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Abstract
The effect of lateral interactions of adatoms on the spectral line of their local vibrations
is analyzed in terms of a simple model which includes only central forces binding adatoms to 2
surface, so that in a case free of lateral interactions the contribution from the surface-
longitudinal vibrational mode to the dephasing process should vanish (K. Burke, D. C.
) 15869). The lateral interactions

Langreth, M. Persson, 7 .Y. Zhang, Phys. Rev. B 47 (1993
are shown to cause the spectral line shift and broadening which are proportional to the cubed

and the squared ratio of the band width for collectivized local vibrations to the resonance
width for the longitudinal mode; as a resuit, band effect causes a notable contribution, provided

this ratio is of order of unity.

To date a great variety of adsorbate systems have been investigated in which lateral

dipole-dipole interactions not only manifest themselves in vibrational spectra [1] but also give
rise to complex orientational structures [2-4]. A challenge given much space in the literature is
to analyze the contribution of lateral interactions into the spectral line shift and broadening for
local vibrations [5-8]. Up to now, attacking the problem has involved the exchange dephasing
model with the biquadratic coefficient of the anharmonic coupling between the high-frequency
local vibration and the low-frequency resonance mode responsible for temperature
dependences of observed spectral lines. Noteworthy is that this approach included lateral
interactions both for high-frequency [5] and low-frequency modes [6-8].
At the same time, consideration of a simpler case, isolated adatoms and admolecules,
revealed a significant role of the cubic anharmonicity whose contribution to the dephasing is
comparable to that of the biquadratic anharmonicity [9,10]. Given proper weight in the
treatment of the dephasing process, this factor allowed to adequately account for the
anharmonic coupling between the surface-transverse local mode and the surface-longitudinal
resonance mode. Unlike the case of two identically oriented modes which are coupled even in
the harmonic approximation and thus give rise to a reduction factor quenching the dephasing
by several orders of magnitudes [11], two mutually perpendicular modes could be expected to
cause a material effect. However, the binding of an adatom to a surface by central forces gives
no contribution to the dephasing process, and only weaker non-central forces prevent it from
vanishing at all [10]. Since additional lateral interactions of local modes in a sense represent
non-central forces, an intriguing situation results, when the band effect can be investigated in
its pure form, as it should merely be absent for not interacting adatoms. In the present
contribution, we aim at the consideration of this pure effect and its contribution 10 the
dephasing process in planar lattices of interacting adatoms.
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with the potential of central forces

U(r) = @yr? + Oy + O 1, @, :"21‘in » @)

where

rE/—lozA.\/m—lo~uJ_+2%u,f—Lzuiuuz (3)
o 2L

(%o is the equilibrium distance between the adatom and the surface atom bound to it, m is the
reduced mass, Q, and @ are the frequencies of the local and the resonance modes, with 2, >>
@, which is usually the case if adatom is small in mass). The potential of the anharmonic

coupling between the two modes, when expanded in a power series in %, and ¥ up to the term
of the fourth degree appears as

= bll,,2,,2 1,2 4 1.3

4
and is characterized by the coefficients
p_ 1 p 1 L 1
D = ?(3@10 -20,), @ = /—CDz, Oy =D, Oy =D, (5)
0 0

Lateral interactions between adatoms forming a planar lattice result in a band of collectivized
local modes which is described in the harmonic approximation by the Hamiltonian [6,7,12]

H. = gg[m (0 + 23/, (7| ©

Here the dispersion law Q is specified by the frequency Q, and parameters of dipole-dipole
interaction:

2
-ik-R
Qﬁ =Qi +i[ﬁ} ZM

0 R

(N
m\ ou, R’




e moment and the radius vector of the two-

with pand R respectively denoting the dipol
dimensional lattice.

Ref [13] report
halfwidth of the spectra
fourth-order perturbation theory in
and resonance modes. The simple m
even powers of Jongitudinal displacements # an

these relations to get simplified:

us which defined the shift and the
brations and were deduced using the

Hic anharmonic couplings of local
ent work involves only

<< Q,, which enables

ed the relations of interest to
1 line for collectivized local vi
all possible cubic and qua
odel under consideration in the pres
d implies the limit &

AEQmax‘Qo=Ao+Al (8)

Ay = . (o)[rl(a)\‘)+}i}

m* Qoo L

©

1 201 (QO . Q“) (10)

M. i3 no o)+ 1= 2= 5
( ) sl qN;Qk[(ao—Qk)zmzl !

- 4

where 7 is the full resonance width of the longitudinal mode,
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and prove to be nonzero.

To estimate A; and T, let us express, as in Ref. [11], the coefficient @ in terms of the
bond energy A, of a Morse potential approximating the function U(r) and introduce the
parameter AQy,q = max|,-Qo| characterizing the width of the local vibration band. Then

(A‘j ~ 4Bh—Q—0Q—°277n(@u)[”(wu) * 1] [(AQWM)BJ

I E, 2 (AQband /77)2

where B = #/2mly* is the rotation constant of the light atom with the mass m residing at the
distance /, from the corresponding heavy atom of the surface. For a hydrogen atom and /, ~ 1
A, we obtain B ~ 19 cm™. The ratio hQo/Ey for H on the Si(111) [14] and C(111) [15,16]
surfaces as well as that for H in hydroxyl groups on various oxide surfaces [17] is about 0.1.
On the other hand, the ratio Q, n/e’ for the same systems changes in a wide range, from 0.2 to
2.5. Then at ks 7'= hay and AQyung = 77, we arrive at A, ~ Ii~1-10cm™

Clearly the band effect concerned proves to be rather slight for systems with weak
lateral interactions, which can be exemplified by the system H/C(111): AQp,q ~ 14 em’, 7~
120 cm™ [16], and the full width is found as 2, ~ 004 cm’ However, another system,
OH/Si0,, presents the case where the low-frequency mode corresponds to the rotational
vibration of a hydroxy! group around the Si-O bond with the frequency ¢3 ~ 100 cm™; this
vibration is slightly coupled with the phonon spectrum of the substrate and hence the value =
4 cm” turns out to be small enough and comparable to AQ,q~ 2 cm' [14]. In this case,
relation (13) gives the value 2I'; ~ 4 cm™’ of the same order of magnitude as experimentally
observed ones [18]. The 2x1 phase of CO/NaCI(100) is another example of a system
characterized by 7 ~ 2.8 ecm™, and AQy,q ~ 6 cm’! (judging by the scale of the Davydov
splitting for the spectral line of CO local vibrations which is observed at temperatures T <
25K) [3,4].

Thus, in paraliel with other dephasing mechanisms, the band dephasing effect can
notably contribute to the shift and width of the spectral line of local vibrations, provided the
band width for these local vibrations is compared to the resonance width of the low-frequency
mode. The model involving the potential of central forces permitted the “pure” band effect to

be treated: the spectral line shift and width are proportional to the cubed and the squared band
width for local vibrations, AQung, and vanish at AQpana = 0

(14)
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