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Abstract

In this paper, we study the effects of a semi-infinite matrix disperse system on the
external electromagnetic radiation in the electrostatic approximation. With the help
of our previous technique, we obtain general expressions for the multipole
expansion coefficients of the electric potential for a sphere accounting for the
interaction between ambient particles and the substrate. The polarizability tensor

and resonant frequencies of a single sphere show anisotropy due to the influence of
a substrate,

1. Introduction

Interest in matrix disperse systems (MDS) is stimulated, first of all, by the possibility of
manufacturing materials with predicted optical properties. At the same time, the properties of
MDS may strongly differ from those of the materials used for the formation of MDS [1]. In the
theoretical studies MDS are usually considered as infinite systems.

In this work, we take into account the effects of an MDS interface. Namely, the MDS is
considered as a half space dielectric matrix with a plane interface separating it from another
half space homogeneous dielectric. The matrix is filled with spherical inclusions of different
diameters located near the substrate forming a layer of randomly or regularly arranged
particles. The results [2] obtained for the monolayer of spheres on a dielectric substrate can be
obtained from our model as a particular case. Basically, this work is a generalization of [2,3 4].

2. Basic equation

We consider the semi-infinite MDS consisting of dielectric spheres of different diameters
embedded in a homogeneous dielectric (ambient) as shown in Fig. 1. Another half space is
filled with another homogeneous dielectric (substrate). The system is placed in the electric field

proportional to e Let ¢,(w), ,(w) and ¢ (w) be the dielectric functions of the ambient,
substrate and the /" sphere, respectively, and R be the radius of the i sphere.
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Fig. 1. Geometry of the semi-infinite matrix disperse system

Let the wavelength of the external electromagnetic field be much larger than radii of the
spheres and the distances between them. In other words, we use the electrostatic
approximation. In such a case resulting electric field is caused by the interaction of the external
field with the MDS and the substrate and its potential satisfies the Laplace equation

M

Ap(F)=0
in the regions I - inside MDS (out of spheres), II - inside the spheres, 111 - inside the substrate,

and standard boundary conditions
. oy,
(W,‘:Wj)au’(&—a—y—,l—zé'»—lj—\ s (2)

“on, on )C'u'
where & is dielectric function of the matter filling out the i* region (i=1, II, 1),
_ is the resulting field potential in the ™ region,
o, denotes the common bound surface of the regions i and J.
Using ideas of the image and multipole expansion methods of solving of electrostatic problems

we seek a solution of the problem (1,2) in the following form:
W[ = W::t + Z Wzl—rh spere + l//:lubxlrauz = —EOF + ZAllm 1.41m (,ﬁl ) + Z Ai’lmEm (ﬁl’) (3)

ilm ilm
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where
L pl=ToE

7 is a radius-vector of the center of the i sphere ; 7' is a radius-vector of the i*" sphere center
is a constant contribution to the potential w™ related with a choice of radius-
the individual terms in (3,4,5) automatically satisfy equation
s refraction on the boundary of different media.

p=F-7

image and "
vector origin point. Note, that all
(1), and (6) expresses the idea of force line



The unknown coefficients Apis Apis Bipi,C i yayb e are obtained after applying the

boundary conditions (2) to the expansions (3, 4, 5),

3. Boundary conditions on the substrate surface
1. Potential continuity condition on the surface o, ; take the form
R I/ - ' - .
(EO - EO )r ~Yo + /Z{AilmFlm (pi)+ AilmFlm (pi )_ Cilm[vm (pi )}0' = 0.
ilm -1

enient to reduce all
sing the fact, that for any point at the boundary

Different terms here have different arguments. It proves to be more conv
the terms to a common argument, eg.to g, U

surface o,_,,

pi = (pi’gf’¢i)

P =(0i.8,.01)=(p;,7 - 0,,0,)
and using the relation [5]

-2d11 of the I+m
- sctrostatic . Vin(7=6,0)=(~1) Yin(6,0)
-2 external we obtain
il apdlzl g I+ ~
AEGFT +AEGF ™~y + Z{Aflm + 0 iy - Ci }Flm (B:;) = o,
(1) ilm T -t
= substrate, where we have used decomposition 7 =#” +7% and analogous to it for AL =E! - E,.

Obtained equation is equivalent to the set
@) AES -7 =0
AEE 7yl <o

)
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2. Potential derivative continuity condition on the surface O, y in view of o, —68— take
4
e oroblems the form
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Again, reducing all the terms to argument P, and using relation
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or equivalent set
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n over the substrate.

where h, isthe height of the global origi

d equation for Aitm
condition take the form
0.

4. Boundary conditions on the sphere surface an
| On the surface of j" sphere the potential continuity
LBy o7+ A Fin(B.) 7 Z Aim T (5)- 3 BnCunlPs) =
ilm ilm im -1l
Applying representations F=r, p; and p; =Pj~ (Fi - FJ,), well-known addition theorem [6]

for spherical harmonics
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While deriving last expression W€ have used relations {5]
(¥, @), (KO = 0o = s
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that allows us to interpret the matrix Af = [l

dipole approximation by using (10):
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Applying to this expression the same procedure as earlier, we obtain relation

Sl IR + 6B, el RS T[4, 5 QAR A Ry AT
int m=—1

3. Two equations obtained from the bounda
form the full set defining unknown coefficients A,

as function of A, was found earl
reduced to the form
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» and B, (note, that explicit form of A
ier, see eq. (9)). After some transformations it can be
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E,,, 02) = Ey(sin 6, cos @, sin 6, sin ®,€056,).

The explicit form of the function J in (10) is not needed for further consideration.
Second equation of (10) can be written in the matrix form [i + K]A =V or A= [f+!€']_ll;',

+K } which connects external potential matrix

J4m» 85 the multipole polarizability matrix of the MDS spheres.

¥im and multipole coefficients 4

5. A single sphere near the substrate. The resonant frequencies

For the single sphere near the substrate, we can obtain the polarizability tensor in the dipole-

4 a, 0 0
G=3mRe(e-6,) 0 a, 0 (1)
0 0 «

1

where a, :[£“+L'(5—5a)}-l; (=11); 1(1+1 & —&, .
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The resonant frequency is obtained by using the condition ai(a)m) = . In our case it reduces

to the following algebraic equation with respect to the frequency:
w* +a,w’ + a0t +ao+d =0,

& is the distance between the spher
Let us consider the case of Lorentz’s

glw)=1+

(12)

where a, =i(y +7,)
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A solution to (12) neglecting damping (y =y, = 0) is
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phere on the dielectric substrate from (13), using the inequality

Particularly, for a metallic s
ing approximate expressions

o /a) ,<<l,we obtain the follow
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for the four (i=//,1) resonant frequencies. Note that @p j_ is well-known surface plasmon
/3

frequency of a sphere and P, /F is one of a substrate.
2
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pair of the frequencies is observed when the
bstrate, while another one — when perpendicular, and thes:
two pairs don’t coincide in addition. In general case field has both the components an:

absorption spectrum has the four resonant frequencies respectively.

Second, under certain field direction (// or L to the substrate) t
due to an interaction between surface plasmons of the sphere and o
increasing of the distance between sphere and substrate this interaction va

As we see, substrate chan
resonant frequencies arise in the absorption spec
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6. Conclusion

We obtained the general expression for the reson
Is a dielectric sphere in vacuum on a dielectric su
shifting of the resonant frequency depending on a
(13). This allows one to suggest that layers of small
electrodynamical properties.

ant frequency of the model system, which
bstrate. The latter results in splitting and
direction of the external field according to
particles on a substrate possess anisotropic
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