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Abstract
In this paper a theoretica

principled capability of the correct
semiconductors surface is demonstrate

| model for the free semiconductor surface is proposed. The
calculation of the electrostatic potential of the real
d on the example of Silicon surface. The potential relief

V(7 F) of Si(100) surface are investigated theoretically using methods of nonlocal electrostatics. It
is shown, that taking into account the microscopic structure of the free semiconductor surface can
lead to the local change of the potential barrier height along the surface. V(7,F) (and its amplitude
SH(F)) 1s determined by the microscopic structure of the real surface and the bulk (macroscopic)

parameters of the semiconductor.

1. Introduction

The progress in up-to-
theoretical models for calculations of the emission ¢
s depend on the bulk properties of the field emission cathodes, their geometric shapes and
r the theoretical calculation of the current-voltage characteristics and
sary to know a precise shape of the potential
ctor materials (silicon,
icroelectronics

date vacuum microelectronics requires the development of better
haracteristics. It is known that emission

propertie
the state of their surfaces. Fo
optimization of the field emitter parameters it is neces
barrier in the presence of an external electric field F . Recently semicondu

diamond, diamond-like-carbon ets.) are considered to be promising for vacuum m
devices [1-3].
The theoretical comprehension of an autoe

surfaces is one of the most actual problems of vacuum micr
characteristics of metals, which are well explained by available theoretical models, the emission

characteristics of the non-metal cathodes in a number of cases have not adequate theoretical

interpretation. Mainly it is connected to essential distinction in the bulk properties of metals and
semiconductors and as a result in essential distinctions in its emission characteristics. The emission
characteristics of the main semico ensitive to the preparation

nductors (including Silicon) are very s
conditions, which can change the s (for example, in the result

tate of the free semiconductor surface
of the reconstruction of the surface). For the metals the presence of the fixed charged surface states
(CSS) on a free surface (for example, the dangling bonds

} leads to the formation of a screening layer
of the free electrons in the vacuum region [5,6]. It is known, that in the case of the semiconductors
the fixed CSS on the free surface leads to the formation of the space charge region (SCR) in its bulk
with the concentration of the free carriers (electrons of holes) which

are essentially different from its
bulk concentration [7,8]. Surface properties of semiconductors including the emission and
adsorption characteristics are consi

lectronic emission from the real semiconductor
oelectronics [4]. As against the emission

derably influenced by change in the CSS.
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In this paper the distribution of the total potential V' (¥, F) in the external electric field F
from the exact solution of the nonlocal Poisson equation for the semiconductor-vacuum system is
determined. It is shown that the correct account of the screening properties of the semiconductor
provides the continuity (finiteness) of the potential V° (F,F) at the semiconductor-vacuum interface
and the common (vacuum) level of the counting out of the energy [9-11).

The continuity (finiteness) of the potential V'(x, F') on the semiconductor surface allows us
to enter correctly the lateral distribution of the fixed CSS 0,(v,z) along the surface. In the given
work the density of the fixed charge o,(y,z) on the semiconductor surface connects with the
microscopic (atomic) structure of the semiconductor surfa
investigations or by microscopic (quantum-chemistry) ca
surface. The introducing of the distribution of fixed CSs

in the microscopic calculations [8,12-14), has allowed us to link the macroscopic characteristics of
the semiconductor with the microscopic structure of the surface in frameworks of the proposed
theory. In this paper the potential relief V(7,F) of n-Si(100) surface are investigated theoretically
using methods of nonlocal electrostatics. It is shown, that the microscopic structure of the free
semiconductor surface can lead to the local change of height of a potential barrier along the surface.
The total potential V(F,F) (and its oscillating part S@(F)) is determined not only by the

microscopic structure of the real surface (fixed CSS) but also the macroscopic properties (bulk
parameters) of semiconductors,

ce, which is determined by experimental
lculations of the specific semiconductor
o,(y,2) in the model form, which is used

2. Fundamentals of the theoretical method

In this section we consider the problem of a point charge e interaction with the surface of a
semi-infinite semiconductor in an external electric field F taking into account the screening effects

in its bulk and the density of fixed charged surface states (CSS) o,(y,z) on the free semiconductor
surface.

An exact solution of this problem may be obtained in the framework of non-local
electrostatics [9-11] The Green’s function of a longitudinal self-consistent field D(g,x,x")

describing the screened Coulomb interaction between the charges at the points x and x' is
determined by the Poisson equation [9]
s 5
(57_ qz) “D(g,x,x") —47re‘fdx’l'1(q;x,x’)D(q;x’,x) =o(x-x"), (1)
where 8(z) is the delta-function: I(q;x,x") is the polarization operator of the inhomogeneous

system, g = {qy,q,} is the two-dimensional component of the wave vector and k, is the component
of the wave vector which is normal to the interface:

g, x,x') =

[Hl(q,x—x’)+Hl(q;x+x’)]6(—x)6(—x’)+{I‘I2(q;x—x’)+H2(q;x+x')]9(x)9(x’), (2)
. Ty’ = wdki kxz +q2 _ . i T v’

H(g;xFx)= j;.w.[q(l{l,q) 1] exp(ik, (x F x")).

The approximation (2) corresponds to the specular reflection of the longitudinal polarisation waves
from the interface (x=0), &(x) is the step-function, ;=1 is used for the semiconductor region
x <0, while j=2 for the vacuum region x > 0,




(1) for the Fourier coefficients

The solution of the homogeneous Poisson equation

D,(gq;x, x")can be written in the following form
D (g:;%,%) =
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boundary conditions

where &(k.,q)
yacuum region. The

equation (1) with the zero
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where 8, 18 the Kronecker symbol.
ccount a continuous character of potential behavior at the semiconductor-
nt of the electrostatic

e normal compone

Taking into 2
dary conditions have the

yacuum interface X = 0 and the continuit
induction vector at the surface (X = 0) in

following form
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¢ (©)
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} is the Fourier component n the surface and F(q) is the

where o,(d

Fourier component of the external electric field F 110 the sign of the

external electric field £
The function D, (g.x,x) can be written in the following form
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sVFEF)y=—[ [ (2)2emﬂm%y+q;n AD(g;F,F). (10)

For the semiconductor-vacuum system the Green functions Df(q;x,x) have the following form
(10,11]

D(g;x,x) = 2 (g

T eaa0) 2[a(q,0)+a(q, =], x<0, (1D
Dg(Q;X,x)zZ{%;—expkqu)—l}, x>0. (12)

The Green functions AD (g;x) in the case of the field emission from semiconductors are expressed
as follows

[470,(@) - F(@)] alg:lx)

AD(g;x) = T ga(a.0)  x<0, 13
DN [47“7:(‘?) - F(Q)]'G(O;x)
ADz(q; X) = 1+qa(q,0) x>0, (14)

Let us consider the interaction of a point charge e with the surface of the semi-infinite
semiconductor taking into account the screening effects induced both by free carriers (electrons or 3
holes) and by bound electrons of ion islands. We determine the dielectric function of the '
semiconductor in the region x < 0 in the following form [9] i

-1
a(k)_1+w+
(7

e

where ¢ is the dielectric constant of a crystal lattice in a homogeneous field (when k—0), Atis

the effective screening length by bound electrons equal in the order of magnitude to the ion (atom)
2

radius, x° = 57:7"? in the Debye-Huckel approximation (DHA) in a case of non-degenerate
B

[

k*=k>+q*, (15)

w

electronic gas, k, is the Boltzmann constant; » is the concentration of free electrons (or holes) in 1
the bulk of semiconductors (in this work we consider the »- type semiconductor) and 5
x* = 6me’nfeE, in the Thomas-Fermi approximation (TFA) in a case of degenerate electronic gas,
E, is Fermi energy of free electrons in the semiconductor. The first two terms in Eq. (15)
correspond to the interpolation Inkson model [15]. As was shown in Ref. [9], such a combination of

— A i’
the Inkson model with DHA (or TFA), leading to the asymptote (k) = 1 + E——;z—) when k>>4,

provides the continuity of the full electrostatic potential V(7,F) (11) at the surface for x =0.
By substituting of Eq. (15) into Eq. (4) we obtain upon integrating over &,
~ixg,
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o Eq. (8) we obtain the real space

(16) into (i, (12) and then int
e forces in local

V7 (x) (so-called potential of imag
miconductor-vacuum system in the integrated
y with the difference in the bulk properties of
he o, and external field F. When

By substituting Eq.
distribution of the polarization component
mmon vacuum level in a s€

electrostatics) from the co
hat V' (x) is connected onl

form. We want t0 notice, t
the contacting media and it does not vary depending on t

1
‘5“1(‘1;0) and the potential of image forces y2(x) is the

— —o it defines the electronic affinity energy in a bulk
s the bottom of conduction band

x| > oo the fanction D (g;%,%) =

0 and at ||

continuity on the surface for x =
-x)=-E,, where E_ i

of semiconductor. Under the condition 8¢

of the semiconductor, wWe can obtain the parameter A

In this work we assume, that o, is formed by the fixed charges on a free surface of the

Zcf, — const (v is the number of types of the surface charges, which define the

i=l
complete charge density o, ona free surface of the semiconductor).
After substitution of Eq. (16) into (13), (14) and then into Eq. (8) we obtain a potential

AV (x, F) for the semiconductor-vacuum system in the case of the macroscopic homogeneous
interface o, = const and F =const (o(@)= (2n) osﬁ(q},)é(q,) and F(q):(Zn)zFé(qy)é(qz))

semiconductor O, =

in the following form
AV, (x, F)= —e(4no, + F)-ay (0;lx); (x <0, in the semiconductor region);  (17)
AV, (x,F) = —e(4mo, + Fy-a,(0,0) - eFx, (x20, in the vacuum). (18)
it is seen from these formulas that the field penetration effect as well as the polarization part
VlO (x) (potential of image forces) of the total potential are determined by the screening properties of

nductor surface assuming, that

the semiconductor.
quare lattices) of the each type

Let us take into account 2 microscopic structure of the semico
o,1s formed by the ordered lattices (for the simplicity we assume a$
i of the fixed CSS or CD on a free surface (for example, the dangling bonds, the impurities ets.) with
two-dimensional concentrati * where g, is the lattice constant of square lattice of the i-

on N,=a~
type of the surface charge. This consideration corresponds to a Fourier-component o,(q) of the
hich is widely used in the microscopic

charge density at the ordered lattices of the surface charges, W

quantum—chemical calculations)
o,@)=20@)= (2n>32e:N,[6(qy>5(q,> +o(,- 27)6@ - 27)] (19)

where o, = e/ N, and el isthe effective charge of the i -type of the surface lattice.
From Egs. (T)-(13) the complete potential VJ(F,F) of the system, can be obtained taking into
account Egs. (3 5)-(16) and (19) in the following form

v, )=V 08V, (x, F)+ aw,(F) (20)
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3. Results and conclusions

Silicon is one of most suitable material for fabricating field emitter arrays in batch
technology. In the present work is considered the n- type Silicon. We take into account a
microscopic structure of the fixed charge density o,(y,z) along Si(100) surface assuming, that it is
formed by an ordered lattice (for the simplicity we assume a square lattice) of the surface atoms.
Really the Silicon surface is far from ideal and the CSS is formed by defects. The presence of
charged defects (CD) on a surface of the semiconductor can reduce not only to the change of a
macroscopic potential barrier for the electrons (actually to change of threshold voltage), but also to
the local downturn (growth) of height of a potential barrier. According to the proposed model we
obtained that taking into account the microscopic structure of the free semiconductor surface allows
us to determine the local emission (adsorption) centres.

We use the following parameters of Si [16]: dielectric constant is ¢ =119 effective masses

are mL:O.98 (transverse) and m1:0‘19(parallel); electron affinity in the bulk is

¥ =-£_ =405el  temperatureis 7 =300°K; bulk density of the free electrons is 7= 10" cm™

As was shown before,

0 the macroscopic density of the
L fixed charge o, on the surface
I SILICON determines the Space Charge

Region (SCR) in the
semiconductor. Since the Silicon
surface can exhibit donor or
acceptor character [8,12-14], the
formation of the potential barrier
V(x,F) in the external electric

field  F=310/  for

| different macroscopic densities
1' of charge on the surface

L L 0,=-34:102 ¢/ . (curve 1),
-400 -300 -200 -100 0 25 50 75 100

n-type

J

V (x, F) (eV)

o,=0 (curve 2) and
A _ anl2 e .
X (A) o, =34-10 Amz (curve 3) is

shown in Fig. 1.
The distribution of the

electric field F =3.10° %m for different macroscopic densities of pot.entlall V](x,-F) n Flg‘l’
which is the direct calculation
according to the Eq. (20) with
and o, = 34-10" %m: (curve 3). The dash line is the Fermi energy and :11:0 ?;gofi?;qa(tlizz; odfeg::?g}it?s
the dot line is the potential of image forces. the subsurface region of Silicon.
Note, that the SCR, which is
connected with the redistribution of the free carriers in the semiconductor, ensures the
quasielectroneutrality condition in the vacuum region for x —» o,
As can see from Fig 1, the correct consideration of the spatial dispersion effects in the
semiconductor allows us to obtain not only continuous course of the image forces potential

Fig. 1. The distribution of the potential barrier ¥, (x; F) in the external

charge on the surface o, = -3.4- 1042 %mz (curve 1), o, = 0 (curve 2)




V.2 (x) (the dot curves in Fig.1) in the S
of the counting of the potential energy
V7 (x) (and also the full potential ¥, (7,
the correct consideration of microscopic s
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surface. Let's assume that a(y,
square lattice) of the surfaces atoms with tw
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cceptor character {8}
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o-dimensional conc

free Silicon surface exhibit donor or a
e as a parameter,
1 in Eq.(19), the potential relief V

on the
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CSS on Si(100), when v =
S¢(7) of the oscillation part of
parameters of semiconductor #,
reconstructed  Si(100) surface
superlattice (7x7) (with the size of the square lattice 1s @,
CcSS (v=2 inEq. (19)) , for example with effective char

) . . . e
total value of the density of charge is o, = 6384 10 /cmz).
5¢(F) are shown by solid curve in Fig. 2.
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T,e and for used parameters is
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Fig. 2. Lateral distribution of the oscillation part S¢(x,y,0) of the total

7, F) along Si(100) surface (v=2) for e; =002,

potential V(
x=1 A (dot curve) and x=2 A (dash curve) in

e; =05 atx=0 (solid curve),

the vacuum region for £ = 0.

a potential barrier along a surface of the semiconductor w

surface. Our direct calculations a

ilicon-vacuum system, but also t
[9-11]. The continuous course of the image

F7}) at the sharp semiconductor-

tructure of the Silicon surface.
t the microscapic structure of the charge

z) is formed by an ordered lattice (for t
entration N, =638 10" ¢m™*, which

| V(F,F) is determined by
when the microstructure of the sur

=27 :4), we should enter two types of the
the defects ¢} = 0.5 (in this case the

ccording to the proposed mode! show

he common (vacuum) level
forces potential
vacuum interface allows us

density o(y,z) on the
he simplicity we assume a

~ s the size of square lattice. Because the CSS
we can introduce the effective

. In the case
(F,Fy is calculated. The amplitude

of one type of the

e/ and the bulk
54(0,,2) =0016e} . For the
face is determined by the

Results of the direct calculation

The oscillation part A (F) of
the full potential barrier
V.(FF) is decreasing in the
vacuum region (the dot curve

for x = 1:4 and the dash curve
for x=2 Ain Fig. 2).

As we can see from
Fig. 2 the presence of the

superlattice of superficial
atoms, which arises  for
example in  result of

reconstruction of a surface - in
a case Si(100)—(7x7}, when
e} #e, results in essential
change potential relief of a
surface and occurrence of areas
of downturn (growth) of a
value of the MAacroscopic
potential barrier V(F.0) (20).
Existence of areas of local
downturn (growth) of height of

e link to the microscopic structure of its

ed that the local downturn
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(growth) of a potential barrier can determine the emission (adsorption) centres not only in the place
of an arrangement of the defect.

The charged defects (CD) on a surface of the semiconductor (adsorbed atoms or impurities
inside the semiconductor) with two-dimensional concentration N, can reduce not only to the
change of the macroscopic potential barrier for the charged particles (electrons or ions), but also to a
local modification of the potential barrier height along the surface and formation of the new
adsorption (emission) centres. So the introducing into the structure of the reconstructed surface
1= Si(100), which is presented in Fig. 2, the charged impurities with an effective charge e; = -1
and two-dimensional concentration N, which forms an incommensurable square lattice with the

bl
lattice constant a, = 4617 4, results in a modification of a macroscopic (mean) density of charge on

asurface o, = 155710 e/cm® and significant modification of a potential relief of the surface. The
lateral distribution of the oscillation part ¢(F) of the full potential (20) on the reconstructed

0
n-S8i(100) - (7x 7) surface x =0 (solid curve) and its changing into the vacuum for x = 2 4 (dot

0
curve) and for x = 54 (dash curve) are shown in Fig. 3.

From Fig. 3 we can see that the
T T T introducing of the doping
impurities in a plane of a
surface essentially changes
(augments) amplitude S¢(F),
so the charged particle in
vacuum “feels” the places of
the greatest downturn or
growth of a potential barrier
(minima or maxima of the
potential depending on the sign
of an interacting charged
particles) on the spacing
intervals considerably
exceeding the direct quantum-
chemical interaction.

The direct calculation
of the 3D distribution of §¢(F)
on the reconstructed
% " n—Si(100) - (7x7) surface

(x=0) in the case of the three
types of the CSS and CD
Fig. 3. The lateral distribution of the oscillation part 6@(x,»,0) along (v =3 and e =002, ¢ =05

04 T

03

02

01

56 (%, y,0) (eV)

-0l

y (&)

Si(100) surface in the vacuum region at x = O (solid curve), x = 4 (dot and e;=-1) for the two-
dimensional concentration
N, =469-10%cm™ is shown
in Fig. 4 (corresponds to solid
curve in Fig. 3).

curve ) and x = 5 A (dash curve) for e, =002.e;=05ande; =-1.
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Fig. 5 shows the
direct calculations according
to Eq. (20) the changings of
a full potential barrier
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1 — Si(100) - (7 x 7) surface
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charges v =3 and with the
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determined for Figs. 3, 4) in
the external electric field
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0
x=0,1,..,6A (the bottom-
up curves).

In this paper we
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surface of semiconductors
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the semiconductor.  The
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surfaces (not only in the form (19), which is used in this consideration).
The obtained calculations have shown that the distribution of the
considerable extent the amplitude of its oscillatin
(volumetric) properties of semiconductors (the level

lattice constant of a semiconductor A7) and also the
presence of the external electric fields F).

g the strict quantum-chemical calculations of the specific semiconductor

potential V.(F,F) (and in a
g part S¢(F)) is determined by macroscopic
of bulk doping n, the dielectric constant & , the
external conditions (the temperature 7 and the
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