NONUNIFORMITY OF HYBRID ADSORBENTS

V.M. Gun'ko¹, R. Leboda², V.V. Turov¹, and F. Villiéras³

¹Institute of Surface Chemistry, 17 General Naumov Street, 03164 Kyiv, UKRAINE ²Department of Chemical Physics, M. Curie-Sklodowska University, 20031 Lublin, POLAND ³Laboratoire Environnement et Mineralurgie, INPL et CNRS UNR 7569, ENSG, BP40, 54501 Vandoeuvre les Nancy cedex, FRANCE

Abstract

Several series of pyrocarbon-mineral adsorbents (carbosils) were studied using the nitrogen adsorption method to compute structural and energetic parameters within the scope of overall adsorption isotherm approximation applying regularization procedure with consideration for surface heterogeneity. A portion of pyrocarbon deposits (graphene clusters) fills mesopores of the oxide supports, but another portion represents relatively large nonporous pyrocarbon globules formed on the outer surfaces of the oxide matrices. Contributions of these two types of pyrocarbon deposits depend on the nature of oxide matrices and carbonized precursors.

Introduction

Textural characteristics of hybrid pyrocarbon-mineral adsorbents depend on features of both oxide matrices and organic precursors as well as on pyrolysis conditions [1-7]. Clearly, the pyrocarbon structure can significantly differ from that of an oxide support; therefore application of standard adsorption isotherm equations to such hybrid adsorbents gives average characteristics with marked errors due to neglect of the mentioned heterogeneity. For instance, pores of carbon deposits can be partially slitlike (micropores), cylindrical (mesopores) or correspond to gaps between dense nonporous spherical particles, but pores of oxide matrices can be of other shape, e.g., relatively smooth cylindrical mesopores in silica gel particles. Many of adsorption equations include some parameters dependent of the pore shape [8-11]; therefore the pore size distribution (PSD) $f(R_p)$ determined for complex adsorbents using one of such equations can be inadequate for one of the adsorbent components (if the method depends on the pore shape). Additionally, some equations can be applied to mesoporous adsorbents, but others are used only for microporous ones. However, complex adsorbents typically possess broadened PSDs including pores of different shapes. Therefore, many of adsorption isotherm equations are utilized for restricted pressure ranges, which correspond to filling of pores of one of types, and corrected isotherms are used to determine the parameters for other pores (e.g., consideration for adsorption in mesopores to calculate the parameters of micropores) [8-12]. However, such an approach can introduce additional poorly controlled errors in the determined structural parameters. Besides, the relationship between the PSD and the adsorption energy distribution f(E) is ambiguous for hybrid adsorbents, as f(E) depends not only on the pore structure but also on the nature of the adsorbent surfaces, that restricts the application of the corresponding equations to compute (R_n) if the corresponding equations include energetic parameters instead of structural ones. Additionally, neglect of the heterogeneity of complex adsorbents determining f(E) can lead to the distortion of the f(E) shape, as the equation constants can depend on the surface nature [8-11] and the f(E) distributions for components of hybrid materials can be different. Clearly, the application of the adsorption isotherm equations independent of the adsorbent nature (e.g.,

Fowler-Guggenheim or deBoer-Hill equations) for computations of the overall f(E) does not give information about the f(E) dependence on the textural and chemical properties of adsorbent components in details. Therefore, the aim of this work is consideration for the heterogeneity of hybrid carbon-mineral adsorbents in details on the study of the structural and energetic characteristics on the basis of adsorption-desorption data.

Experimental

Table 1

(a)Materials. Silica gel Si-60 (Schuchardt München, Germany) was used to prepare pyrocarbon-silica gel samples by pyrolysis of CH_2Cl_2 in a stainless steel autoclave (0.3 L) at 823K for 0.5, 1, 2, 3, 4, and 6 h corresponding to different CS-i carbosils with various amounts of pyrocarbon C_C (Table 1) [6,7]. Acenaphthene $C_{12}H_{10}$ (0.5, 2 or 3 g per 5 g of silica gel corresponding to AN1, AN2, and AN3 samples at $C_c = 7.0$, 15.8, and 22.7 wt.% respectively) carbonized on silica gel Si-60 (Merck) in the autoclave at 773K for 6 h. Acetylacetone C₅H₈O₂ (L. Light Co.) in the amounts of 0.02, 0.03 and 0.04 M pyrolyzed on 5 g of Si-60 (Merck) at 773K for 6 h gave the series of carbosils AC1, AC2 and AC3. Glucose $C_6H_{12}O_6$ of 6 g pyrolyzed on 10 g of Si-60 (Merck) under the same conditions gave carbosil Gl. Hydrothermal treatment of Si-60 (Merck) (labeled HTT) was carried out in the autoclave (0.3 L) containing 20 mL of water at 423K for 6 h using 2 g of silica gel or carbosil placed in a quartz vessel [14].

Sample	<i>Cc</i> , wt.%	S _{BET} , m ² /g	$V_p,$ cm ³ /g	<i>r_p</i> , nm
Si-60 (Merck)	the second line is	369	0.753	4.1
C' COLITT		121	0.731	12.1
S1-60H11 AN1/Si-60	7	327	0.650	4.8
AN2/Si-60	15.8	244	0.480	3.9
AN3/Si-60	22.7	233	0.453	3.9
singha (equite stud)	A	339	0.717	4.2
AC1	01	296	0.606	4.1
AC2	14.5	275	0.566	4.1
AC3	A 16.5	174	0.433	5.0
Gl	10.5	372	0.800	4.3
Si-60	(a) emot tento	nei ensions		
(Schuchardt Müncher	1)	366	0.74	4.0
CS-1	0.0	339	0.67	4.0
CS-2	4.4	299	0.56	3.8
CS-3	14.9	259	0.47	3.6
CS-4	20.3	235	0.39	3.5
CS-5	26.7	163	0.28	3.4
CS-6	35.0	105		The second

Additionally, Si-60 (Merck) was utilized to prepare carbon/X/silica materials (carbosils CS_X) by pyrolysis of such metal acetylacetonates (AcAc) as $Zr(AcAc)_4$, TiO(AcAc)₂, Ni(AcAc)₂, Zn(AcAc)₂, Cr(AcAc)₃ and Co(AcAc)₂ (Aldrich) in the autoclave at in depositio acetylaceton carbon-mine metal valen acetylaceton (Table 2) [4 (C_c) are sho pyrolysis of 1-4, at Cc = for 6 h (Tab autoclave at was utilized vapor deposi and 873K (H samples wer TSG (K282, isothermal c

773K for 61

Table Conce Samp

> CSTi CScr-

CScri CS_{Co}

CSNi CSZa

CSZr-1

CSZ-2

Ta St (H

773K for 6 h. The utilization of the same amounts (0.01 M) of metal acetylacetonates results in deposition of equal amounts of metal moles but different amounts of moles of acetylacetonate groups, as the *n* values in $M(AcAc)_n$ compounds are different (n = 2-4). These carbon-mineral adsorbents were labeled as CS_{Ti}, CS_{Cr-1}, CS_{Co}, CS_{Ni}, CS_{Zn}, and CS_{Zr-1}. The metal valence in M(AcAc)_n was taken into consideration and 2/3×0.01 M of chromium acetylacetonate (CS_{Cr-2}) and 2/4×0.01 M of zirconium acetylacetonate (CS_{Zr-2}) were utilized (Table 2) [4]. Concentrations of X phases (grafted metal compounds, C_X) and pyrocarbon (C_c) are shown in Table 2. Silica gel Si-40 (Merck) was used to prepare pyrocarbon-silica by pyrolysis of acenaphthene (0.5, 1, 2 or 3 g per 5 g of silica gel corresponding to Ani/Si-40, i =1-4, at $C_C = 5.6$, 8.3, 19.2, and 21.8 wt.% respectively) carbonized in the autoclave at 773K for 6 h (Table 3) [15]. Hydrothermal treatment of Si-40 (labeled HTT) was carried out in the autoclave at 423K for 6 h similarly to that for Si-60. Mesoporous silica gel KSK-2 (Russia) was utilized to prepare titania-silica gel (CVD-TSG) adsorbents by means of the chemical vapor deposition (CVD) technique [16] for TiCl₄ chemisorbed and hydrolyzed at 473K (K28) and 873K (K68, Table 4) using eight cycles of the chemisorption-hydrolysis. Carbon-oxide samples were synthesized using pyrolysis of cyclohexene at the silica gel (K03) and CVD-TSG (K282, K682) surfaces at a constant partial pressure 51.3 mm Hg in a flow reactor under isothermal conditions and gravimetric control at 973K for 5 h (Table 4) [2,17].

Table 2

Concentrations of Metal Compounds and Grafted Carbon in CS Samples (Si-60)

Sample	X phase	C_X , wt%	Cc, wt.%	S _{BET} , m ² /g	V_p cm ³ /g	<i>r_p</i> , nm
CS _{Ti}	TiO ₂ (anatase)	11.37	9.2	192	0.419	4.35
CS _{Cr-1}	Cr ₂ O ₃ (amorph.)	11.26	12.0	278	0.443	3.19
CS _{Cr-2}	Cr ₂ O ₃ (amorph.)	8.28	4.8	293	0.622	4.24
CSco	Со	8.42	6.1	187	0.524	5.56
CS _{Ni}	Ni, NiO	9.42	5.9	263	0.566	4.27
CS _{Zn}	Zn ₂ SiO ₄	10.98	6.5	212	0.536	5.05
CS _{Zr-1}	ZrO ₂	17.14	13.8	236	0.415	3.52
CS _{Zr-2}	ZrO ₂	10.19	7.4	281	0.537	3.82

Table 3

Structural Parameters of Si-40 Initial and After Hydrothermal Treatment (HTT) at 423K, Carbosils ANi Prepared by Pyrolysis of Acenaphthene

Sample	<i>Cc</i> , wt.%	S _{BET} , m²/g	$V_p,$ cm ³ /g	r _p , nm
Si-40	caloutations	732	0.542	1.48
Si-40HTT	bec) using b	309	0.512	3.31
AN1/Si-40	5.6	313	0.375	2.40
AN2/Si-40	8.3	231	0.317	2.74
AN3/Si-40	19.2	128	0.163	2.53
AN4/Si-40	21.8	92	0.149	3.24

C/A-300 samples (Table 5) were synthesized by the pyrolysis of CH₂Cl₂ at the fumed silica substrate (A-300 with the specific surface area $S_{BET} \approx 300 \text{ m}^2 \text{ g}^{-1}$) at 673-823K for 40-120 min. The technique of sample preparation was described in detail elsewhere [3]. Other carbosil samples with the highly disperse oxide matrices were synthesized using the pyrolysis of cyclohexene at 973 K for 240 min (Table 5) [2]. Fumed silica, alumina, titania, and mixed X/SiO_2 (X = Al₂O₃ (AS), TiO₂ (TS), Al₂O₃/TiO₂ (AST)) (Pilot Plant of the Institute of Surface Chemistry, Kalush, Ukraine) and C/X/SiO2 were studied at different concentrations (C_X) of X oxide phase (Table 5) [18,19a].

Table 4

Structural Parameters of Silica gel KSK, CVD-TiO2/KSK (K28, K68) and After of Cyclohexene (K03, K282, K682)

Sample	$C_{TiO2},$ wt%	Cc, wt%	S _{BET} , m ² /g	$V_{p},$ Cm ³ /g	<i>r_p,</i> nm
KSK			377	0.98	5.2
K28	24.4	-	228	0.54	4.8
K68	17.9	100.00	281	0.76	5.4
K03		20.5	289	0.66	4.8
K282		20.5	152	0.31	4.0
K682		19.9	204	0.49	4.8

(b) Nitrogen adsorption. Nitrogen adsorption-desorption isotherms were recorded at 77.4K using a Micromeritics ASAP 2010 adsorption analyzer at $p/p_0 > 10^{-3} \cdot 10^{-4}$, where p and p_0 denote the equilibrium pressure and the saturation pressure of nitrogen at 77.4K, respectively. Additionally, the low-pressure adsorption isotherms were obtained for some samples (CS-i, Table 1) at $10^{-8} < p/p_0 < 0.15$ using a technique described elsewhere [7,21]. The specific surface area SBET was calculated using standard BET method. The pore volume V_p was determined from adsorption at $p/p_0 \approx 0.98$ -0.99. Average value of pore radius r_p was estimated as follows $r_p = 2V_p/S_{BET}$. The isotherms for unmodified or modified mesoporous silica gels (such as Si-60, Si-40 and KSK) correspond to the IV type [8,9] with marked hysteresis loops. The isotherms for fumed oxides are close to the II type but have narrow hysteresis loops at $p/p_0 > 0.75$ [3]. In this paper, the nitrogen adsorption-desorption isotherms are not shown (see Ref. [2-7]) while the corresponding α_s plots are analyzed. To characterize the adsorptive properties of carbosils CS-i, the adsorption potential distributions f(A) = -da/dA (where a denotes the adsorbed amount of nitrogen; $A = -\Delta G = R_g Tln(p_0/p)$ is the differential molar work, R_g is the gas constant) can be also utilized.

(c) Computing. To consider the heterogeneity of hybrid adsorbents [22], the computational technique can be following: (a) calculations of the parameters (λ_{ij}) of the adsorption isotherm equations $a_j = \Theta_j(p,T,\lambda_{ij})$ (where T is the temperature, j is a number of an adsorbent component, i is a parameter number) using adsorption data for individual (synthesized under the same conditions that the corresponding phases in multi-component adsorbents) and complex materials with consideration for their features using direct minimization methods; (b) computing of the distribution functions $f(x_n)$ of parameters x_n (e.g., pore radius R_p, adsorption energy E) for complex adsorbents utilizing the sum

as the kernel

whose solution The solution noise compo changes in fl. which do not

> Tab Stru

> > A A A

$$a = \sum_{i} c_{j} \Theta_{j}(p, T, \lambda_{ij}, x_{n})$$
⁽¹⁾

as the kernel of the overall adsorption isotherm equation

$$\Theta(T,p) = \int_{o}^{\infty} \sum_{j} c_{j} \Theta_{j}(T,p,\lambda_{ij},x) f(x) dx$$
(2)

whose solution in respect to f(x) can be obtained with the regularization procedure [23,24]. The solution of Eq. (2) is known to be an ill-posed problem due to a marked influence of noise components on the experimental data (small changes in $\theta(T,p)$ can result in large changes in f(x), and there are many solutions of this equation fitting the experimental data), which do not allow one to use exact inversion formulas or iterative algorithms [11,23].

Table 5

Structural Parameters of Fumed	l Silica,	AS,	TS and	AST	Before and A	fter
Carbonization						

Sample	C_X ,	Сс,	S _{BET} ,	V_{p}	r _p ,
	wt%	wt%	m ⁻ /g	cm /g	nm
A-300		- 1	312	0.65	4.2
C/A-300 ^a		8.5	385	0.96	4.9
C/A-300 ^b		0.5	297	0.60	3.3
C/A-300 ^b		4	280	0.51	3.7
C/A-300 ^b		6.5	260	0.50	3.9
C/A-300 ^b		20	231	0.43	3.7
C/A-300 ^b		40	160	0.36	4.4
C/A-300 ^b		64	112	0.19	3.4
ASı	1.3	5-1 - SPA	207	0.42	4.1
AS ₃	3	-	188	0.39	4.1
AS23	23	-	353	0.80	4.5
AS30	30	ol ogislog	239	0.57	4.8
Al ₂ O ₃			159	0.42	5.3
TiO2			60	0.17	5.7
AST	72	ប ២០ឆ្នាំ២០1	38	0.07	3.7
TS	1.7°	gyrol[d] a	318	0.71	4.1
C/TS2		20.1	286	0.77	4.6
TS	5°		310	0.71	4.1
C/TS:	using direct	20.0	273	0.74	4.7
TSm	33°		219	0.55	5.0
C/TS ₂₂	060/07/0400	23.1	169	0.47	5.6
TSo	9 ^f	-	238	0.57	4.8
C/TSo	A MARKEN	26.3	188	0.43	4.1
TS	14 ^f	Constraint	217	0.49	4.5
TS-	20 ^f	262.60	65	0.13	4.0
TC.	20 ^f	and an and a second	73	0.17	4.7
1029	361	14+13/10	115	0.25	4.3
1036	50	207	84	0.22	52
T1O ₂ AST TS ₂ C/TS ₂ TS ₅ C/TS ₅ TS ₃₃ C/TS ₃₃ TS ₉ C/TS ₉ TS ₁₄ TS ₂₀ TS ₂₉ TS ₂₉ TS ₃₆ C/TS ₃₆	72 1.7° 5° 33° 9 ^f 14 ^f 20 ^f 29 ^f 36 ^f	20.1 20.0 23.1 26.3 - 29.7	38 318 286 310 273 219 169 238 188 217 65 73 115 84	$\begin{array}{c} 0.17\\ 0.07\\ 0.71\\ 0.77\\ 0.71\\ 0.74\\ 0.55\\ 0.47\\ 0.57\\ 0.43\\ 0.49\\ 0.13\\ 0.17\\ 0.25\\ 0.22\\ \end{array}$	3.7 4.1 4.6 4.1 4.7 5.0 5.6 4.8 4.1 4.5 4.0 4.7 4.3 5.2

Note. Pyrolysis of ${}^{a}C_{6}H_{10}$ and ${}^{b}CH_{2}Cl_{2}$; ${}^{c}CVD$ -TiO₂/fumed silica; fumed TS; X = Al₂O₃, TiO₂, Al₂O₃/TiO₂

39

0.605

The constants determined using direct minimization methods for local equations Θ_j depend on the nature of *j*-phase. The weighting coefficients c_j determine the accessibility of *j*-phase (which can differ from its concentration in a complex adsorbent) for adsorbate. For example, a grafted phase can easily block pores of support particles possessing relatively low external surfaces; and the narrower the pores, the larger the reduction of the pore volume due to pyrocarbon grafting on silica gels (Fig. 1). The c_j values can be estimated using different adsorbates, which adsorb predominantly onto one of the phases of hybrid adsorbents [1,7]. Additionally, the accessibility of the oxide surfaces of carbon-oxides adsorbents can be computed from the intensity (optical density) of the IR bands of free surface hydroxyls [3,25,26].

Fig. 1. Relative changes in the pore volume for carbosils due to grafting of pyrocarbon (precursors are shown) on different silicas.

The pore size distribution $f(R_p)$ can be calculated using the overall adsorption isotherm equation [27], which can be written for *j*-phase as follows

 $a_j = \int_{r_{\rm e}(p)}^{r_{\rm e}(p)} f(R_p) dR_p + \int_{r_{\rm e}(p)}^{r_{\rm max}} \frac{W_j}{R_p} t(p, R_p) f(R_p) dR_p$ (3)

where r_{min} and r_{max} are the minimal and maximal half-widths (or pore radii), respectively; $w_j = 1$ for slitlike pores and 2 for cylindrical pores; $r_k(p)$ is determined with modified Kelvin equation

$$r_k(p) = \frac{\sigma_s}{2} + t(p, R_p) + \frac{w_j \gamma v_m \cos\theta}{R_o T \ln(p_0/p)}$$
(4)

and $t(p, R_p)$ can be computed with modified BET equation

$$t(p,R_p) = t_m \frac{cz}{(1-z)} \frac{[1+(nb/2-n/2)z^{n-1}-(nb+1)z^n+(nb/2+n/2)z^n]}{[1+(c-1)z+(cb/2-c/2)z^n-(cb/2+c/2)z^{n+1}]}$$
(5)

 $t_m = a_m/S_{BET}$; $b = exp(\Delta \varepsilon/R_gT)$; $\Delta \varepsilon$ is the excess of the evaporation heat due to the interference of the layering on the opposite wall of pores; $t(p,R_p)$ is the statistical thickness of adsorbed layer; a_m is the BET monolayer capacity; $c = c_s \exp((Q_p - Q_s)/R_gT)$; c_s is the BET coefficient for adsorptio emergy, γ is respectively; molecules an diameter of s distributions condition for confidence re Eqs. (3) and ($R_y/2$ for cylin mesopores bu nguations, wit with spherica

where determined w distributions / cylindrical po

To co discription [10

where K_{car}, 0.1, was used for individual (surrespondin) 77.4K [10].

alteration wit

(where K = 3sites and the p an isolated gr molecule (ans a the Boltonia

for adsorption on flat surface $c_s = \gamma e^{\frac{R_sT}{R_sT}}$, Q_L is the liquefaction heat, E is the adsorption energy, γ is a constant; Q_s and Q_p are the adsorption heat on flat surface and in pores, respectively; $z = p/p_0$; n is the number (noninteger) of statistical monolayers of adsorbate molecules and its maximal value for a given r_k is equal to $(R_p - \sigma_s/2)/t_m$; and σ_s is the collision diameter of surface atoms. Typically, desorption data were utilized to compute the $f(R_p)$ distributions with Eq. (3) and the regularization procedure [24] under non-negativity condition for $f(R_p)$ with unfixed (automatically determined on the basis of F-test and confidence regions [24]) or fixed ($\alpha = 0.01$ -0.001) regularization parameter. The w value in Eqs. (3) and (4) is determined by the dependence of dW/dS on R_p , which, e.g., corresponds to $R_p/2$ for cylindrical pores [8]. It should be noted that Eqs. (3)-(5) can be used not only for mesopores but also for micropores [27,28] in contrast to many of known adsorption isotherm equations, which can be used only for mesopores or only for micropores. For fumed oxides with spherical primary particles (or pyrocarbon with spherical particles), Eq. (4) should be replaced by following equation [8]

$$\ln \frac{p_0}{p} = \frac{\gamma v_m}{R_g T} \left[\frac{1}{r} - \frac{2}{\sqrt{(R+t'+r)^2 - R^2} - r + R + t'}} \right]$$
(6)

where R is the radius of primary particles, and $t' = t + \sigma_s/2$. The $f(R_p)$ distributions determined with Eq. (3) and linked to the functions dV_p/dR_p can be easily transformed to the distributions $f_S(R_p)$ with respect to dS/dR_p using the corresponding models of pores; e.g., for cylindrical pores

$$f_{s}(R_{p}) = \frac{2}{R_{p}} f_{\nu}(R_{p}) - \frac{2V_{p}}{R_{p}^{2}}$$
(7)

To compute f(E), the modified deBoer-Hill-Toth (DHTh) equation for mobile adsorption [10] for *j*-phase

$$\theta_{j}(p,E) = \frac{K_{DHT,j}p\exp(\nu_{DHT,j}\Theta - \frac{\Theta}{\chi_{j} - \Theta})}{1 + K_{DHT,j}p\exp(\nu_{DHT,j}\Theta - \frac{\Theta}{\chi_{j} - \Theta})}$$
(8)

where $K_{DHT,j} = K_{DHT,j}^{0}(T) \exp(E/k_{B}T)$, K_{DHT}^{0} , v_{DHTj} , and χ are constants; $\Theta = a/a_{m}$ and $p/p_{0} < 0.1$, was used as the kernel in Eq. (2). The values of K^{0} , v, and χ in Eq. (8) can be determined for individual materials using direct minimization methods with the starting magnitudes $\chi = 1$ (corresponding to the deBoer-Hill (DH) equation), $v_{DH} = 5.622$ and $K_{DH}^{0} = 7.31 \times 10^{-7}$ at 77.4K [10].

Additionally, the Fowler-Guggenheim (FG) equation (describing localized monolayer adsorption with lateral interaction)

$$\theta_{l}(p,E) = \frac{Kp \exp(zw\Theta/k_{B}T)}{1 + Kp \exp(zw\Theta/k_{B}T)}$$
(9)

(where $K = K_0(T) \exp(E/k_BT)$ is the Langmuir constant for adsorption on monoenergetic sites and the pre-exponential factor $K_0(T)$ is expressed in terms of the partition functions for an isolated gas and surface phases, z is the number of nearest neighbors of an adsorbate molecule (assuming z = 4), w is the interaction energy between a pair of nearest neighbors, k_B is the Boltzmann constant, $zw/k_B = 380K$ [29,30]) was used as a local isotherm θ_1 . A maximal

 p/p_0 value for an isotherm portion used with Eq. (9) corresponded to coverage $\Theta = a/a_m \approx$ 0.99.

(d) ¹H NMR. The ¹H NMR spectra were measured using a high-resolution WP-100 SY (Bruker) NMR spectrometer at 100 MHz working frequency and transmission band of 50 kHz. The temperature in the measuring chamber was adjusted with the accuracy of ± 1 K by means of a VT-1000 (Bruker) temperature controller. An electronic integrator registered the intensity of NMR signals with the accuracy of $\pm 10\%$. The ¹H NMR chemical shifts for water adsorbed on carbosils from the gas phase (4-24 wt.%) or in the aqueous suspensions (≈ 6 wt.% of solids) of adsorbents were determined with respect to tetramethylsilane (TMS) as an external standard. In order to prevent overcooling of the bulk water, the concentrations of unfrozen water were measured on suspension heating from 210K. This technique was described in details elsewhere [31-33].

Results and discussion

Pyrocarbon grafted on the oxide surfaces by the pyrolysis of a variety of precursors reduces the total pore volume with C_c differently (Fig. 1). A maximal diminution of V_p is observed for Si-40 possessing mainly very narrow mesopores (Table 3, r_p). For modified Si-60 with larger mesopores, this reduction is proportional to C_C and depends only slightly on the nature of organics (Fig. 1, Tables 1 and 2). A small decrease or even an increase in V_p is seen for fumed oxides after the cyclohexene pyrolysis (Fig. 1), as a porosity type of these oxides differs from that of mesoporous silica gel and corresponds to the gaps between spherical primary particles randomly packed in aggregates (whose apparent density is approximately 30% of the true density) [11,12,34]. At different C_C values, pyrocarbon produced by the carbonization of C₆H₁₀ on fumed oxides provides a marked increase in the pore volume and the specific surface area (Table 5, Fig. 1); however, after CH₂Cl₂ pyrolysis, reduction in V_p for C/A-300 is observed with C_c . The V_p values for fumed oxides are mainly linked to the channels in primary particle aggregates, but the empty space (V_{emp}) in powders, which is connected with their apparent density (ρ_{ap}) as follows $V_{emp} \sim 1/\rho_{ap}$, is significantly larger (e.g., $V_{emp} \approx 25 \text{ cm}^3/\text{g}$ for fumed silica A-300 at $\rho_{ap} \approx 35-40 \text{ g/L}$) than V_p and linked to the structure of agglomerates and visible flocks. Notice that mechanochemical activation (MCA) of dry fumed silica powder in a ball-mill during 1-2 h enhance the effective pore volume ($V_p \approx 1.10$ -1.14 cm³/g filled by nitrogen at $p/p_0 \approx 0.99$) by approximately two times; however, MCA during 24 h reduces the effective pore volume to 0.61 cm³/g close to V_p (0.67 cm³/g) for initial silica powder [20]. For some carbosils (AS₃ and CVD-titania/fumed silica TS₂, TS₅, TS₁₇) at $C_c = 17-28$ wt.% (Fig. 1, Table 5), appearance of pyrocarbon deposits formed on the outer surfaces of aggregates of primary particles during pyrolysis of cyclohexene results in an enhancement of a portion of V_{emp} accessible for adsorbed nitrogen at $p/p_0 \approx 0.99$ due to formation of tighter agglomerates similarly to those after MCA of silica powder. On the other hand, the pyrolysis of smaller molecule C2H2Cl2 can occur to a lager extent in channels of aggregates of primary particles of fumed silica that gives reduction of V_p dependent on C_C nearly linearly (Fig. 1). Additionally, the specific density of pyrocarbon is 1.5-2 g/cm³ [1], which is lower than that of fumed oxides (from ≈ 2.2 g/cm³ for silica to ≈ 4.0 g/cm3 for titania). Therefore relative loose pyrocarbon deposits formed by the cyclohexene pyrolysis (in contrast to other precursors carbonized on different oxide matrices (Fig. 1)) can enhance the effective porosity of C/fumed oxides (Table 5).

According to measurements of an accessible surface area of pyrocarbon prepared by the methylene chloride pyrolysis on Si-60 at 823K [7], the specific surface area of carbon deposits per se decreases from 740 m²/g ($C_c = 0.8$ wt.%) to 56 m²/g ($C_c = 35$ wt.%) but total influencing | the silica ge causes lowe active in red

ь

(TP)

(orhu.

1

Ada

3

2

Fig. 2. The 300 at Cc = carbons AJA impact of th Cabet BP 28

Relatively la statia on the

SBET decreases from 366 (CS-1) to 163 m²/g (CS-6), respectively. However, in the case of pyrocarbon-fumed silica (precursor CH₂Cl₂), diminution of S_{BET} (as well as V_p , Fig. 1) is smaller (Table 5) than those for pyrocarbon-silica gels (Tables 1-4). Typically, pyrocarbon formed on the silica surfaces (which do not have a marked catalytic activity in the pyrolysis) is composed of relatively large (especially at $C_c > 10$ wt.%) and dense spherical particles [3-7] possessing low or negligible own internal (accessible) porosity [1]. In the case of mixed oxides [18,19] having a catalytic significant activity in the pyrolysis, carbon nuclei form near such active surface sites as Brønsted and Lewis acid sites catalyzing acid-base reactions or other sites (e.g., on anatase) active in redox reactions, whose distribution impacts such structural characteristics of pyrocarbon as its particle size distribution and aggregation features of tiny carbon particles (1-3 nm) to larger globules up to 200 nm observed in TEM micrographs [3,7,14,15]. Therefore changes in SBET and V_p for C/TS (Table 5, Fig. 1) are lower than those for C/fumed silica at close values of C_c ; i.e., pyrocarbon in C/TS (cyclohexene carbonization) is more dispersed than that in C/fumed silica (CH₂Cl₂ pyrolysis). For C/silica gel and C/CVD-TiO₂/silica gel, these changes are larger due to the internal porosity of the silica gel matrix, crystalline and morphological features of CVD-titania

influencing pyrolysis [2,5,16,17]. For instance, segregated and denser CVD-TiO₂ prepared on the silica gel surfaces at 873 K (K68 sample with rutile + anatase on silica gel KSK-2) [2] causes lower changes in S_{BET} and V_p than less dense titania (K28 with grafted anatase more active in redox reactions than rutile) prepared at a lower temperature (473K) (Table 4).

Fig. 2. The α_s plots in (a) linear scale and (b) log-log scale for C/Si-60 (CS-*i*, Table 1), C/A-300 at C_c = 8.5 (precursor C₆H₁₀) and 64 wt.% (CH₂Cl₂) (Table 5), highly porous activated carbons AJAX (S_{BET} = 1345 m²/g) and ACF (579 m²/g) described in detail elsewhere [26]; (c) impact of the type of reference materials (silica gel Si-1000, carbon blacks Carbopack F and Cabot BP 280) on the α_s plots for some carbosils.

Relatively larger changes in V_p and S_{BET} are observed after simultaneous CVD of carbon and titania on the pyrolysis of TiO(AcAc)₂ on Si-60 (Table 2). It should be noted that pyrolysis of

acetylacetonates of Ti, Cr, Co, Ni, Zn, and Zr on Si-60 results in formation of pyrocarbon-X (X is the corresponding oxide, silicate or metal phase, see Table 2) deposits possessing the morphology dependent on the nature of X [4].

Fig. 3. The α_s plots in (a) linear scale and (b) log-log scale for C/Si-60 (metal acetylacetonates and acetylacetone were precursors, Table 2).

Fig. 4. The α_s plots for (a) KSK, K03, K28, K282, K68, K682 (Table 4), Si-40, Si-40HTT, AN4/Si-40 (Table 3) and (b) fumed oxides and pyrocarbon/fumed oxides (Table 5). MCA-A300 (1 h or 24 h) is dry powder of fumed silica ball-milled for 1 or 24 h.

The values of V_p , S_{BET} , and r_p decrease with C_C for the majority of the studied hybrid adsorbents (Tables 1-6) due to filling of mesopores by pyrocarbon (graphene clusters) and due to reduction of the empty volume between silica gel particles (diameter > 0.01 mm) filled by carbon globules ($10 < R_p < 200$ nm) grafted on the outer surfaces of these particles (resulting in the increase in the specific density of carbosils). The microporosity of CS-*i* samples as well as of other studied carbosils based on mesoporous silica gels is lower than that of pristine silica gel (whose microporosity is, however, insignificant), as their α_s plots (silica gel Si-1000 and carbon blacks Carbopack F (for AJAX and ACF) and Cabot BP 280 [35] were utilized as the reference adsorbents) differ significantly from those for such activated microporous carbons as A the shapes o (if g., CS-6) t the mg plots i furned oxide silica gels, et and agglome empty volum at $p/p_0 \rightarrow 1$ [

attucture can ar C₄H₁₀ for related to acetylacetoes carbonization or allicate, T mixed oxide (Fig. 4). How C firmed oxid pyrocarbon.

different precidistributions / //B₂/, we use particles for f D₂, using the [22]. On solumegativity co-(automatically principle [24 value could b surfaces and f data.

Since Bi-obl can be of in the pyrolys population at $p/p_0 > 0.001$; βR_{g0} peak at β confirmed by reference matimanimum shi pyrocarbon do amensity out o Si-obl, the gap particles and p carbons as AJAX and ACF [27,28] (Figs. 2-4). Notice that the reference material type impacts the shapes of the α_s plots at $\alpha_s > 2$; however, this effect is weaker for pyrocarbon/silica gel (e.g., CS-6) than that for pyrocarbon/fumed silica (Fig. 2c). Besides, the relative differences in the α_s plots for cabosilis depend on the reference materials only slightly. The porosity type of fumed oxides and corresponding carbosils (Figs. 2a and 4b) differs considerably from that of silica gels, especially in respect to mesopores (as the empty volume in fumed oxides is linked to the gaps between spherical primary particles randomly but not dense parked in aggregates and agglomerates [34]; therefore the capillary effect in them is weak and total filling of the empty volume by adsorbate cannot be reached, as the plateau adsorption is not observed even at $p/p_0 \rightarrow 1$ [3] corresponding to the II type of the isotherms [8,9]).

On the basis of the α_s plots (Figs. 2-4), one can assume that larger changes in the pore structure can be for CS_x prepared using such precursors as metal acetylacetonates (C/X/Si-60) or C₆H₁₀ for C/CVD-TiO₂/KSK in comparison with C/silica gels. Changes in the α_s plots related to micro- and mesopores are greater for carbosils produced using metal acetylacetonate precursors than that for pure pyrocarbon prepared by acetylacetone carbonization. This effect is caused by the pyrolysis catalysis by a new X phase (oxide, metal, or silicate, Table 2) formed during the carbonization. A similar effect is observed for other mixed oxides such as fumed TiO₂/SiO₂, CVD-TiO₂/fumed SiO₂, CVD-TiO₂/silica gel, etc. (Fig. 4). However, changes in the porosity of C/X/silica gels are typically larger than those for C/fumed oxides (Fig. 1) due to the differences in both the texture of matrices and formed pyrocarbon.

Additional information illustrating features of pyrocarbon deposits prepared using different precursors on a variety of oxide supports can be obtained on analysis of the pore size distributions $f(R_p)$ computed with Eqs. (1)-(7) using the regularization procedure. To calculate $f(R_p)$, we used models of cylindrical pores for silica gel, pores (gaps) between spherical particles for fumed and CVD-oxides and pyrocarbon, and, at last, slitlike micropores at $R_p < 24$ using the sum of Eq. (3) (i.e. Eq. (2)) corresponding to each *j*-phase in hybrid adsorbents [22]. On solution of Eq. (3), one can assume that $f(R_p) > 0$ over the total R_p range (nonnegativity condition) and the regularization parameter α can be fixed (0.01-0.001) or unfixed (automatically determined on the basis of F-test and confidence regions using the parsimony principle [24] and shown in Figures). It should be noted that the regularization parameter value could be linked to the quality of the experimental data, the nonuniformity of adsorbent surfaces and fitting (on the regularization) of a model adsorption isotherm to the experimental data.

Silica gel-pyrocarbon samples CS-*i* (Table 1) prepared by the pyrolysis of CH₂Cl₂ on Si-60 can be considered as simple carbosils, as silica gel does not possess the catalytic ability in the pyrolysis and this precursor provides the simplest nuclei for carbon grains. The $f(R_p)$ population at $R_p < 1$ nm is negligibly low (Fig. 5) (utilized isotherm portions correspond to $p_0 > 0.001$; but the use of lower pressures at $p/p_0 > 10^{-8}$ leads to appearance of a narrow R_p) peak at $R_p < 1$ nm), which corresponds to nearly pure mesoporous type of Si-60 and CS-*i* confirmed by their α_s plot shapes with a very small deviations from the α_s plots for the reference materials at $\alpha_s < 1$, as well as for other carbosils (Figs. 2-4). The main $f(R_p)$ maximum shifts toward smaller R_p with increasing C_c due to partial filling of mesopores by procarbon deposits (Fig. 5a). Own porosity of pyrocarbon particles is low and the $f(R_p)$ mensity out of the PSD for pristine Si-60 (e.g., narrow peaks at $R_p < 2$ nm for CS-1 and CS-5 can be linked to the gaps between tiny graphene particles and pore walls in mesopores of si-60, the gaps between carbon particles per se or between the outer surfaces of silica gel particles and pyrocarbon deposits. Notice that the α_s plot for CS-5 differs from others at low

adsorption (low p/p_0) (Fig. 2b) and the $f(R_p)$ peak at $R_p \approx 1.1$ nm for CS-5 (Fig. 5) can be due to its structural feature. Also, the regularization parameter α is the smallest (0.0028) for CS-5. Diminution of the fixed α value to 0.01 for CS-6 gives a similar $f(R_p)$ peak, especially with respect to $f_S(R_p) = dS/dR_p$ (Fig. 5b). As the whole, the $f_S(R_p)$ distributions possess greater intensity at smaller R_p in comparison with $f_V(R_p)$ and the difference between them increases for large pores, e.g., in the case of hydrothermally treated silica gel (Fig. 5b, Si-60HTT).

Fig. 5. Pore size distributions in respect to (a) dV_p/dR_p (unfixed regularization parameter α shown in the figure legend) and (b) dS/dR_p or dV_p/dR_p for Si-60 and CS-*i* samples ($\alpha = 0.01$) (Table 1). Model of cylindrical pores for silica gel and pores between spherical particles for pyrocarbon; (c) $f(R_p)$ computed using Hill's approximation and Eq. (4).

Fig. 6. Pore size distributions for (a) Si-60 and ANi/Si-60 and (b) Si-40 and ANi/Si-40 computed with unfixed α value (shown in Figure) using models of cylindrical pores for silica gel and pores between spherical particles for pyrocarbon (labeled CSp, solid lines) or cylindrical pores for silica gel and slitlike pores for carbon (CSI, dashed lines).

Enned on th

nd 40 in for les or

ke

Fig. 7. Pore size distributions for (a) AC*i*, and (b, c) C/X/Si-60 computed with with unfixed α value (shown in Figure) using models of cylindrical pores for silica gel and pores between spherical particles for pyrocarbon (labeled CSp, solid lines) or cylindrical pores for silica gel and slitlike pores (at $R_p < 2t_m$) for carbon (CSI, dashed lines).

Fig. 8. Pore size distributions for KSK, K03, K28, K68, K282, and K682 (unfixed α shown in Figure); two models (CSp and CSI) were used for hybrid adsorbents and the CSI model (slitlike pores at $R_p < 2t_m$) was utilized for oxides.

Thus, according to previously published results [3,6,7] and these investigations, pyrocarbon formed on the pyrolysis of CH₂Cl₂ on silica surfaces represents relatively dense and

practically nonporous particles from small graphene clusters (1-5 nm) in mesopores at $R_p < 10$ nm up to globules of 100-200 nm grafted onto the outer surfaces of silica particles. Changes in the nature of the precursors or the oxide matrices can result in large variations in the pore structure of carbosils (Figs. 6-10). In the case of pyrolysis of acenaphthene (ANi carbosils), textural changes are larger for C/Si-40 (Fig. 6b, Table 4) than those for C/Si-60 (Fig. 6a,

b a 0.0(Sp) f(R) f(R) 100 10 0.2 100 10 Pore Halfwidth (nm) 0.2 Pore Halfwidth (nm) d C 0,10 0,08 0(Sp). F(R) 0,06 f(R) 0,04 0,02 100 10 0,00 0.2 100 Pore Halfwidth (nm) Pore Halfwidth (nm)

Fig. 9. Pore size distributions for (a) A-300 and C/A-300 ($C_c = 0.5$ wt.%), (b) C/A-300 at C_c = 4 and 6.5 wt.%, (c) C/A-300 at C_c = 20 wt.%, and (d) C/A-300 at C_c = 40 and 64 wt.% computed with unfixed regularization parameter (its values are shown in Figure) using two models of pores (CSp and CSI).

Tables 2 and 3). Acenaphthene $C_{10}H_{12}$ does not have oxygen atoms in the molecules; however, its carbonization impact on Si-40 is akin to that observed on hydrothermal treatment of Si-40 at 423K (Fig. 6b). For C/Si-60, a similar effect is observed only on the glucose pyrolysis (Fig. 6a, Gl). At the same time, changes in the pore structure of C/Si-60 due to the pyrolysis of acenaphthene (Fig. 6a) are analogous to those observed after the CH2Cl2 carbonization (Fig. 5). However, larger textural changes in CS are observed after the pyrolysis of metal acetylacetonates (Fig. 7) due to the impact of a new X phase on the pyrolysis of subsequent portions of M(AcAc)_n (Tables 2 and 3) and the availability of oxygen atoms in the

molecules No

ani mesopore

enumure of p

[1,4,7]. For e

the opposite r

molecules. Nevertheless, even for last precursor, the main effects are related to filling of silica gel mesopores by pyrocarbon and X phases (Figs. 7 and 8), despite the differences in the structure of pyrocarbons, which are observed in the TEM microphotographs of CS samples [3,4,7]. For example, more nonuniform and denser carbon deposits are observed for CS_{Ti} and the opposite result is for CS_{Zn}, which can be caused by the difference not only in the catalytic

Fig. 10. Pore size distributions for (a) A-300, C/A-300 ($C_c = 8.5 \text{ wt.\%}$) CVD-TS, and C/CVD-TS, and (b) fumed TS and C/fumed TS (C_6H_{10} precursor) computed with unfixed regularization parameter (its values are shown in Figure) using two models of pores (CSp and CSI).

00 00

4 6 8 10 12 14 Adsorption Energy (kJ/mol) Fig. 11. Nitrogen adsorption energy distributions

for (a) CS-i (Table 1) computed using DHTh (symbols and solid lines) and DHT (dashed lines) equations with fixed $\alpha = 0.01$; and (b) f(E) for silica gel and pyrocarbon in CS5 computed with DHTh.

a

Pore Halfwidth (nm)

impact of the X phase on the pyrolysis but also in features of pyrocarbon distributions. Notice that Zn forms the silicate phase, but pyrolysis of TiO(AcAc)₂ results in formation of anatase crystallites of ~11 nm [4]. Cobalt exists in CS_{Co} as a metallic phase (crystallite size 20-25 nm); nickel in CS_{Ni} is in both metallic (crystallite size ~25 nm) and oxide phases (~13 nm); and CS_{Zr-2} includes zirconium dioxide (~4 nm) [4]. These various X particles can affect the pyrocarbon structure in C/X/Si-60 differently.

For C/fumed silica prepared by the pyrolysis of CH_2Cl_2 , own porosity of pyrocarbon is connected mainly with the gaps between dense pyrocarbon particles (relatively large according to the TEM micrographs [3]). Therefore fitting with the corresponding pore model gives relatively small regularization parameter α values, lower errors and $f(R_p)$ with sharp peaks in comparison with the PSDs computed using the model of cylindrical pores at $R_p > 2t_m$ and slitlike pores at $R_p < 2t_m$ (labeled CSI). However, position of the $f(R_p)$ peaks are close (Fig. 9). A similar picture is seen for C/TS and TS samples (Fig. 10) whose pore size distributions were computed with different models of pores as the gaps between spherical particles with cylindrical mesopores (labeled CSI).

On the basis of obtained results, one can conclude that the pore model as the gaps between spherical particles is more appropriate for nonporous pyrocarbons than that with slitlike micropores and cylindrical mesopores used for activated carbons [1,8,9,27,28]. However, the $f(R_p)$ peak positions are practically independent of the applied pore models, which suggest that the utilized technique with Eqs. (1)-(7) and the constrained regularization procedure to compute the pore size distributions are quite reliable. The differences in the nature of the surfaces of pyrocarbon deposits and oxide matrices cause distinctions in the adsorption of polar and nonpolar compounds due to variations in the interaction energy components [8,9]. Therefore the results of calculations of f(E) with consideration for the heterogeneity using Eqs. (1), (2) and (8) can be more adequate for hybrid adsorbents than those obtained with standard Fowler-Guggenheim (Eq. (9)) or deBoer-Hill equations. Notice that the absence of a strong specific interaction of nitrogen molecules with solid surfaces provides the possibility of quite exact evaluation of the structural parameters of adsorbents characterized by the chemical nonuniformity of the surfaces [35]. Therefore, one can expect only slight dependence of f(E) on the type of overall integral equation with or without consideration for the adsorbent nonuniformity caused by the differences in the chemical nature of hybrid materials. Computations with the modified DHT equation for heterogeneous surfaces (DHTh) show a stronger dependence of f(E) on C_c , e.g., for a peak at $E \approx 12.5$ kJ/mol (Fig. 11), than that computed with standard FG or DH equations (Fig. 12). A maximal intensity of the last peak is observed for CS-5 (Fig. 11) having the unique α_s plot at low pressures (Fig. 2b) and the marked $f(R_p)$ peak at $R_p \approx 1.1$ nm (Fig. 5a); i.e., the maximal intensity of f(E) at $E \approx 12.5$ kJ/mol for CS-5 is not incidental; also, a similar effect (but weaker) is observed for $f_{DH}(E)$ and $f_{FG}(E)$ (Fig. 12). It should be noted that the f(E)distributions for silica gel and pyrocarbon components (e.g., in CS-5) differ not only for the high-energy peak but over the total E range (Fig. 11b). The adsorption potential distributions for CS-i samples (Fig. 12c) depend on C_c slightly at A > 0.05 kJ/mol corresponding to $p/p_0 <$ 0.925. A f(A) minimum at this A value is linked to completion of secondary filling of mesopores corresponding to the main $f(R_p)$ peak (Fig. 5). The inflection of f(A) curves at A between 1 and 4 kJ/mol corresponds to the availability of a small portion of micropores seen in $f(R_p)$ in the case of the utilization of a low-pressure portions of the isotherms on the PSD computation. Microporous carbon AJAX has three minima at A > 0.9 kJ/mol as it possesses bimodal micropore distribution [27,28] and its f(A) differs strongly from that for CS-i (Fig.

Fig. 12. Ninto (b) DH equa shown in Tab

(Ele). Conseq altilike micro outer surface increase in the adsorbents re-DETTh or FG of carbonized the same adsstructure that obsracterized which is confnered that the Selt, besides, obtained with technique to of (2) to compufor analysis of

Consequently, one can assume that pyrocarbon in CS-i does not have marked own microporosity and the gaps between pyrocarbon particles and the pore walls or the exer surfaces of silica gel particles are responsible for low contribution of micropores. An accesse in the nonuniformity of C/X/SiO2 (Table 2) in comparison with CS-i (Table 1) accorbents results in significant changes in f(E) for different CS_x samples computed using the betTh or FG equations (Fig. 12d). It should be noted that the differences caused by the nature a carbonized precursors are larger than those caused by using the DHTh or FG equations for the same adsorbent. On the other hand, the f(E) distributions are more sensitive to the pore erecture than to the chemical nature of the surfaces [35]. Consequently, CS_x can be our acterized by large differences in the structures of grafted phases or modified oxide matrix, which is confirmed by TEM micrographs of these materials (see Fig. 1 in Ref. 4). It should be neved that the use of Hill's approximation for Eq. (4) gives only slight changes in $f(R_p)$ (Fig. besides, the PSDs for microporous carbons computed using Eq. (3) are similar to those obtained with DFT Micromeritics software [27,28] that confirms the reliability of the used bechnique to calculate the f(x) distributions. Utilization of the DHTh Eq. (8) and Eqs. (1) and C to compute f(E) for fumed oxides allows one to obtain detailed pictures (Fig. 13) fruitful for analysis of correlations between the structural (Figs. 1, 4b, 10) and energetic (Fig. 13)

characteristics. For instance, titania has relatively low S_{BET} (large primary particles with the average diameter of 25 nm) and a small V_p (Table 5); however, titania as a seniconductor possesses a relatively narrow energetic gap (~3.8 eV) and large polarizability, which cause significant dispersion interaction with adsorbed nonpolar nitrogen molecules. Therefore titania has a large f(E) peak at 13 kJ/mol, however, shifted toward smaller E in comparison with that for fumed titania-silica possessing larger S_{BET} (smaller primary particles and

Fig. 14. Ch 'H NMR s AC1 and temperature alterwa in Fig.

water [31-3 surfacesils Cidifferent Cotemperature diff of the indeposits and a the Gibbs adsorbert so dat to the w 275 K, and (sase of meso on, the amo Netice that Figs. 15a at diff Cool the diff Cool cor amenpends

Fig. 14. Chemical shifts (in respect to TMS) for ¹H NMR spectra of water adsorbed on Si-60, AC1 and C/X/Si-60 (Table 2) at room temperature (adsorbed water concentration is shown in Figure).

narrower channels in aggregates can impact the position of a high-energy f(E) peak) and acidic =Si-O(H)-Ti= groups strongly interacting with N2 molecules. However, the number of such active groups is relatively small and the high-energetic peak is lower for TS samples than that for titania (Fig. 13b). A similar picture is seen for AS samples (Fig. 13a) possessing significant Brønsted acidity [32,33]. Consequently, features of carbosil samples result in correlated changes in the textural and energetic characteristics analyzed with consideration for the heterogeneity of hybrid adsorbents. The structural and energetic properties of the surfaces of different phases in heterogeneous carbon-mineral adsorbents can differently impact the adsorption of such polar compounds as water.

This heterogeneity could be analyzed using the ¹H NMR method with freezing-out of the bulk water [31-33]. The application of this method to water adsorbed on the most complex carbosils CS_x prepared by the pyrolysis of metal acetylacetonates, as well as for CS-i at different C_C values [6], shows substantial differences in the ¹H NMR spectra recorded at room temperature (Fig. 14), amounts of unfrozen water (C_{uw}) and changes in the Gibbs free energy ΔG of the interfacial water at T between 210 and 273 K depending on the nature of grafted deposits and their concentrations (Fig. 15, Table 6). In Table 6, ΔG_{max} corresponds to changes in the Gibbs free energy of the first monolayer of the interfacial water strongly bound to the adsorbent surfaces; ΔG_{Σ} (in mJ per m² of the adsorbent surface) is the overall changes in G due to the water interaction with the surfaces distorting the interfacial water unfrozen at T < 273 K, and C_{uw}^{max} denotes the total amounts of unfrozen water at T \rightarrow 273 K [31-33]. In the case of mesoporous silica gel Si-60 (Merck), the $\Delta G(C_{uw})$ function is nearly linear (Fig. 15a); i.e., the amounts of the unfrozen water decreases nearly linearly with lowering temperature. Notice that $\Delta G(C_{uw})$ for Si-60 (Merck) differs from that for Si-60 (Schuchardt München) (Figs. 15a and 15c), and the PSDs for these initial silica gels differ (Figs. 5-7). For carbosils, $\Delta G(C_{uw})$ has a complex shape due to the heterogeneity of the surfaces. A portion of the $\Delta G(C_{uw})$ curves with a maximal incline (Figs. 15a and 15c) and large derivatives (Fig. 15b) corresponds to the boundary between strongly and weakly bound

the ctor use fore ison and

Fig. 15. Changes (a) and (c) in the Gibbs free energy (ΔG) and (b) its derivative $-d(\Delta G)/dC_{uw}$ for the interfacial water in the frozen aqueous suspensions (210-273 K) of (a, b) Si-60 (Merck), AC1 and C/X/Si-60 (Table 2); and (c) Si-60 (Schuchardt München) and CS-*i* (Table 1) estimated from the ¹H NMR spectra; (d) relationships between the total amounts of unfrozen water at T \rightarrow 273K (C_{uw}^{max}) and changes in the Gibbs free energy of the first monolayer ΔG_{max} and overall ΔG_{Σ} values for CS_X and CS-*i* samples.

waters, as small changes in C_{uw} result in large variations in ΔG . One can assume that this effect is also connected with a water layer interacting with different phases (oxide and pyrocarbon) with various Gibbs free energies but close temperatures of water freezing at T < 273 K. In the case of pure pyrocarbon on silica gel surfaces (AC1), the $\Delta G(C_{uw})$ plot lies to the left in comparison with those for CS_X (Fig. 15a) due to weaker interaction between nonpolar or slightly polar pyrocarbon particles and interfacial water.

Among CS-i s maximum of nonuniformity samples (Fig. comparison w CS_R and CScatalyze the p portions of py organics as C than silica su particles up to Consequently, which explain relationships I (C_{uw}^{mm}) and c values are no nonuniformity

Conclusions

On th pyrocarbon-m structural and with considera In the c

are relatively apprespond to pores, which c

Adsorbent	ΔG_{max} , kJ/mol	ΔG_{Σ} , mJ/m ²	$C_{uw}^{max},$ mg/g
Si-60 (Merck)	3.3	160	700
AC1	3.8	26	250
CS _{Zn}	3.2	204	535
CS _{Ti}	3.2	208	424
CS _{Zr1}	2.8	88	200
CS _{Zr2}	3.0	118	250
Si-60 (Schuchardt München)	2.8	115	850
CS-1	3.0	110	550
CS-2	3.2	132	530
CS-3	4.0	109	400
CS-4	3.0	72	275
CS-5	3.5	139	450
CS-6	3.7	240	400

I ADIC U	
Characteristics of the Interfacial	Water Layers in the Frozen Aqueous
Suspensions of Carbosils	a size simplement and when many are

Table 6

Among CS-i samples the most incline is observed for CS-5 (Fig. 15c), which also has a larger maximum of f(E) at E = 14 kJ/mol (Fig. 12a). However, CS-2 can possess a maximal nonuniformity, as its $\Delta G(C_{uw})$ plot lies to the right in comparison with those for other CS-i samples (Fig. 15c) in contrast to CS_x, whose $\Delta G(C_{uw})$ graphs shift toward lower C_{uw} in comparison with that for pristine Si-60 (Fig. 15a). The observed differences in $\Delta G(C_{uw})$ for CS_X and CS-i samples can be caused by deposit distribution features as the X phase can catalyze the pyrolysis depending on the nature of the X phase (Table 2). Therefore new portions of pyrocarbon are formed around the X grains. In the case of carbonization of such organics as CH₂Cl₂, C₆H₁₀, C₁₂H₁₀, carbon grains are more active as the reaction promoters than silica surfaces [2] that leads to enlargement of carbon particles, and relatively large particles up to 200 nm can be formed on the outer silica gel surfaces at $C_c > 10$ wt.% [2-7]. Consequently, the silica patches in CS-i can be more easily accessible than those in CS_X , which explains the observed differences in $\Delta G(C_{uw})$ for these carbosils (Fig. 15). The relationships between the total amounts of unfrozen water on CS_X and CS-i at T \rightarrow 273K (C_{uw}^{max}) and changes in the Gibbs free energy ΔG_{max} of the first monolayer and overall ΔG_{Σ} values are nonlinear (Fig. 15d) due to the influence of the nature of the surfaces, their nonuniformity, charge distribution and PSDs, etc.

Conclusions

-60

ble

of

first

this

and

T <

s to

veen

On the investigations of the structural and energetic characteristics of hybrid pyrocarbon-mineral adsorbents including texturally and chemically different phases, their structural and energetic features should be analyzed using the overall isotherm approximation with consideration for the adsorbent heterogeneity.

In the case of C/SiO₂, the pyrocarbon deposits represent mainly dense globules, which are relatively large and possess low porosity, as changes in the pore size distributions correspond to reduction of mesopores of the supports practically without appearance of new pores, which can be assigned to the carbon phase per se.

Structural features of titania-silicas prepared using silica gel and fumed silica matrices and different techniques cause alterations in the distribution of pyrocarbon on the supports, the particle size distribution and other properties of deposits and adsorbents as the whole. In general, pyrocarbon at the concentration from several to dozens percents consists mainly of large individual dense globules and possesses low own porosity provided mainly by the gaps between outer surfaces of the matrices and pyrocarbon globules. Tiny dense graphene particles (clusters) can fill mesopores of the supports or gaps (channels) between particles of oxides. Pyrocarbon forms preferably near the titania particles (CVD-TiO₂) or TiO_2/SiO_2 (as well as Al₂O₃/SiO₂) interfaces possessing catalytic activity in the pyrolysis. Pyrocarbon formation results in dramatic changes in the porosity of titania-silica gel during simultaneous CVD processes for both pyrocarbon and titania phases on the TiO(AcAc)₂ pyrolysis. Similar but smaller effects are observed for C/X/Si-60 prepared by the pyrolysis of Zn and Zr acetylacetonates or for C/CVD-TiO2/KSK. Thus, the choice of oxide matrices, organic precursors and techniques for the synthesis of oxides and carbon deposits allow one to change substantially the structural characteristics of hybrid carbon-mineral adsorbents in desirable direction.

Acknowledgements

This research was supported by NATO (grant No. EST.CLG.976890), the Polish State Committee for Scientific Research and Ministry of High Education and Science of Ukraine (grant No. 2M/303-99).

References

1. Fenelonov V.B. Porous Carbon. Nauka, Novosibirsk, 1995. 513 p. 2. CVD-Titania/Silica Gel Carbonized due to Pyrolysis of Cyclohexene / V.M. Gun'ko, R. Leboda, W. Grzegorczyk, J. Skubiszewska-Zieba, M. Marciniak, A.A. Malygin,

A.A. Malkov // Langmuir. - 2000. - 16, N 7. - P. 3227-3243. 3. Fumed Silica Carbonized Due to Pyrolysis of Methylene Chloride. / V.M. Gun'ko, J. Skubiszewska-Zieba, R. Leboda, V.I. Zarko // Langmuir. - 2000. - V. 16, No 2. - P. 374-

4. Silica Gel Modified Due to Pyrolysis of Acetylacetone or Metal (Ti, Cr, Co, Ni, Zn, Zr) Acetylacetonates / V.M. Gun'ko, R. Leboda, J. Skubiszewska-Zięba, J. Rynkowski // J. Colloid Interface Sci. - 2000. - 231, N 1. - P. 13-25.

5. Structural and Energetic Nonuniformities of Pyrocarbon-Mineral Adsorbents / V.M. Gun'ko, R. Leboda, V.V. Turov, F. Villiéras, J. Skubiszewska-Zięba, S. Chodorowski,

M. Marciniak // J. Colloid Interface Sci., submitted. 6. Characterization of Spatial and Energetic Structures of Carbon-Silica Gels / V.M. Gun'ko, R. Leboda, B. Charmas, F. Villieras // Colloid. Surf. A. - 2000. - V. 173, N 1-3. - P. 159-

7. High Resolution Argon and Nitrogen Adsorption Assessment of the Surface Heterogeneity of Carbosils / F. Villieras, R. Leboda, B. Charmas, F. Bardot, G. Gerard, W. Rudzinski //

Carbon. - 1998. - V. 36, N 10. -P. 1501-1510. 8. Gregg S.J., Sing K.S.W. Adsorption, Surface Area and Porosity. Moscow: Mir, 1970. -

9. Adamson A.W. Physical Chemistry of Surface. Moscow: Mir, 1979. 568 p. 10. Toth J. Uniform Interpretation of Gas/Solid Adsorption. // Adv. Colloid Interface Sci. -

11. Legrand A.P., Ed. The Surface Properties of Silicas. New York: Wiley, 1998. 470 p. 1995. - V. 55, P. 1-240.

adsorptive p 13. Charact Adsorption J. Skubiszev 14. Structur P. Kowalczy 15. Gun'ko Treatments Adsorberts / 16. Structur Malygin, A Calloid Inte 17. Structure W.M. Gun'k DET, N 3. -1 IIR. Furned o Zarko, M. M. Gas and Lio E.F. Veronin III Surface B Charman 223. NL - F energetic pa Dil Phonenci Linear Algei 25 Gun'ko Silica // Lan 28 CVD-T Laboda, E. (TT Nguyen 28 Choma J

12. Gun'ko

12. Gun'ko V.M. Impact of the nature and the state of highly disperse oxides on their adsorptive properties // Teoret. Eksperim. Khim. 36, N 1, 1-29 (2000).

 Characterization of CVD-Titania/Silica Gel by Means of Low Pressure Nitrogen Adsorption / V.M. Gun'ko, F. Villiéras, R. Leboda, M. Marciniak, B. Charmas, J. Skubiszewska-Zięba // J. Colloid Interface Sci. - 2000. - V. 230, N 2. - P. 320-327.

14. Structure of Silica Gel Si-60 and Pyrocarbon/Silica Gel Adsorbents Thermally and Hydrothermally Treated / V.M. Gun'ko, R. Leboda, J. Skubiszewska-Zięba, V.V. Turov, P. Kowalczyk // Langmuir, in press.

15. Gun'ko V.M., Leboda R., Skubiszewska-Zięba J. Impact of Thermal and Hydrothermal Treatments on Structural Characteristics of Silica Gel (Si-40) and Pyrocarbon/Silica Gel Adsorbents // Colloids Surf. A, submitted.

16. Structure of CVD-Titania/Silica Gel / R. Leboda, V.M. Gun'ko, M. Marciniak, A.A. Malygin, A.A. Malkov, W. Grzegorczyk, B.J. Trznadel, E.M.Pakhlov, E.F.Voronin // J. Colloid Interface Sci. – 1999. – 218. – P. 23-39.

Structure of Carbonized Mesoporous Silica Gel/ CVD-Titania / R. Leboda, M. Marciniak,
 V.M. Gun'ko, W. Grzegorczyk, A.A. Malygin, A.A. Malkov // Colloids Surf. A. - 2000. - V.
 167, N 3. - P. 275-285.

Fumed oxides modified due to pyrolysis of cyclohexene / V.M. Gun'ko, R. Leboda, V.I. Zarko, M. Marciniak, J. Skubiszewska-Zieba, W. Grzegorczyk, E.M. Pakhlov, E.F. Voronin, E. Chibowski // Colloids Surf. A, submitted.

19. Highly Dispersed X/SiO₂ and C/X/SiO₂ (X = Alumina, Titania, Alumina/Titania) in the Gas and Liquid Media / V.M. Gun'ko, V.I. Zarko, R. Leboda, M. Marciniak, W. Janusz,

S. Chibowski // J. Colloid Interface Sci. - 2000. - V. 230. - P. 396-409.

20. Connections between structural properties and treatments of fumed silicas / V.M. Gun'ko,

E.F. Voronin, I. F. Mironyuk, R. Leboda, J. Skubiszewska-Zięba, E.M. Pakhlov,

N.V. Guzenko, A.A. Chuiko // Colloids Surf. A., submitted.

Surface Properties of Mesoporous Carbon-Silica Gel Adsorbents / R. Leboda, V.V. Turov,
 B. Charmas, J. Skubiszewska-Zięba, V.M. Gun'ko // J. Colloid Interface Sci. - V. 2000. - V.
 223, N 1. - P. 112-125.

22. Gun'ko V.M. Consideration for adsorbent complexity on analysis of their structural and energetic parameters // Teoret. Eksperim. Khim. - 2000. - 36, N 6. - C. 349-353.

23. Szombathely M.v., Brauer P., Jaroniec M. The Solution of Adsorption Integral Equations by Means of the Regularization Method // J. Comput. Chem. - 1992. V. 13, N 1. - P. 17-32.

24. Provencher S.W. A Constrained Regularization Method for Inverting Data Represented by Linear Algebraic or Integral Equations. Comp. Phys. Comm. - 1982. - V. 27. - P. 213-227.

25. Gun'ko V.M., Voronin E.F., Zarko V.I., Pakhlov E.M. // CVD-Germania on Pyrogenic Silica // Langmuir. - 1997. - V. 13, N2. - P. 250-259.

26. CVD-Titania on Fumed Silica Substrate / V.M. Gun'ko, V.I. Zarko, V.V. Turov, R. Leboda, E. Chibowski, L. Holysz, E.M. Pakhlov, E.F. Voronin, V.V. Dudnik, Yu.I. Gornikov // J. Colloid. Interface Sci. - 1998. - V. 198. - P. 141-156.

27. Nguyen C., Do D.D. A New Method for the Characterization of Porous Materials. // Langmuir. - 1999. - V. 15. - P. 3608-3615.

28. Gun'ko V.M., Do D.D. Characterization of Pore Structure of Carbon Adsorbents Using Regularization Procedure. Colloids Surf. A, in press.

29. Choma J., Jaroniec M. Energetic and Structural Heterogeneity of Synthetic Microporous Carbons // Langmuir. -1997. V. 13, N 5. - P. 1026-1030.

30. Jaroniec C.P., Gilpin R.K., Jaroniec M. Adsorption and Thermogravimetric Studies of Silica-Based Amide Bonded Phases // J. Phys. Chem. B. - 1997. - V. 101, N 35. - P. 6861-6866.

31. Gun'ko V.M., Turov V.V. Structure of Hydrogen Bonds and ¹H NMR Spectra of Water at the Interface of Oxides // Langmuir. - 1999. - V. 15, N 19. - P. 6405-6415.

32. Active Site Nature of Pyrogenic Alumina/Silica and Water Bound to Surfaces / V.M. Gun'ko, V.V. Turov, V.I. Zarko, E.F. Voronin, V.A. Tischenko, V.V. Dudnik, E.M. Pakhlov, A.A. Chuiko // Langmuir. – 1997. – V. 13, N6. – P. 1529-1544.

33. Characterization of Fumed Alumina/Silica/Titania in the Gas Phase and Aqueous Suspension / V.M. Gun'ko, V.I. Zarko, V.V. Turov, R. Leboda, E. Chibowski, E.M. Pakhlov, E.V. Goncharuk, M. Marciniak, E.F. Voronin, A.A. Chuiko // J. Colloid. Interface Sci. -1999. – V. 220, N2. – P. 302-323.

34. Basic Characteristics of Aerosil. Technical Bulletin Pigments. No 11, Hanau: Degussa

35. (a) Kruk M., Li Z., Jaroniec M., Betz W.R. Nitrogen Adsorption Study of Surface Properties of Graphitized Carbon Blacks // Langmuir. - 1999. - V. 15, N 4.- P. 1435-1441; (b) Kruk M., Jaroniec M., Gadkaree K.P. Nitrogen Adsorption Studies of Novel Synthetic Active Carbons // J. Colloid Interface Sci. - 1997. - V. 192. - P. 250-256; (c) Jaroniec M., Kruk M., Olivier J.P. Standard Nitrogen Adsorption Data for Characterization of Nanoporous Kruk M., Olivier J.P. Standard Willogen Resort and Standard Silicas // Langmuir. – 1999. – V. 15, N 16. – P. 5410-5413.

TEMP OF

Abstract Mes

quaternary : mol. % we diffraction (muthesized type and bi prepared de

Introduct Rem

diameter fro the use of : carriers due [4-5]. Consi menaration conditions of 800 °C and new materia with catalyt adsorption s topes is inat IEMS must b maction of monthining si