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Abstract

This article introduces the basic physical concepts of laser radiation influences on physical
properties of ferromagnetic semiconductors (FMSC). A system of transport equations is derived to
describe the electron-magnon system in a FMSC illuminated with several coherent light beams
(CLB) along with a static heating electric field. It is shown that interference of CLB in FMSC has
the effect that several parameters of nonequilibrium electrons and magnons exhibit superlattice
behavior. The depth of modulation of the parameters describing superlattices is estimated.
Propagation and diffraction of an additional electromagnetic wave in a FMSC with a gratings
induced by CLB is considered. The light reflection coefficient and the refractive index of FMSC
with laser induced gratings are calculated.

1. Introduction

Ferromagnetic semiconductors is a new class of materials having both semiconductor and
ferromagnetic properties and being the unique materials with new qualitative features of physical
properties for the last few years are intensively studied. In connection with the last achievements in
synthesis of new "high-temperature" ferromagnetic semiconductors on a basis on LaMnO; and

diluted ferromagnetic semiconductors with the Curie temperature of the order of 300K, these
systems are of great interest [1]. The presence of a strong s-d-exchange interaction between
electronic and magnetic subsystems FMSC enables one to observe a lot of unique effects in this
systems: metal - dielectric phase transition, giant magnetoresistanse, shift of edge of optical
absorption, anomaly of electrical properties near the Curie temperature, photoinduced magnetic
effects etc [2,3]. On the basis of FMSC and multi-layers (thin-film planar structures) metal /FMSC
containing FMSC: EuO, EuS, CdCr;Se, HgCr,Se,, LaMnO, , etc. the solid-state sources of

polarized electrons [4], spin transistors [5], ferromagnet-semiconductor devices with tunable tunnel
characteristic [6] are already have been developed. On the basis of such FMSC and FMSC multi-
layers a new direction in microelectronics — “micromagnetoelectronics” already emerged.

All mentioned above effects represent a result of interaction of equilibrium electronic and
magnetic sub-systems. The presence of a strong electromagnetic wave essentially changes
character of quasiparticles interaction in semiconductors. It produce in a lot of the various
nonlinear and nonequilibrum phenomena in detail described in the literature [7-9]. The presence of
a strong electromagnetic wave among other things means that in quasiparticles system of the
semiconductors there are new characteristic sizes: amplitude of conduction electrons (where and
from now on well for certainty, we will speak about conduction electrons, but it concerns holes as
well) oscillations in a field of an electromagnetic wave A and frequency of an electromagnetic
wave @ [10]. If ® becomes comparable with one of characteristic frequencies of the
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semiconductor: quasiparticles relaxation times, free run times of quasiparticles etc. it is possible to
expect occurrence on new effects. For example, quasiparticles interaction in semiconductors
essentially depends on the ratio between quantum energy of an electromagnetic wave ¢ s =hw and

average electron energy £ . If iw <, the electromagnetic wave will be weak and its action will be
reduced only to occurrence of the small amendments to the phenomena already existing and without
it. If 7w > £, the electromagnetic wave will be strong and its occurrence by all means will result in
both essential updating of existing phenomena and in occurrence of new one in this case it is
impossible to use classical Boatsman kinetic equation for the description quasiparticles kinetics. On
the other hand, if the amplitude of electromagnetic wave is considered as not small, so the
influence of an electromagnetic wave on character of quasiparticles interaction cannot be
considered within the framework of the perturbation theory and for the description of the
quasiparticles kinetics in these conditions it is necessary to have the new kinetic equations - the
quantum  kinetic equations. It was obtained by a number of authors for various cases: for the
description of electron-phonon interaction without the account [10], and in view of spatial
dependence of an electromagnetic wave field [ 11,12], for electron-magnon interaction without the
account [8] and in view of spatial dependence of an electromagnetic wave field [11,12].

On the other hand, the situation when several CLB rather than a single beam induce on a
semiconductors is of a special interest. Having a high degree of monochromaticity a CLB under
certain conditions can create in medium a interference picture of intensity modulation in space
under the periodic law. This major property of CLB, distinguishing them from a usual single
electromagnetic wave, is now widely used in science and engineering and has practical use of
various nonlinear optical effects [13]. For example, in a field of intensive CLB the optical
properties (e.g. refractive index, coefficient of absorption, etc.) of matter become spatially
modulated. However the most interesting from the scientific and practical points of view is the
ability of CLB to induce in medium, and, in particular, in semiconductors, spatial - periodic
structures - gratings of various types and nature. The first type of laser induced gratings are
permanent gratings. These gratings are created by CLB registered by usual methods, using silver-
halide photographic emulsions, photochromic, thermoplastic and other materials and used for
permanent hologram recording (see for example [14). The second type of laser induced gratings are
dynamic or transient gratings. These gratings disappear after the inducing light source (CLB)
switching off. These gratings have been produced in a large number of solids, liquids and gases,
and are detected by diffraction of a probing beam or by self-diffraction of the light waves inducing
the grating. The formation of transient gratings is the basis of real-time holography, phase
conjugation, and for-wave mixing [14].

The special place among laser induced gratings is occupied by surface gratings on
nonequilibrium free electrons and another quasiparticles. This gratings for the first time was
considered for the usual (non-ferromagnetic) semiconductors in Ref [11,12], and for the
ferromagnetic semiconductors in Ref. [15,16], for the case when the frequency of CLB satisfying
the inequality & <<hw <<e¢, (¢, is the band gap). It follows that the CLB which do not

exchange the total number of electrons in semiconductor can lead 1o a redistribution of their density.
Interference effects, producing by CLB, lead to new features of the interaction of a high-frequency
field with free carriers , phonons and magnons. Formally, the situations with a single
electromagnetic wave and several CLB’s differ from each that since the probability of scattering of
a corer from phonons, magnons and impurities in a sample illuminated with single an
electromagnetic wave and in a sample illuminated with several CLB, by spatially modulation of
several CLB the probability of quasiparticles interaction and also because the transport equation for
electrons contains a spatially modulated force of the high-frequency pressure of the field of CLB’s
acting on free carriers. Spatial modulation of the collision integrals and the force due to the high-
frequency pressure on electrons caused by interference effects can generate new type of nonlinearly
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The given article is devoted to research of influence CLB on optical properties of FMSC. The

consideration begins with study of influence CLB on character of conduction electron movement in
the FMSC. We were the first who calculated the wave function and quasi-energy of conduction
electrons in the field of CLB. It is shown, that on the conduction electrons in the fields of CLB acts
the force which corresponds to a pressure exerted by CLB on the electron gas.

EMSC with laser induced gratings are of great interest in physics of dynamical holograms as

the new registration media, and may have many interesting applications at the various branches of
semiconductor technology,

nonlinear optic, radiophysics, electrotechniques, etc. They also tool for
studying the properties of nonequilibrium electrons, magnons and phonons in solids by highly
sensitive optical methods, etc. In this connection the study of electrical, optical and magnetic
properties of FMSC with laser induced grating seems rather interesting.

2. Wave function and quasi-energy of conduction electrons in FMSC in the field of CLB

Let us consider the motion of electrons in FMSC in an infinite conduction-band in the field of

CLB. The CLB vector potential is given as
;I(F,t):z;{]cos(a)z-kjr‘—(oj) M
satisfies the condition @7 >>1 (7 is the electron mean free time) in the
ffective mass. FMSC are a special type of semiconductors which
ectrons with the quanta of magnetic subsystem - magnons.
£ the conduction electrons with the localized spins the
so-called s-d exchange model is used [3]. This model, evidently, can describe the real physical
situation for wide-band semiconductors in a sufficiently adequate way. The effect of the s-d
exchange interaction of the conduction electrons eliminates the degeneration of spin and the
conduction band splits into two sub-bands having different spin orientations [3] So, the spectrum of

electrons is given by
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where o =T, is the spin index.
The motion of a conduction electron in F

the Schrodinger equation

MSC in a high-frequency field of CLB is described
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where e and m are charge and effective mass of electron, ¢ is the velocity of light, and ﬁ: ~ihV s
the canonical momentum operator of the electron. The solution of E.g. (4) is
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where F, = ol Xy :U are the eigenfunctions of the spin operator &,
By assuming that the field of CLB is adiabatically included at ¢, = —oc, we obtain from (4)
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From (6) it follows that the time dependence of electron wave function in the field of
electromagnetic wave has not of the type exp(— (€0 41). Therefore, we have no stationary state with

the energy &;s,. A new quantum number, the quasi-energy £ .., describing the conduction

electrons in the field of an electromagnetic wave [17] determined from the relation:

¥, (F zw)_exp( S Ear 7,)13‘5* (7.1). (7

T,

(7, :zzr_ is a period of the CLB field ) By comparing (7) and (£), we obtain an expression for
@

quasi-energy of conduction electrons in FMSC under the field of CLB :
2 2
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From (8), one can see that the quasi-energy is defined within size n#w (n=0+1,£2,...). The value

2 2
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can be considered as the mean value of quasi-energy, and the values, which are produced by the

additional nhe can be regarded as satellites or “photon repeating”.
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Thus, in this case quasi-energy is connected only with the electromagnetic wave which produces a
chift of AE = ¢?E? /(4me?). The value AE is small and can be neglected in (12). But in the field
of CLB, whit the space dependence of vector-potential CLB, we cannot neglect this term. In this

case the value
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m%:eﬁ(?,t)+%%i—xﬁ(r‘,l), (12)

where E(F,t) and (7,1) are electric and magnetic fields of CLB, respectively.
If the frequency of the CLB is sufficiently high, the solution of equation (13) can be written as a
sum of slowly varying (in terms of the oscillation period of the CLB) function 7,(t) and an

oscillation function F,(t) (frequency @). Assuming that 71(2) is much smaller than the distance L
over which the amplitude of the CLB changes notably, || << L and neglecting terms of the order

of |7 /] and |Fy/ L}, by averaging equation (12) over the perio

le):

d of CLB, we obtain an equation for
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m 02()=— VZAJAJ’COS{(kJ”kJ’);O —9; —(PJ']} (13)
dt dmc” o
This is mean that on the conduction electron in the field of CLB the following force acts
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which is corresponding to the pressure exerted by CLB on the electron gas [15,16]). The expression

for this force has been obtained earlier [15,16]. Then by using the standard methods of quantum

transport equations and quantum-mechanic operators for the construction of quantum kinetic
equations for electrons and magnons in the field of CLB. This method does not require usage of
wave function. In the present report the wave function for such system is obtained for the first time.

It is possible to specify some such cases when the calculation of a value AL is necessary:

1. The system contains some types of carriers with different charges or effective masses. In this
case for each type of carriers there will be a shift AE, that results a change of distance between
appropriate branches of a spectrum.

2 If the initial energy spectrum non-parabolic, i.e. electron effectiv

different parts of a conductivity band.
The wave function for conduction electrons in EMSC in the field of CLB may be has some

applications. For example, with the help of the obtained wave function (9) one can study the
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probabilities of electron transitions from the state described by the canonical momentum po to the
state p’'c’exposed to a weak potential I at the time ¢

dt .
Wioosa = = ({dr <¥j, (rXV|\I’1-w (¢)> (15)

in the field of CLB. This fact offers a possibility for another way of constructing quantum kinetic
equations for interaction of quasi-particles in the field of CLB. In comparison with the standard
method a quantum transport equation for the quantum-mechanic operators [19-20], it allows one
oneself the effect of external CLB fields that acts on the elementary processes of quasi-particles
interactions to be analyzed. There are already similar methods suggested, for example, in [8].

3. The conduction electrons mechanical trajectory in the field of CLB

Consider the instance where the outer surface z=0 of FMSC is exposed to two
symmetrically oriented CLB that converge in the

bulk of the semiconductor at a small angle 28 and
whose vector-potential is given by the following
expression (Fig..1)

A(F,t) = 4Cos(wt — k x - kz— @)+ (16)

AyCos(wt -k x +k,z-g), 4OV
Received as a result of an interference these two
CLB the interference picture with good precision can
be approximated by a standing laser wave with the
spacing period L=4,/2Sn% (4, is the CLB
wavelength in the semiconductor bulk) [18]. Thus, in
the bulk of semiconductor, CLB may be
approximated by the laser standing wave

E = E,Sin(k, z)Sin(wr), 17

Fig.1. Interference picture from two CLB when
they illuminated the front surface z=0 of FMSC

Sample (L=A4,/2sin9 is the period of
interference picture)

= W= - .
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intensity of a standing laser wave (CLB). Now
we shall analyze the character of electron motion
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Therefore, the high-frequency potential W may be considering as a periodic potential well for the
conductivity electrons moving along the OZ axis in the inside of semiconductor bulk.

That a conduction electron, which moving with velocity vo (Vo = J2eV, / mis the initial velocity

of conduction electron in the point 2=0), along an OZ axis could be located in inside of a potential

well, created by CLB, the fulfillment of a condition is necessary
eVy/m<W (19)

which together with a condition \7‘1‘ << L imposes the following restriction on amplitude of an

electric field of CLB, creating a potential well

2 mVy /e <Ey << mw3Lile (20)

Thus, if at centers of a potential well £, =0, the conduction electrons with energy equal eV, is
located inside a potential well, on which the boundary conditions (20) are executed.

Now we shall consider a movement of a conduction electron inside of the potential well in more
details. Substituting (17) and (18) into (12) and (13) we obtain the following equations for

determining z and x
% 2, = ;
F+w,z=0, x-~@2mﬁmgﬁmam 21

JJ2me is the electron oscillation frequency inside of a cne-dimensional potential

where w, =eEy
der number (21) is the free electron harmonic

well, produced by CLB. The first of the equations un

oscillation equation. Its solution
z=C,Cosw t+C,Sma,l, (22)

which satisfies the initial conditions C; =0, C, =vy/w, has the form
(23)

z=(vo/®,)Sinw,t.
h describe the conduction electron

Making use of (21), write down now the equations, whic
mechanical trajectory as:

z=(vy/@)Sinw,t, = —(v, /a))\/—2—Sin(a)zt)Sin(a)t). (24)

In a Fig.3 the conduction electron mechanical trajectories in a field of CLB is shown.
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Fig.3. The conduction electrons mechanical trajectories in a field of CLB for the following
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Depending on a ratio between frequency of a CL

B field w and a frequency of oscillation of
conduction electrons inside a potential wel] o,

the conduction electrons mechanical trajectories
. . A 1
will be various. From the Fig. 3a, for example, when -2

=10 follows, that the conduction electron

mechanical trajectory inside of a potential well will be made. It means t

hat the electron alternately
being reflected from walls of a potential wel

I will make inside of oscillations with frequency w, In
a case when -2 = 1, from a Fig. 3b foll

will be open. It means, that having made some oscillations in inside of a potential well the electron
can be abandon and further move only under the activity of a field of CLB.
Thus, the electron in the field of CLB takes part simultaneously in two motions. Namely, it

ows, that the conduction electron mechanical trajectory

. . . . ek
oscillates with the frequency © and amplitude G = ——9

mo
<< @ of inside on one-dimensional well, produced along OZ axis

in the field of CLB and performs forced

oscillation at the frequency @,
by CLB.

4. System of kinetic equations for electrons and magnons
Let us consider a wide-gap donor type FMSC with mean carrier density #g in the spin-wave
temperature range placed in an external constant electric field F HOZ Its from surface is subjected

to several CLBs, whose frequencies satisfy the inequality & << hw << €; (&g is the energy-gap

width) Electrons are considered to be non-generate, and their energy in the CLB field

€5 << JS (P = ﬁ+eﬁ(?, l)/c is the electron electromagnetic momentum). This inequality makes it

possible to confine our consideration to a subzon

e with o =T, so that the spin index o may be
omitted. In the secondary quantization representa

tion, the Hamiltonian of the system of electrons
and magnons, which are subjected to action of the external electric field <, and in the high-
frequency CLB field are interact with phonons, has the following form:

T 2
3 © =7 L€ 2y . =(0 R
H= Z‘i—“p/i.-ﬂ- AP —jefr (——_5- ) o ds
By mc £ ome? 0 o7 7.0 | penz9p -

where ‘21‘ and A;z) are Furier components of the CLB vector potential A(F,7) and AXF. 1)

respectively, C';; is the electron-magnon interaction matrix element taking into account both two-

magnon processes in the first-order approximation of perturbation theo

ry and one-magnon
processes in the second approximation [2], a; (aﬁ) and bg(bq) are creation and annihilation

operators for electrons and magnons with quasi-momentum of pand §, respectively, ﬁe and H

are the Hamiltonians for free electrons and magnons, respectively, /A, = describes processes of

interaction between magnons [18], and ﬁmp is the Hamiltonian of the magnon-phonon interaction
[19]

In the general case, the kinetic equations for el
and we shall derive them on the basis of quantu

function for electrons f and magnons N in Wigne

ectrons and magnons are quantum equations,
m analogues of the microscopic distribution

r representation. Them, from the equations of




motion for f and N operators with the Hamiltonian (25), a set of equations for ordinary

distribution functions of electrons f(F,f’,t) and magnons N(F,g, 1) is obtained in the usual way

[15,16).
First, let us consider a set of kinetic equations for the amplitudes subjected to frequency

averaging (27 / w), f(o)(F, 13) and N(O)(F, ). This set has the following form [15,16]:
5 A (0) - 2 o L ©) -
ﬁ@f— +{eF0— € wa_{ZAJAJ, cos[(k]—kjryﬂ—(oj —(p/ﬂ}@_f_:]em{f(o)’jv(o)}'

m &F 4mc? OF Ly oF
dw; oN© @
_éq_q_a_r__:,m{ﬂo)’,\;(o)}ﬂm z(°>,N(°>}+1mm{N(°>}

When deriving (26), it is supposed that both energy and momentum of the electrons relax on
magnons, and the dispersion law for electrons and magnons are isotropic and parabolic.
The integral of electron-magnon collisions 1,, may be written in the following form [15,16]:

P ) W\ _ lz{f(o)(F,P)N(O)(F,q’XHN(O)(F,z?))— .
e ! mcha))‘ Paq Lf(o)(F,ﬁ)N(o)(F,(}’Xl+N(O)(F,(}))
5(13+c7—13'—c7')§(5}-,—£;,+a)5—wé.+nha)>

Integrals of magnon-electron I,,, magnon-phonon /. and magnon-magnon /., collisions in

h Baan @7

explicit form can be found , for exampte, in [15,16].

As follows from the analysis of the set equations (26), the high-frequency field of CLB acts on the
FMSC electron-magnon system in two ways. Firstly, the electrons experience an additional pressure
caused by the CLB. Secondly, I, and I, become periodic functions of 7 .It is this periodic

em
variation of the CLB pressure, alongside with the periodic dependence of 7, and I,, on 7, that
caused the formation of superlattices - laser induced gratings in FMSC. For the first time , they
were discussed in [15,16], where it was shown that the system on non-equilibrium electrons and
magnons of a FMSC sample in a CLB field formed gratings of carrier density g, electric field

intensity F , electron 7, and magnon T, temperatures, etc. In the case of incidence on the FMSC

surface of only two waves symmetrically oriented beams (16) this gratings could be represented as
n=no\t+&, cos 2k, z +&,csin 2klzza) F= FO(Hgl cos2k,,z +G,csin 2k, 2

T, = Te(o)(l+r]0 +17, €082k, Z +15¢ sin 2klzzl (28)
T, = T(O)(1+y0 + 44, €082k 2+ pC sin 2kl:z)

m m

Here, T*and 70) are electron and magnon temperatures in the absence of the CLB field. The

m

expressions for amplitudes &,,6,,7:, 4, in the general case have very awkward forms and are given
in [15]. The common characteristic property of &,,6,.7;, K amplitudes is that all of them tend to
zero, when the external electric field strength increases.

5. Electromagnetic waves diffraction on the laser induced grating

of electron concentration in FMSC
Now let us conséder the peculiarity of the propagation of electromagnetic waves in FMSC

with the electron concentration grating, produced by CLB. Let a weak electromagnetic wave, with
the polarization that differs from CLB, which production 2 grating, propagate in semiconductor
along the OX-axis, We suppose for simplicity that the amplitude of the weak electromagnetic wave
depends on the coordinate z and is given by the expression
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E = E(x)expli(s,x + 5,z - Qu)} (29)
We considering resonance case when s, =k,
higher than the frequency of electron collisions.

When electromagnetic wave propagate in the electron gas in semiconductors it produced the
perturbation of electron velocity AV, (and, therefore, produce the additional electric current) which
may be determined from the linearization the motion equation for the incident wave (29)

and the frequency of weak wave Q is considerably

OAV e =
e = F
of m (30)
and can be written as
ie =
AV, =——F.
Ve O (31

Thus, current density I, induced by wave (29), now can be presented as:

2 2
I =enAv, =i n(z)E:ie ki [1+”1(z)}E'
Qm

32
Qm n, 32)
Substitution (32) into Maxwell equations for the wave (29), we obtained
= 6 O'E 4z dl
VIE+2Z = 29 33
c? ot ct ot (33)

and supposing that the grating of electron concentration, producing by CLB already existing
n(z)=n, @ +&,Cos2k,,z + £,8in2k,.z) and weakly electromagnetic wave (29) only producing
small perturbation of this grating, we obtain

VE + E—‘;(Qz -w! )E' =q, (§' exp(2ik,,z) + & exp(- 2ikhz))é, (34)
¢
4mye? g0l .
where wf, = %::—, a, = ; 2" , ¢ =& +i&,  Further, using well-known procedure the
0 C

solution of equation (34) we may be look in the form

E=3 E(x)explils,x + k,z)+ 20k, z), (35)
!

with the boundary conditions
E(0)=E,, EY9=o0. (36)
Thus, using the equation (34), we may be received the next coupling between functions £,(x) and
Ey,(x)
d*E, _  dE . -
2 S a1, = o E) + B,y 37)

Since in our case |£ << 1| , the most significant terms in the above expansion of E,(x) are those
with /=0 and./=-1. Moreover, the small value of the parameter ’5] leads to the following set of
dEO — ialg‘ - dE—l - al§

s =12 E 38
dx 25, " di 2s, ¢ 68
which have a simple solution satisfying the boundary conditions 33)

5

E, = E“’Cos[a—il x}, E,=-i Li E(°)Sin[%%§~l x]. (39)

equations:
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The relative intensity of this waves

The solutions (39) defines
on grating of electron density,

function of x-coordinate.

, S’ {az‘k\é\ x)
. (40)
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L
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nsfer from one waves 1O another,

ake place the periodical energy tra
portional lﬁl_1 and dependence with

Thus, we can s¢€ that t

dependence with coordinate x. As the period of this waves pro

ant electric field may be produce the variation character of diffraction, and, at the

F,, that const
(xsd) . may be crossing from the Bragg-

fixed thickness of the semiconductor samples d

diffraction to another types of diffraction.

ave scattering in FMSC with laser induced gratings
gnetic wave with the polarization that differs from the
,=0. Its electric field can be writing as

E=E(x, z)exp(— Q)

6. Electromagnetic W
Now let consider a weak electroma
CLB failing from on the semiconductor surface

(41)

Using the designation
(42)

E'(x‘ z) = q”(z)exp(isxx)

ritten for the amplitude & the wave equation in the form, analogy equations (34).

da*¥ - Y YR

% +52Y¥ = al(é o2z 4 e Zk“’)i’(z) (43)
z

If \5\ <<1 for the solution of the equation (43) we may be using perturbation theory. But nearly the

L=k, t Ak (Ak —0 the parameters which describe the

d we may be using the dynamically

[20]. Given the function ¥ as the

we now can be w

Bragg resonance region when §

deviation from the Bragg resonance
ry of electromagnetic wave diffraction on pe

) this theory is noncorrect an
riodic structures

theo
sum
P(z)=Y, {E, exp{[i2 + Dk, + §ley+C, expl- it + Dk, - 512}} (44)
1=0
where & —0 the small parameter which will be determine. Just a8 take place the inequality
0, i.e. using two wave approximation:

(a\ /kfz)<< 1 in the sum (44) give up only the terms with =
¥(z)= B, exp{i(kl_. + 5)z}+ C, exp{~ ilk,, - 5)2}4 (45)
§ and the amplitudes relativity R, falling

Substituting (45) into (43), we determine the parameter

B, and reflection C, waves:

2 —
5oy RS 228 g
4k’ B, 2k, (Ak+ 5) a,é
i yat z —> and the

Note that the sign & in the equation (46) determine the finite of the solution (45

direction of energy transfer from wave (45)t0 the side of positive z.
Now let us consider calculation of reflection coefficient of an electromagnetic wave on the

surface =0 in semiconductors with a periodical grating of electron concentration, produced by
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CLB, We determine the electric field of the weakl

' y incident wave in vacuum (according with the
reflection wave fields) as :

E (F,0)=EY {exp[i(uxx +u,z))+ R, exp[i(uxx - uzz)]}exp{— iQI}, (47)
2o (. N2
where szcz(kx2 +ufl uf:(wc—") +k‘(i%, s, =k, +A,, Ak—0.
0

Continuity of the functions (43) and (47) and their derivatives at the point z=0 together with the

expression (46) enables us to determine the constants A, and B, and reflection coefficient |R0|:.
For example, the obtained reflection coefficient to be equal too

R = (e =, ) + Gk, +u 2R (k2 a2 )R, +R;)_

Uy 2, ) + G, =0, )R = (k7 =2 R, + )

From (48) follow the Bragg resonance region when Rsfz =1 the weakly wave reflection coefficient

1RO’2 =1

(48)

and take place the full reflection. Somewhat involved calculation gives the following
expression for the reflection coefficient nearly the Bragg resonance region:

o

o 2k, (F + KL - du k26 — g (k2 —u2),
.RO! - 2/(1_,(u22 +k]2‘,)Ak + 4uzk1215 -a, (k2 —uf},‘, ' (49)

iz

From (49) whence it follows that at such Ak with increasing field Fo the reflection coefficient will

continuously pass from some initial value (if initial value smaller |R0[ﬁm ) to its limiting value,

’R0|12.m corresponding to the reflection coefficient of the homogeneous (non illuminated by CLB)
semiconductor material:

2
2 ki, ~u
R :( L. 2 50
‘ Olhm kklz +u1] ( )
Note, that the dependencies &, ¢, and § of £y allow, changing F, at the fixed Ak, change
‘Ro|2from 1 to its limiting value [Rolim - Interesting, that the dependence its from F, determine not
only the value of Ak and its sign too. If the sign of Ak and ¢, is equal then [R0|2 have minimum at

2 2 2 _ g2
:ﬂklzz +Zl: 5! éz i (51)
2 kL -ul &

H

This fact confirm the numerical calculations , presented on Fig 4 and Fig.5, where one can see the
results of the numerical calculations the dependencies of the reflection coefficient on the
parameters Akand F.

From the analysis of fig4 one can see that in the FEuO at
n,=10%em™, ®=5-10"s" T=05.10"2J, Fy=2.10°V/em the reflection coefficient
decrease up to the minimum equal to 2.547 10" at Ak = —-0.2 [21].
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Fig.4. The dependence of the |R,|" of the Fig. 5. The dependence |R,|” of the F,

parameters Ak . For the value Ak introduce the (KV/cm). Curves 1 - Ak=0.3,2- Ak=01,3-
marks: 0 - 0.2, 5- (-0.50), 10 - (-0.22), 15~ (- Ak =-01.
0.238).

On Fig. 5 one can see the results of the numerical calculations electric field dependence on ‘RO]Z in
ferromagnetic semiconductor EuO for the different values of the Ak=03, 0.1, -0.1.

From the analysis of Fig.5 one can see (curve 3) as the Ak =-0.1, |R0)2really slowly increasing
with increasing of F, from lRol2 ~0,3 and set to lRO{im ~ 0.4026 . As the Ak >0, when the initial

value of the reflection coefficient |R0]il > !Roiim one can see only slowly increasing ]Rofz (curves 1

and 2).
Thus, we have carried out a study of the optical phenomena in the FMSC with a periodical

structures — gratings on nonequilibrium quasiparticles producing by coherent light beams. Results

of this study allow the following conclusions:

1 As a result of the electromagnetic waves diffraction on the periodical grating of electron density
in semiconductors, appears two waves propagate along OX-axis and take place the pericdic
energy transfer from one wave to another, dependence on coordinate.

2. The reflection coefficient lRO!2 under conditions of Bragg resonance depends indirectly on the
strength of heating field, on the angle of impinge waves and on the parameters of
semiconductors. Varying those and the value of /7, one can decrease the reflection coefficient
‘RO‘Z, i e. make semiconductor “antireflective”, as well as to increase it up to the value leading
to almost total reflection of the electromagnetic wave from outer surface of semiconductors.

3. The light reflection coefficient .RO[2 at the Bragg resonance area dependence at the constant
heating electric field F,. When this field increasing up, the reflection coefficient is slowly
increasing too, as the Ak=-0.1 reflection coefficient in FMSC EuO really increasing with
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of reflection coefﬂcnent]RO]Im >[R,|, ., one can see only slowly increasing IR,|".

7. Conclusion and outlook

In this report some new results obtained recently in the theo
in FMSC on strong external constant electric field and hi
(CLB) have been surveyed. The approach based on the

kinetic equations for interaction quasiparticles in the strong external fields, which, as been
demonstrated, may be successful using for the description various phenomena’s in FMSC under
high-frequency field of CLB. There is every ground to believe that the development of the theory of
nonlinear and nonequilibrium phenomena in FMSC under intense CLB fields is interesting not only
from the point of view of considering the possible new mechanisms of the creating the
nonequilibrium states and nonlinear phenomena but also to the practical application of these
phenomena’s for the now rapidly developing trend of creating new materials and devices for high-
frequency electronics, semiconductor technology, etc.

FMSC acquires new properties in a high-frequency CLB field. In particular, the effect of high-
frequency CLB field on the collisions between quasiparticles in FMSC become important at the
quanta energy of CLB field 4w more of the average carrier energy & . In this conditions may be
take place the effect of immediate participation in quasiparticles collisions quanta of CLB fields and
as the interference effects appear the spatial modulation of the collision integrals and high-
frequency pressure on electrons. Thus, it follows from the foregoing that the CLB produce in
FMSC a static and dynamic periodical structures - gratings (superlattices).

Presence of this gratings essentially changing the physical properties of FMSC. Grating of
electron concentration essentially exchange the optical properties of semiconductors. On this
grating may be take place the diffraction of the weakly electromagnetic wave, which propagate at
the enter of the semiconductor. As the result of this diffraction appear two waves, and take place the
periodic energy transfer from cne wave to another. As the period of this waves dependence of
constant electric fields it may be produce the variation of the diffraction character, and at the next
fixed thickness of the semiconductor sample, may be crossing from the Bragg diffraction to another
types of diffraction. The coefficient of electromagnetic wave reflection for the outer surface of the
semiconductors under the conditions of Bragg resonance depends indirectly on the strength of

heating field, high-frequency field of CLB, on the angle of impinge and on the parameters of
semiconductors. Varying those and the value of electric field strength , one can decrease the
reflection coefficient, i.e. make semiconductor “antireflective”, as well as to increase it up to the
value leading to almost total reflection of the weakly electromagnetic wave from the outer surface
of semiconductors.
Circumscribed in this paper, the methods of theoretical investigation of electrical and optical
properties of FMSC with spatially - periodic nanostructures - laser induced gratings on
nonequilibrium electrons and magnons carry rather general character and are not rendered concrete,
Therefore they can be applied for study of a wide class of the various phenomena in FMSC, caused
by influence strong electrical, magnetic and intensive high-frequency CLB fields. The further
development of examinations in this direction now leaves on a new level. Some more years ago
investigations in the field of physics of FMSC carried, in main, only scientific interest. For Curie
temperature of the majority from them did not exceed 100K and the problem on their wide
introduction in practice did not stand. Now the situation was cardinal changed. With occurrence
some years ago of new "high-temperature" ferromagnetic semiconductors on a basis on LaMnO;
and diluted magnetic semiconductors (Ga, Mn)N and (Zn, Mn)O, and etc.,, which have Curie
temperature above at room temperature (T.> 300K) [1] interest too magnetic and, in particular, to
FMSC hardly has increased. Now we stand on the verge of a "magnetoelectronics” revolution, in

ry of kinetic and optical phenomena
gh-frequency field of coherent light beams
accurate account of the system of quantum




which these new phenomena will be exploited in devices combining magnetism with traditiona)

electronic elements. The exploration of spin polarization of carriers represents not only departure

for

the field of magnetism and magnetic materials but also a new direction for the field of

electronics - spin-dependence electronics. Now already proposed a number of new solid-state
devices, using electron spin, for example: spin-polarization light-emitting diode, spin transistor,
magnetoresistive random-access memory chips, magnetic field Sensors, etc.

All above-stated allows to approve, that the further development of investigation of influence of

laser radiation on physical properties of ferromagnetic semiconductors now becomes very actual,
both with only scientific, and with practical of points of view.
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