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Abstract

We study a mathematical model of spontaneous activity of a cardiac pacemaker cell.
The model includes five ionic membrane which are responsible for the spontaneous generation
of an action potential of the pacemaker cell. These are the potassium, sodium and calcium ionic
channels, the sodium-potassium pump and the sodium-calcium exchangers. The dynamics of
intracellular concentrations of the main cations, responsible for the spontaneous activity of the
pacemaker cell, was obtained. The computer simulation of the membrane potential and ionic
currents was performed. The limit cycles oscillations were analyzed using the faze diagrams
method. The pathology pacemaker activity during arrhythmia was simulated.

Introduction

The development of a mathematical model for electrochemical oscillators, such as
cardiac pacemaker cells, is an important task of modern biophysics and electro-physiology of
excitable membranes. This problem has been attracted much attention during last decades [1-
9].

Denis Noble was the first who modified the classical Hodgkin-Huxley equations for the
description of spontaneous activity of cardiac pacemaker cells [5]. Although the main results of
the Noble’s model are in good agreement with experimental findings, this model is based on
modified empirical equations, which use a lot of parameters and thus the physics-chemical
interpretation of the spontaneous activity of a pacemaker cell is much complicated.
Furthermore, some of the results of the Noble’s model (an amplitude of the action potential, a
period of the limit cycle oscillations) are poorly coincide with experimental data [3]. Several
models have been developed later [2-4], which have had more varied description of single
channels [3] and another choice of pacemaker currents that drive membrane depolarization
during diastole[2-5].

We have considered the recently proposed model [2] of spontaneous activity of a pacemaker
cardiac cell of sinoatrial node. This model involves less varied description of ionic channels
than most of existent models and uses more detail physics-chemical description of the
processes which are responsible for the auto-rhythm oscillations of cardiac pacemaker cells.
Thus, the model is rather useful for the simulation of interactions of biologically active agents

with the excitable membrane of a cell and their influence on the auto rhythm oscillations of
living cardiac cells.

Gating mechanisms of ionic channels

Let us consider a kinetic transition scheme between the open (O) and closed (C) states
of an ionic channel, which is described by a Markov process
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a solution upon the action of an electric field. A simple diffusion is described by the empirical
Fick’s law

1= -ukTVN (11)
whereIT is the ionic flow, Nandu are the concentration and mobility of the particles. A
motion of ions in an electric field is described by well known Ohm’s law

= -zeuN Vo (12)
where z is the valence, e is the elementary charge, ¢ is the electric potential.

Combining the expressions (11) and (12) we obtain the equation, which describes the total
ionic flux upon the action of the electric field and the diffusion

= —ukTexp(— %j V[N exp(%)J (13)

We can find an equilibrium Nernst potential by putting in (13) =0 and integrating from the
external (e) to internal (i) side of the membrane
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Integrating (14) we obtain the following expression
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Solving (15) with respect to (¢7’ - @"’) and introducing the notations @, = k% = R%, where

F'is the Faraday constant, we obtain the equilibrium Nernst potentials for the main cations of a
cell
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Ionic channel currents
Let us consider the current through a single ionic channel with a length d and a cross
section area S(x). Let x = ‘% denotes an internal membrane side and x = 4 » an external

side. In case of a stationary flow the current trough all cross sections must be the same, and the
flux is inversely proportional to the area

. i=zellS = const (19)

Using (19) for the flux and inserting it into (13) we obtain
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We multiply the resulting equation by exp(ze((p— (po) /kT ) and obtain
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We extract a factor VN'N° and write the ratio of the concentrations in the Nernst potentials

JN'/N*® = exp(— zeq/ 2kT) and obtain the following expression for the ionic current through

the channel
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The equation (25) is known as Goldman’s constant field approximation. In the limit case

N' = N°it is reduced to the simple Ohm’s law, since than @, =0. A more realistic situation

when the integral (23) can still be calculated, is that of an ion channel with a constant cross

section, except for a short and narrow pore with a radius 3A and lengthSA, which is a
typical assumption for ionic channels [1]. If we will assume that the field is a constant, a pore
length is &d , than the expression (23) after integration will have the following form
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Sodium - potassium pump
The reaction of Na* ,K*

pump is fully described by the following equation
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where ATP,ADP P, are adenosine triphosphate, adenosine diphosphate and inorganic

phosphate respectively. The energy, which is required for the active transport of 3 cations Na~

and 2 cations K~ against the electrochemical gradient
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where AG ., is the energy, associated with the breakdown of ATF, @, = AG p/e. The

sum of forward and backward rates can be equaled to a constant
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where k., = Med.

Sodium-calcium exchanger

The reaction which describes the sodium-calcium exchanger has the following view

Ca™ +3Na; < Ca;” +3Na; 47
B
The energy, which is necessary to extract one cation Ca’" against the electrochemical
gradient, is produced during moving of three cations Na* along the electrochemical gradient
' AG,, =+3Na(p-
Na (¢ wNa ) (48)
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The total work is given by
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The ratio @ to 3 has the same form as in (42), but as opposite to sodium-potassium pum

saturation effect is not expected, and thus
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where Ais a constant. For the total current of »# sodium-calcium exchanger we have

AP (= )

(51)

where £, = 2nel

The membrane potential
Suppose that the electrOchemical activity of a cardiac cell is defined by three
K*,Na*,Ca® channels, Na K" pump and Na*Ca®™ exchanger, and all the other currents

can be neglected. The standard differential equation for the membrane potential and the

conservation laws for the intracellular ionic concentrations of the main cations have the
following view
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where Cis the membrane capacitance , F is the Faraday constant. Solving the equation system
(52) we obtain the expressions for 7,7, 7.,
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Substituting obtained expressions into the equation for the potential we have
dp FV d
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This equation can be written as
57(40 —%(N; +2N, +N,Qa)) =0 (55)
Integrating (55) we obtain
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281




where the constant A is found from the conditicn, that the membrane potential is equal to zero,
when the inside and outside cation concentrations are equal. Thus, the equation for the
membrane potential has the following view
F‘Lr t e H € i e
= C (NK _NK +2(NCa_NCa)+NNa _]vNa) (57)

The parameters used during computer simulations

We have used the following parameters to simulate numerically the pacemaker activity
of a sinoatrial node cell [2]: the conductance parameters k., =26.2 pA, k,,=0.01645 pA,
ky, =112.7 pA, k=329 pA, ky,,=1400 pA, k., =11.46 pA, the extracellular ionic
concentrations N2 =54 mM, N, =140 mM, N, =2 mM, the temperature T'=310K, the
capacitance of a membrane C =10 pF, the volume of a cell V' = 1040m* | the relaxation time
r=1, =1y, = te, = 200 ms, the half-activation potentials ¢, =-25.1 mV, ¢, =-6.6 mV,
p,=-25mV, ¢, =-414mV, ¢, = -91 mv, @, = -450mV.

Numerical results and discussion

The electro-physiological spontaneous activity of real pacemaker cells is reasonably
described by above described theory. In particular, we have simulated the spontaneous activity
of a rabbit sinoatrial node cell using this model. The simulated membrane action potential of

the pacemaker cell is shown in Fig. 1.

10 4

220 4

30 A

Action Potential [mV]

_40 A

-50

. . .
0,0 0,5 1,0 15 2,0
Time (s]

Fig. 1 Simulated membrane action potential of a pacemaker cell
The waveform and amplitude of the simulated action potential reasonably coincide with

experimental results [6]. Using this theory we can predict experimentally observable ionic
currents, which underlie the spontaneous activity of alive pacemaker cells. Furthermore, we
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Fig. 2 The outward delayed rectifying potassium current of a pacemaker cell
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Fig. 3 The inward calcium current of a pacemaker cell
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Fig. 4 The inward sodium current of a pacemaker cell.

The long-time simulation of the membrane potentials with the equal starting
intraceliular and extracellular ionic concentrations is shown in Fig.5.

As can be seen from the long-term simulation the Nernst equilibrium potentials are
reached roughly after 750 ¢ (12.5 minutes). These long-time simulations confirm a hypothesis
on the limit cycle oscillations in the simulated sinoatrial node cell. The importance of the
presented model as well as others reasonable models lies in the possibility of applying of the
model for investigation of some pathologies, which have well defined clinical manifestation.
One of such heart disease is an ischaemia[1,7]. The simulated action potential at different
extracellular concentrations of K*, as it takes place during ischaemia, is shown in Fig.6.

As it can be seen from Fig.6 the arrhythmia pathology takes place with increasing of
extracellular potassium concentration. Although some evident success in describing of the
pacemaker activity during ischaemiapathology, the model falls to predict all the possible
extracellular K™ concentrations, that can take place during this disease [7-9]. The problem can
lie partly in that fact, that the model involves only three main cations K™,Na*,Ca™ , and does

not include for instance C/~ anions. This is a subject of the following investigations, as it can
be mentioned from electro-neutrality requirements of the intracellular and extracellular salt
aqueous solutions, which have not been considered in the model.

It is known, that the spontaneous oscillations in a pacemaker cells have the limit cycle

character. To analyze this phenomenon we have simulated the phase diagram of the

spontaneous oscillations using the model. The phase diagram of the limit cycle oscillations is

shown in Fig. 7.
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