), SG-3Ni (4), SG-1Ni-p (5) и SG-1Ni-e (6).

Диаметр пор, нм

Результаты рентгенофазовых И адсорбционных исследований хорошо согласуются в оценке существования двух форм NiO в составе нанокомпозита – нанокристаллической и рентгеноаморфной. С одной стороны, высокая удельная поверхность образцов из ТЭОС обеспечивает большую область контакта поверхностью SiO₂, что способствует увеличению доли аморфной составляющей. С другой стороны, присутствие соединений никеля в растворе при формировании способствовать непосредственному взаимодействию будет соединений Ni и Si. Особенно это выражено в образце SG-1Ni-р с использованием ПВП, где степень кристалличности наиболее низкая и достигает 37 % термообработке при 850 °C (табл. 2). Можно предположить, что часть NiO находится в толстых стенках этого образца с наименьшим объемом пор.

Для образца SG-1Ni-e, в котором возрос объем мезо- и макропор, при нагревании степень кристалличности составила 95 %. В этом случае частицы оксида никеля могут формироваться в мезо- и макропорах с наименьшим контактом с поверхностью SiO_2 .

Выводы

Синтез NiO из AцH в системе NiO/SiO_2 сопровождается образованием двух форм оксида никеля — кристаллической и рентгеноаморфной. На изменение структурных характеристик NiO/SiO_2 большее влияние оказывает метод получения, чем содержание NiO.

Образование кристаллитов NiO на поверхности пирогенного кремнезема A-380 приводит к уменьшению удельной поверхности и нелинейному изменению пористости с увеличением количества оксида никеля.

В случае образцов NiO/SiO_2 на основе ТЭОС изменения структурных характеристик носят нелинейный характер. Введение органических добавок при синтезе оказывает существенное влияние на структурные характеристики нанокомпозита как на пористость и величину удельной поверхности, так и на соотношение кристаллической и аморфной форм NiO.

Авторы благодарят УНТЦ (проект 4481), Евросоюз (Седьмая рамочная программа ЕС, FP7/2007-2013 и Международный обмен учеными грант № 230790) за финансовую поддержку.

Литература

- 1. Исследование процессов хемосорбции четырёххлористого титана поверхностью кремнезёма / А.А. Чуйко, В.А. Тертых, К.П. Казаков и др. // Адсорбция и адсорбенты. 1980. Вып. 6. С. 39 42.
- 2. Сушко Р.В., Воронин Е.Ф., Чуйко А.А. Исследование высокодисперсных смешанных оксидов SiO_2 – TiO_2 // Журн. физ. химии. 1979. Т.53, №9. С. 2395–2396.
- 3. Структурные и электрофизические характеристики титаносодержащих диоксида кремния / В.И. Зарко, А.В. Гетте, Г.М. Козуб, А.А. Чуйко / Изв. АН СССР. Неорган. материалы. 1983. Т.19, №2. С. 239–241.
- 4. Изучение структурных превращений в титаносодержащих кремнезёмах / Р. В. Сушко, А.В. Гетте, И.Ф. Миронюк, А.А. Чуйко // Журн. прикл. химии. 1983. 56, № 6. С. 1230–1234.
- 5. Плюто Ю.В., Горлов Ю.И., Чуйко А.А. Изучение хемосорбции оксихлорида хрома на поверхности пирогенного кремнезема методом ИК-спектроскопии // Теорет. и эксперим. химия. 1983. Т. 19, № 4. С. 494–497.
- 6. Изучение методами ЭПР и масс-спектрометрии термовосстановления групп ≡SiOCrO₂Cl на поверхности дисперсного кремнезема / Ю.В. Плюто, Ю.И. Горлов, В.А. Назаренко, А.А. Чуйко // Докл. АН УССР. Сер. В. − 1983. № 12. С. 37–39.
- 7. Деякі перетворення сполук фосфору у поверхневому шарі дисперсних кремнеземів / В.В. Павлов, В.А. Тьортих, О.О. Чуйко, В.М. Богатирьов // Доп. АН УРСР. Сер. Б. -1979. -№ 8. -C. 639–641.
- 8. Богатырев В. М., Чуйко А. А. Взаимодействие треххлористого фосфора с дегидратированным аэросилом на его поверхности // Укр. хим. журн. 1984. Т. 50, № 8. С. 831–835.
- 9. Бабич И.В., Плюто Ю.В., Чуйко А.А. Особенности хемосорбции WOCl₄ на поверхности дисперсного кремнезема // Докл. АН УССР. Сер. Б. 1987. № 4. С. 39–41.
- 10. Стан іонів вольфраму на поверхні дисперсного пірогенного кремнезему / І. В. Бабіч, А.А. Гоменюк, Ю.В. Плюто, О.О. Чуйко // Доп. АН УРСР. Сер. Б. 1988. № 1. С. 35–38.

- 11. Особенности образования алкилборатных групп на поверхности пирогенного кремнезема / В.А. Касперский, В.В. Павлов, В.Н. Плахотник, А.А. Чуйко // Докл. АН УССР. 1983. \mathbb{N}_2 8. С. 33—35.
- 12. Касперский В.А., Брей В.В., Чуйко А.А. ИК спектроскопическое исследование гидролиза борсодержащих групп на поверхности кремнезема // Журн. прикл. спектроскопии. 1988. T. 49, № 3. C. 460-464.
- 13. Химические превращения в процессе взаимодействия MoOCl₄ с поверхностью дисперсного кремнезема / А.А. Гоменюк, И.В. Бабич, Ю.В. Плюто, А.А. Чуйко // Журн. физ. химии. 1990. Т. 64, N 6. С. 1662—1664.
- 14. Термическая устойчивость молибден—хлоридных групп на поверхности пирогенного кремнезема / А.А. Гоменюк, И.В. Бабич, Ю.В. Плюто, А.А. Чуйко // Журн. физ. химии. 1992. Т. 66, № 11. С. 2903—2906.
- 15. Heterogeneous catalytic activity of NiO-silica composites designated with cubic Pm3n cage nanostructures / Sh.A. El-Safty, Y. Kiyozumi, T. Hanaoka, F. Mizukami // Appl. Catal. B. 2008. V. 82. P. 169–179.
- 16. Partial oxidation of methane to CO and H₂ over nickel and/or cobalt containing ZrO₂, ThO₂, UO₂, TiO₂ and SiO₂ catalysts / V.R. Choudhary, A.M. Rajput, B. Prabhakar, A.S. Mamman // Fuel. 1998. V. 77, N. 15. P. 1803–1807.
- 17. Diskin A.M., Cunningham R.H., Ormerod R.M. The oxidative chemistry of methane over supported nickel catalysts // Catal. Today. 1998. V. 46. P. 147–154.
- 18. Takezawa N., Iwasa N. Steam reforming and dehydrogenation of methanol: Difference in the catalytic functions of copper and group VIII metals // Catal. Today. 1997. V. 36. P. 45–56.
- 19. Deraz N.M., Selim M.M., Ramadan M. Processing and properties of nanocrystalline Ni and NiO catalysts // Mater. Chem. Phys. 2009. V. 113. P. 269–275.
- 20. Hernández–Torres J., Mendoza–Galván A. Formation of NiO–SiO₂ nanocomposite thin films by the sol–gel method // J. Non–Cryst. Solids. 2005. V. 351. P. 2029–2035.
- 21. Silica gels containing transition metal oxides / G. Encheva, B. Samuneva, P. Djambaski, E. Kashchieva, D. Paneva, I. Mitov // J. Non-Cryst. Solids. 2004. V. 345–346. P. 615–619.
- 22. Laczka M., Cholewa K. Chromium, cobalt, nickel and copper as pigments of sol-gel glasses // J. Alloys Compd. 1995. V. 218. P. 77–85.
- 23. Оранская Е.И., Горников Ю.И., Фесенко Т.В. Автоматизированная методика определения средних размеров кристаллитов поликристаллических твердых тел // Завод. лаб. -1994. Т. 60, № 1. -28 с.
- 24. Нанокомпозиты M_xO_y/SiO_2 на основе ацетатов Ni. Mn, Cu, Zn, Mg / B.M. Богатырев, Л.И. Борисенко, Е.И. Оранская, М.В. Галабурда // Химия, физика и технология поверхности. 2009.— Вып. 15. С. 294–302.
- 25. Preparation and characterization of nickel based catalysts on silica, alumina and titania obtained by sol-gel method / G. Goncalves, M.K. Lenzi, O.A.A. Santos, L.M.M. Jorge // J. Non-Cryst. Solids. 2006. V. 352. P. 3697–3704.
- 26. Cobalt, nickel and ruthenium-silica based materials synthesized by the sol-gel method / G.G. Lenzi, M.K. Lenzi, M.L. Baesso, A.C. Bento, L.M.M. Jorge, O.A.A. Santos // J. Non-Cryst. Solids. 2008. V. 354. P. 4811–4815.
- 27. Гунько В.М., Туров В.В., Горбик П.П. Вода на межфазной границе. Киев: Наук. думка. 2009. 695 с.
- 28. К вопросу о самоорганизации смесей неорганической и органической фаз в условиях золь—гель синтеза / Б.Б. Троицкий, А.А. Бабин, М.А. Лопатин и др. // Изв. АН. Сер. хим. 2008. № 12. С. 2406–2409.

- 29. Structure of poly(vinylpyrrolidone)–silica hybrid / M. Toki, T.Y. Chow, T. Ohnaka et al. // Polym. Bull. 1992. V. 29, Iss. 6. P. 653–660.
- 30. Богатырев В.М., Борисенко Н.В., Покровский В.А. Термическая деструкция поливинилпирролидона на поверхности пирогенного кремнезема // Журн. прикл. химии. 2001. Т. 74, Вып. 5. С. 814–819.
- 31. Осипова Е.А. Водорастворимые комплексообразующие полимеры // Журн. СОЖ. 1999. № 8. С. 40–47.
- 32. Химическая энциклопедия. М: Большая Рос. энциклопедия. 1995. Т. 4. С. 192–195.

ВПЛИВ УМОВ СИНТЕЗУ НА СТРУКТУРНІ XAPAKTEPИСТИКИ ОКСИДНИХ НАНОКОМПОЗИТІВ NiO/SiO₂

В.М. Богатирьов¹, Л.І. Борисенко¹, О.І. Оранська¹, В.М. Гунько¹, Р. Лебода², Я. Скубішевська-Зіємба²

¹Інститут хімії поверхні ім. О.О. Чуйка Національної академії наук України, вул. Генерала Наумова, 17, Київ, 03164, Україна ²Faculty of Chemistry, Maria Curie-Skłodowska University, 20031 Lublin, Poland

Досліджено вплив способу одержання нанокомпозитів NiO/SiO₂ (прекурсор - ацетат нікелю) на їхні структурні та текстурні характеристики залежно від вмісту NiO та джерела SiO₂. Встановлено утворення кристалічної і рентгеноаморфної форм NiO в залежності від умов синтезу. Показано, що структурні характеристики NiO/SiO₂ більшою мірою залежать від методу виготовлення, ніж вмісту NiO. Нанокомпозити на основі пірогенного кремнезему в основному мезопористі, а зразки на основі ТЕОС-мікропористі.

EFFECT OF SYNTHESIS CONDITIONS ON THE STRUCTURAL CHARACTERISTICS OF NiO/SiO₂ OXIDE NANOCOMPOSITES

V.M. Bogatyrov¹, L.I. Borysenko¹, O.I. Oranska¹, V.M. Gun'ko¹, R. Leboda², J. Skubiszewska-Zięba²

¹Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, 17 General Naumov Str. Kyiv, 03164, Ukraine ²Faculty of Chemistry, Maria Curie-Skłodowska University, Lublin, 20031, Poland

The effect of method of producing NiO/SiO_2 nanocomposites (precursor - nickel acetate) on their structural and textural characteristics depending on the content of NiO and the source of SiO_2 . The formation of crystalline and X-ray amorphous NiO form depending on synthesis conditions. It is shown that the structural characteristics of NiO/SiO_2 mostly depend on the method of production rather than on the NiO content. Nanocomposites based on pyrogenic silica are mainly mesoporous whereas the samples based on TEOS are microporous.