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Abstract

Research has been conducted into the influence of the conditions of synthesis of
$047/Zr0; and WOs/ZrO; systems and of doping of such systems with oxides of silicon and
aluminium on their catalytic activity in #n-hexane isomerization. An improved procedure for co-
precipitation is used to synthezise superacid catalysts that exhibit high activity: the yield of
branched isomers at 520 — 540 K is 65 - 70% with a selectivity for i-C4 of 70 - 94% and
n-hexane conversion of the order of 80%; the content of the most valuable substance, namely
2,2-dimethylbutane, in the isomerization products is 17 - 21 wt.%. WOJ/ZrO,(Pt) catalysts
prove to be more stable than SO.*/ZrOy(Pt). Doping of WO3/ZrO; systems with oxides of
aluminium, silicon, and niobium decreases their isomerization activity.

1. Introduction

Isomerization of linear alkanes Cs — Cg, is employed for production of mixtures of
branched isomers as high-octane additives to motor fuels. The process is effected in the
presence of bifunctional acid catalysts based on the acidic form of mordenite [1] or
chlorinated alumina {2] which contain platinum or palladium as dehydrogenating-
hydrogenating components. Catalysts based on mordenite can function at a temperature of
520 - 570 K, which lowers the yield of branched isomers because of thermodynamic factors.
Using chlorinated alumina makes it possible to carry out the process at relatively low
temperatures (400 — 450 K) with high yields of isomers. However, this catalyst is rather
sensitive to the presence of water and sulfur.

In recent years many research teams have conducted intensive studies of promising
‘environmentally benign’ catalysts for isomerization of n-alkanes based on sulfate and
tungstate-containing zirconia which have superacid sites [3-19].

According to the agreed classification, superacids are compounds whose acid sites are
characterized by Hammett function values that are lower than those for 100% sulfuric acid
(Ho < —10) [20]. Their number of solid superacids is not large and includes the synthetic
polymer Nafion that contains (CF;)SOsH groups (Ao ~ —12); heteropolytungstates such as
Csy sHop sPW 2019 (Ho ~ -13); AICl5-CuCl; and AICI3-CuSOy4 (Hy = —13.5); sulfated oxides of
titanium (Hp = —14.5) and zirconium (H, ~ —16), and tungsten-containing zirconia WO,/ZrQO,
(Ho = ~14.5) [3,4,20].

Among the familiar superacids, sulfated zirconia is outstanding in that it has the
strongest acid sites and exhibits a high activity in the isomerization of paraffins [5,18]
However, it is known that SO4*7/ZrO; samples become deactivated due to loss of sulfur under
the reductive conditions of the isomerization process. Nevertheless, catalysts based on.
sulfated zirconia doped with iron and manganese ions were tested in a pilot plant for n-butane
isomerization [21]. Zirconia with a supported tungsten oxide phase WO./ZrO; is less acidic




than SOL/ZrO, but it preserves its catalytic properties in reducing atmospheres at high
temperatures. A few years ago Mobil Oil patented a number of catalysts based on WO/ZrO2
which can be used for the isomerization of n-paraffins, the decyclization of cyclohexane, the
hydrogenation of benzene, the alkylation of toluene with methanol, the oligomerization of
olefins, the alkylation of Ce aromatics with alkenes, the catalytic reduction of NO;, as well as
for the removal of sulfur and nitrogen compounds from crude oil [22].

There are detailed investigations on the methods of S0,*/2r0; and WOL/ZrOz
preparation which involve impregnation of zirconium hydroxide with solutions of sulfuric
acid (or ammonium sulfate) and ammonium metatungstate (or co-precipitation of ZrOCl; and
ammonium metatungstate using an aqueous solution of ammonia) followed by calcination of
samples at 820 — 1170 K [6,9-1 1,13,14,16,17]). The activity of these catalysts is considerably
dependent on the conditions of production of the starting zirconium hydroxide, of its sulfation
or tungstation, drying, and calcination.

The objective of the present study was to compare the known procedures for synthesis
of $0.%7/Zr0,(Pt) and WO/ZrO,(Pt) catalysts and to work out a method for the preparation
of an active catalyst with reproducible properties for the isomerization of n-hexane. The study
was also intended to consider the available data on the promoting effect of additives such as
oxides of silicon, aluminium, and niobium on the catalyst activity in reactions of cumene
cracking and n-hexane isomerization,

2. Experimental

2.1. Catalysts Preparation

Zirconium hydroxide samples were prepared by hydrolysis of chemically pure
zirconyl chloride with an ammonia solution 30 g of 7rOCly-8H,0 and 600 ml of H,O were
putinto a round-bottomed flask equipped with a stirrer Then, under conditions of continuous
mixing at 320 - 330 K 15 ml of 13.5 A ammonia and 30 ml of water were added. In
agreement with [6] the pH value of the zirconium hydroxide suspension formed was 8.0. The
suspension was stirred at 320 K for 2 h, following which it was filtered using a Buchner
funnel. The filtercake was washed with hot water (1 1) and dried at 370K for 24 h.

Samples of the Z10,-5i0 system were prepared by grinding the zirconium hydroxide
dried at 100 °C in a mortar with the addition of a small amount of water and, subsequently,
50 wt. % of Aerosil A-300. The paste obtained was pelletized to form cylindrical pellets 1
mm in diameter which were dried at 390 K for 2 h. Platinum and palladium were introduced
by impregnating the samples with solutions of H,PtCls and PA(NO3)s to 0.5 wt. % of Pt(Pd),
following which the samples were dried at 390 K for 2 h. Reduction of palladium ions was
carried out in CO flow at 590 K, and reduction of Pt* - in hydrogen at the same temperature.

The samples were sulfated according to the following procedure. The dried samples
were mixed with sulfuric acid solution, about 0.18 mol of H2804 per mole of ZrOz. The acid
concentration was adjusted sO that the corresponding solution could be absorbed by the
sample (3.3 ml of 2.33 M H,S04 and 6 g of zirconium hydroxide; 8.4 ml of 0.5 M H,;SOs and
7 g of Zr0;-Si0y). The samples obtained were dried at 120 °C for 2 h. Finally the samples
were calcined in air at 870 K for 2 h. Below this samples will be referred to as S0.*/Zr0,.

Samples of sirconium-tungstate catalysts (WO/Zr0;) were prepared both by
impregnation of zirconium hydroxide with an ammonium metatungstate solution and by co-
precipitation from solutions of zircony! chloride and ammonium metatungstate.

2.1.1. Impregnation of zirconium hydroxide. To a solution of zirconium oxychloride
an ammonia solution was gradually added up 10 pH 9 - 10. The zirconium hydroxide
precipitate formed was washed with water until no chloride ion was detected in the washing
waters, following which it was dried at 370 K for 8 h and then at 410 K for 1.5 h. The product
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obtained was impregnated with an ammonium metatungstate solution, dried, and calcined in a
muffle furnace at 1070 K for 3 h. The WO; content in the calcined samples was 16-19 wt %.

2.1.2. Samples of WO./ZxO, with addition of highly dispersed oxides of silicon and
aluminium. The dried zirconium hydroxide prepared following procedure 2.1.1 was
thoroughly ground in a mortar with highly dispersed pyrogenic alumina (140 m? g™') and
water [(WO3/ZrO,):ALOs = 4:1 w/w]. The paste formed was extruded, and the particles
obtained were at first dried at 370 K and then at 410 K for 1.5 h, following which they were
impregnated with an ammonium metatungstate solution, again dried at 370 K and calcined at
1070 K. In a similar way, samples with addition of Aerosil (300 m? g™, (WO/Zr0,):SiC; =
=3:1 w/w) were synthesized

2.1.3. Co-precipitation in aqueous solution. A solution of zirconium oxychloride in
water containing ammonium metatungstate was refluxed simultaneously with slow
introduction of ammonia by the "appearing reagent” method. In order to adjust the degree of
hydrolysis the boiling time was varied from 1 to 13 h and the pH of the solution during the
course of samples ageing from 1 0 te 79 The solutions obtained were then cooled and made
alkaline by adding an ammouia solution up to pH 92 - 96, which led to gelation. The
precipitates formed were thoroughly washed with water, following which these wet
precipitates were extruded through a 2 mm diameter orifice The particles obtained were dried
in an oven and then heated in a muffle furnace at 1070 K for 3 h. The weight content of WO;
in the synthesized catalysts amounted to 19 %, and their specific surface area was 40 — 55 m?
g~ This modified method gave four platinized samples with a gradually increasing degree of
hydrolysis. Below they are denoted as WZrPt-1, WZrPt-2, WZrPt-3, and WZrPt-4.

Samples with addition of niobium oxide (WO,/Zr0;-NbyOs) were synthesized
according to the following procedure To an nitial solution of zirconium oxychloride was
added a solution of niobium peroxide complex formed by interaction between precipitated
niobium hydroxide and hydrogen peroxide in a nitric acid solution. The mixture was heated to
decompose peroxide groups, and a solution of ammonium metatungstate added. The mixture
was refluxed for | h, neutralized with ammonia up to pH 9, and then the resulting gel treated
to obtain the caicined form as described above. The weight composition of the catalyst
obtained was as follows: ZrO; = 74.8 %, WO; = 17.1 %, Nb;O; = 8.1 %, Immediately before
testing the WO3/ZrO,(Pt) catalysts in n-hexane isomerization they were reduced in a
hydrogen flow at 620 - 670 K for 4 h.

2.2. Methods for Characterizing the Catalysts

X-ray diffraction patterns of samples were recorded cn a DRON-UM1 diffractometer
using Co Ko radiation Specific surface area were measured by the standard method of low-
temperature desorption of argon

UV-Vis reflectance spectra of powdered samples were recorded on a Specord M-40
spectrophotometer. The relative reflection coefficient X was measured using MgO as a
reference (R = Rumple/ Ratg0). Absorption spectra of samples were calculated from their diffuse
reflectance spectra with according to Kubeika-Munk function, F(R) = (1-R)*/2R.

Acid characteristics were determined in terms of ammonia adsorption values at
various temperatures of samples previously activated under vacuum as well as by the method
of temperature-programmed desorption of ammonia using an MI-1201 mass spectrometer as
analyser. The acidity of samples was also tested in cumene dealkylation, using the technique
of temperature-programmed reaction (TFR) and mass-spectrometric monitoring of reaction
products. Samples (4-8 mg) were put in a quartz cuvette and evacuated at 520 - 620 K (for
mordenite, 720 K}. Cumene adsorption was effected at 300 K Afier evacuation the cuvette
was hooked up to the bleed-in system of the MI-1201 mass spectrometer to register




concurrently the fragment ion C¢Hs" (77 am.u) and molecular benzene ion CeHs™ (78 am.u.)

with a linear increase of temperature (usually at a rate of 10K min™").

The activity and selectivity of the catalysts were studied for n-hexane isomerization in
a flow reactor. Samples in the form of pellets (0.5-1.0 mm in diameter) or worm-like particles
(0.8 - 1.0 mm in diameter, 4 cm’® in volume) were placed into an isothermal zone of the

reactor and activated for 4 h at 670 K in a flow of hydrogen. Then the reactor was brought to
stable operating conditions (pressure 3 MPa, temperature 500 - 540 K), following which it
was fed with a mixture of hydrogen and n-hexane (Han-CsHia = 101, LHVS =1 h™"). Samples
of products for analysis were taken at intervals of 1 h. The activity of the samples was stable
throughout the 6- hour experiment. Products were analysed ona Khrom-4 gas chromatograph
using a flame-ionization detector and capillary column 50 m long and 0.25 mm diameter with

dinonyl phthalate as stationary phase.

3. Results and Discussion

3.1. Sulfated Zirconia
The X-ray diffraction patterns for the initial and sulfated zirconia are presented in

Fig. 1 Calcination of an unsulfated sample at 870 K led to formation of the monoclinic
modification of ZrOa, with the specific surface area reduced from 230 to 40 m? g, In the
case of a sulfated sample the calcination treatment at the same temperature resulted in
formation of a metastable predominantly tetragonal modification of ZrOs, which is in
agreement with [6,9]. Sulfate ions prevent sintering of a sample because its specific surface
area decreased only to 100 m* g Introduction of highly dispersed silica increased the

specific surface area of su

{fated samples to 250 = 280m? g
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Fig. 1. X-ray diffraction patterns (CO Ke) of ZrtO(OH):

at 870 K (2), and ZrOz calcined at 870 K (3).
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samples exhibited high activity in cumene cracking which is one of the most important
reactions for testing samples for their B-site strength.

In the TPR spectra recorded in the course of the formation of benzene from cumene
adsorbed on S0,*7/Z7r0, previously vacuum-treated at 520 K, the benzene peak was observed
at 370 - 400 K (Fig, 2a). In the case of a less acidic H-mordenite the maximum of benzene
release was observed at 440 — 460 K (Fig. 2b). The presence of platinum or palladium in the
samples hardly affected the position of the maximum.
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Fig. 2. TPR spectra for formation of benzene from cumene over S0.%/Z:0, (a) and
H-mordenite (b).
I- SO*/Z10; freshly calcined at 870 K.
2- after exposing SO4*/Zr0; one week in air,
Exceeding of the 78 a.u. mass curve over 77 a.um indicates cracking of cumene.

Exposure of these samples to air led to a high-temperature shift of the benzene peak
(71 = 420 K) and to a decrease in its intensity (Fig. 2). After testing in #-hexane isomerization
for 5 h the SO42_/Zr02(Pt) sample showed almost no activity in cumene cracking, with the
sulfur content in the sample being decreased from 0.4 to 0 3 wt.%.

SO4*/ZrOy(Pt) and SO4*/Zr0;-Si0,(Pt, Pd) systems showed high activity in
n-hexane isomerization (Table 1). The reaction products were predominantly
2-methylpentane, 3- ylpentane, 2,2-dimethylbutane with admixtures of cracking products

— Cs). The branched isomer yield at 500 K ranged from 62 to 75 % at a selectivity with
respect to /-Cs of 80 ~ 75 % and a n-hexane conversion of 78 — 83 %. For palladized
H-mordenite similar results were achieved only at 530 - 550 K [1]. The above-mentioned data
for SO42‘/Zr02(Pt) at 500 K are very close to the data in [12]. Inclusion of highly dispersed
silica into the composition of these catalysts led to a reduction in hexane cracking compared
to SOf'/ZrO:(Pt) at 500 ~ 520 K and to an increase (up to 17 %) in the yield of
2,2-dimethylbutane which is the most valuable product in terms of octane number.
Comparison of the data on the yield and selectivity of branched isomers and the data on
hexane cracking for S04%/Zr0,-Si0y(Pd) and S04"/Z10,-Si0x(Pt) samples shows (see
Table 1) that platinum is a more effective dehydrogenating-hydrogenating component of
bifunctional catalysts for isomerization of n-alkanes than palladium, supposing that
concentrations and strengths of active B-sites in the Pt- and Pd-containing catalysts are the
same.
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3.2. Tungsten-containing Zirconia
As is seen from the diffraction
hydroxide without addition of W or
intense peaks at 26 =
predominantly tetragonal phase of Zr0,
observation agrees with the known data [1
groups stabilizes the tetragonal zirconia
temperatures. Of note also is the fact that the
observed during the course of their thermal
zirconium hydroxide without such additives.
samples there are no peaks that could be attrib

seems to stabilize the tetragonal phase of ZrO, more efficiently than WOs does.

Intensity (a.u.)

patterns (Fig. 3), after calcination at 1070 K zirconium
Nb is almost purely monoclinic ZrO, phase (the mos:
32.9° and 36.8°). Addition of WO; leads to formation of a
(the most intense peak at 2@ = 35.3°). This
3] according to which the addition of tungstate
phase that otherwise is metastable at these
decrease in the specific surface area of samples
treatment is substantially smaller than that for
On the diffraction patterns for Nb-containing
uted to a monoclinic phase. Niobium pentoxide
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Fig.3. Fig. 4.
X-ray diffraction patterns (CoKy) of ZrO, (1), UV-Vis reflectance spectra for WO3/Zr0, (1)
WO5/Zr0; (2), and WO;-Nb,0s/Zr0; (3). and WO3-Nb,;05/Zr0; (2).

The [hv(1-R)*2R}" function for WO,/ZrO; samples calculated from their diffuse
reflectance spectra are shown in Fig. 4. In the case of semiconductors oxides this function is
approximately linear on the long-wavelength edge of the absorption band, and the intercept of
the extrapolated linear portion of such a dependence makes it possible to determine forbidden
gap values. For WOj5 clusters the forbidden gap decreases with increasing cluster size [19].
According to [19] for the WO3/ZrO,(Pt) system the highest catalytic activity in reactions
catalysed by superacidic sites is observed in the case of samples with a certain optimum size
of WO; clusters whose Ey values are approximately 3.1 — 3.2 eV. The [hv(1-R)*/2R]'? vs. hv
plots for our samples are similar to those presented in [19]. The inflection points in the long-
wavelength region give evidence for the presence of WO; crystallites.

The weak peaks in the 2@ interval from 27.0 to 28.4° in the diffraction patterns
(Fig. 3) may be assigned to a monoclinic WO; phase (£, = 2.64 eV [19]) whose most intense
peaks are at 20 =270, 27.5, 28.4, and 39.9° (recalculated for Co Kat radiation). Thus, high-

temperature treatment of samples causes the initialty homogeneous hydroxide structure of the
samples to be divided into ZrO, and WO; phases.




Gravimetric curves of ammonia thermal desorption from the surface of samples allow
one to estimate the concentration of acid sites (Fig. 5). Reduction of the WO,/ZrO; sample
promoted with platinum in a flow of hydrogen at 670 K for 4 h leads to a small increase in the
content of strongly retained ammonia that undergoes desorption at temperatures above 420 K.
This concentration makes up 0.16 mmol g”' in comparison with 0.12 mmol g™! for an
unreduced WO5/ZrO, sample. The concentration of acid sites determined for both samples by
back- titration of n-butylamine adsorbed from toluene solutions is 0.13 mmol g™'. If tert-
butylamine is used, the acid site concentrations obtained for all the samples are approximately
20 % smaller than those determined with #-butylamine. This fact is related to the different
accesibilities of acid sites to molecules of ammonia, n-butylamine, and terz-butylamine.
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Fig. 5. Gravimetric curves for thermal desorption of ammonia for WO/ZrO, (1) and

WO,/ZrO2(Pt) (2).

In the case of a reduced WO,/ZrO,(Pt) sample the content of sites that are more acidic
than in H-mordenite (desorption of ammonia at temperatures above 600 K) is 0.035 mmol g™
(Fig. 5). Evaluation of the acidity of tungstate-containing ZrO, using Hammett indicators is
impossible because after calcination at 1070 K the samples become yellow and after reduction
they become black-blue. We have evaluated the concentration of acid sites in terms of
4-nitrotoluene (4-NT) adsorption (pKa = -11 .38) from toluene solutions. The concentration of
4.NT was determined photometrically. The amount of 4-NT adsorbed on the WOy/ZrO,
¢ is.0.028 mmol g_' whereas that adsorbed on the WO,/ZrO2(Pt) sample is equal to only
ose to the content of acid sites (that are active in
isomerization of #-pentane) which was calculated on the basis of poisoning of the WOL/Z1Oz
catalyst by 2,6-dimethylpyridine [14]. It may be assumed that the enhanced adsorption of
4-NT on the WO4/ZrO, sample is due to formation of charge-transfer surface complexes.

As distinct from the SO,27/ZrO; samples, the WOL/Z1O, catalysts preserve their activity
after long-term storage in air. As far as cumene cracking is concerned, reduced samples of
WO,/ZrO, are more efficient than WO,/Zr0, (Fig. 6). The highest activity is exhibited by the
tungstate-containing ZrO; promoted with Nb;Os. Addition of highly dispersed alumina leads to 2

sampl
0.004 mmol g™'. The last value is cl
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When the catalyst composition includes highly dispersed silica and, especially, highly
-:spersed alumina, the yield of n-hexane isomers decreases sharply. In this case the main
croduct is benzene with admixtures of other aromatic hydrocarbons, which indicates that the
U‘x'Ox/ZrO;-A1203(Si02)(Pt) Systems  predominantly catalyse the dehydrocyclization of
“-hexane.  Addition of niobium leads to a decrease in n-hexane conversion and
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It is assumed that superacid sites in the form of H-tungstate bronze clusters
(WO3)m(W6'"03)(n H") appear during reduction of the WO; phase with hydrogen on the ZrO,
surface [19]. Of note is the fact that catalytic activity is exhibited only by clusters of certain
sizes, namely by clusters whose formation requires treatment of samples of mixed oxides of
zirconium and tungsten at 970 - 1170 K. The tungstate bronzes are known to have high
electronic conductivity. The tetragonal phase of ZrO; accepts electrons of WO, clusters,
which weakens the Coulombic attraction between protons and clusters, and enhances the acid
strength of B sites. It may be suggested that conductive clusters of H-tungstate bronzes could
effect dehydrogenation-hydrogenation of alkanes, i.e. could behave similarly to platinum and
palladium. However, our experimental results show (Table 2) that exclusion of platinum from
the catalyst composition leads to a considerable decrease in n-hexane conversion.

Several mechanisms for n-alkane isomerization on bifunctional heterogeneous
catalysts are discussed in the literature. The most frequently cited mechanism involves
dehydrogenation of a paraffin to olefin as an intermediate and absorption of hydrogen by
platinum or palladium, protonation of the olefin through the use of B sites of the catalyst,
isomerization proper of carbenium ions and hydrogenation of the isoolefin to isoparaffin [6].
The negative order of the isomerization reaction with respect to hydrogen gives strong
evidence for this mechanism [7].

In another mechanism for n-alkane isomerization, it is suggested that the process
includes following stages: 1) protonation of alkane molecules by the strongly acidic B-sites,
2) formation of a carbonium ion with a 5-coordinated carbon atom, 3) abstraction of two
hydrogen atoms from this ion with the participation of platinum, 4) isomerization of the
carbonium ion through the transient cyclopropane state, and 5) addition of a hydride ion to the
isomer and that of a proton to the deprotonated B-site [5]. The transport of hydride ions to
isomeric carbonium ions is assumed to be a rate-determining step of the isomerization process
[5]. It is evident that this mechanism does not involve formation of an olefin.

According to [23, 24], isomerization of n-alkanes on sulfated zirconia proceeds with
participation of strong Lewis sites (zirconium ions) which abstract hydride ions from
hydrocarbon molecules. The carbenium ions formed are synchronously attached to bridging
hydrogen atoms and, as a consequence, undergo isomerization. In the final stage the sites are
regenerated with desorption of isoparaffin molecules.

Thus, it is evident that to establish the true mechanism of n-alkanes isomerization on
hifunctional acid catalysts additional experimental data are required.

4. Conclusion

The SO.2/ZrOy(Pt) and WOJZrO,(Pt) catalysts synthesized exhibit high activity in
n-hexane isomerization at 520 — 540 K (n-hexane conversion: 80-85%, isomers yield 65 —
70%, selectivity for i-C¢: 70 ~ 94%). WO/ZrOx(Pt) catalysts prove to be the more stable. The
comparative study of impregnation and co-precipitation methods for producing tungstate-
containing zirconia shows that catalysts co-precipitated following an improved procedure are
more active in n-hexane isomerization. Promotion of SOs*7/ZrO; systems with highly
dispersed silica leads to an increase in their specific surface area without loss of catalytic
activity, whereas promotion of WO,/ZrO; systems with highly dispersed oxides of silicon and
aluminium is accompanied by a decrease in catalytic activity.
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