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Abstract 
 Theoretical approach for calculation of the effective dielectric permittivity ( )e~  of 
matrix  dispersed  systems (MDS)  that  consist  of  a  dielectric  matrix  with  randomly  arranged  
two-layer spherical inclusions of different radiuses has been proposed and departures from the 
Maxwell-Garnet formula due to increasing of an inclusion volume fraction are studied. It is 
shown that the effects of direct dipole-dipole interactions between inclusions become 
important in this case. In the electrostatic approximation we have exactly solved the problem 
of a response of this N–particle system on the external electric field and obtained corrections 
to the Maxwell-Garnet formula for e~  with account of the pair dipole-dipole interaction 
between inclusions. 
 
 
Introduction 
 An increasing interest to study of interaction of an electromagnetic radiation and 
matrix dispersed systems (MDS) displayed recently is associated first of all with the fact that 
these systems have some features that are absent in corresponding continuous media [1-11]. 
The  simplest  and  the  most  efficient  method  of  calculation  of  the  electrodynamics  
characteristics of MDS is the method of an effective dielectric permittivity ( )e~  and an 
effective conductivity ( )s~ .  A  detailed  review  of  some  methods  of  calculation  of  these  
quantities for different MDS are given in [1-4]. It is necessary to note that MDS constituted of 
a dielectric matrix with randomly embedded inclusions of different physicochemical nature 
and shape (spheres, ellipsoids, cylinders, and so on) are ones of the best studied. It is clear that 
these MDS simulate good enough real systems including soils, rocks, and even biological live 
objects such as suspensions of cells. Moreover, MDS and statistical blends are the basement 
for creation of different composite materials with the beforehand given electrodynamics 
properties. 
 In this paper, we performed calculations of e~  for  МDS  with  two-layer  spherical  
inclusions of different size. With the help of the method of expansion of polarizability of 
these systems with respect to group of particles (inclusions) [5-7] and the theorem of spherical 
harmonics [8-9], in the first section we solved the problem of obtaining of electric potential at 
an arbitrary point of the matrix consisting of N inclusions in the external electric field 

ti
oeE w-
r

~ (in the electrostatic approximation when a wave length of the field 
w
pl c2~  is much 

larger than a typical size of particles and an average distance between them). We obtained the 
relations that allow one to perform calculation of the potential of electric field with account of 
any order of the multipole interaction between inclusions. In the second section, we obtained 
the expression e~  of our МDS with account of only pair interaction between inclusions. 
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1. N–particle problem 
 We consider a system of N particles in a volume V and in the homogeneous varying 
with time electric field ( ) ( ) tieEtrE ww -=

rrrr

00 , . In the electrostatic approach, the field ( )rE rr  at 

any point of the system may be obtained from the relation ( ) ( )rgradrE j-=
rr , where the 

potential ( )rrj  satisfies the equation 
0=Dj            (1) 

 The inclusions are two-layer spherical particles of an external radius ib , and radius of 
the inclusion nucleus is ia ; ( )we )(

1
i , ( )we )(

2
i , 0e  are the dielectric permittivities of the 

inclusion nucleus, shell and the matrix respectively (Fig.). 
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Fig. Mutual disposition of balls. 
 
 Taking into account of the problem symmetry, may present a solution of (1) with a 
center at the i-th particle in the following form [12]: 
for the particle nucleus 
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for the particle shell 
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and for the matrix 
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where ( )iqp rrY €€
,

rr
-  are spherical functions [13], 

i

i
i rr

rrrr rr

rr
rr

-
-

=- €€ . In equation (4) the first term 

is the potential of the external field expanded with respect to sherical harmonics with a 
centered ir

r  and in the observation point Р; the second term is the potential created by the i-th 
particle due to its polarization at the point Р, the third term is sum of potentials that created by 
rest (N-1) particles at Р. While writing expressions (2)-(4), we took into account regularity of 
the potential )( I

ij  at the center of the i-th sphere and at infinity ( )rIII r)(j . Unknown constant 
)()()()( ,,, i

lm
i

lm
i

lm
i

lm DCBA , may be obtained requiring solutions (2)-(4) must satisfy the boundary 
conditions [13] 
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where vectors ', sisi rr rr  are shown at Fig., vectors isi rr rr - and isi rr rr -' are parallel to the 

external normal inr ; iisi arr =- rr , iiSi brr =-
rr ' . 

 Since the spherical harmonics in the third term in (4) are centered at the j-center, we 
could not meet conditions (5) directly. It is necessary to reduce everything to the i-th center. 
For this we may use the addition theorems of spherical harmonics. One of these theorems at a 
domain iji rrrr rrrr

-<-  gives [8-9]: 
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Substituting (2)-(4) and (6) in (5), we obtain: 
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where 
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From (8) and (9), we may obtain the system of algebraic equations for the coefficients )(i
emB  
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where )(i
lmd  are coefficients of expansion of the external electric field with respect spherical 

functions that are centered at the i-th inclusion, аnd 
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 are given by (7). After obtaining )(i
lmB , we may easily get coefficients 

i
lm

i
lm

i
lm DCA ,,  from (8). 

 Relations (7)–(8) and (10)–(11) completely solve the problem of electric response of 
the  system  of  N  two-layer  spheres  on  the  field  0E

r

 accounting of the direct multipole 
interaction between particles. Keeping in (10) terms of the order 1' == ll , we take into 
account only the dipole-dipole interaction between them. Picking up terms with 2' == ll , we 
may take into account the quadrupole interaction, and so on. 
 It is worth noting that )(i

la  is the polarization of the і-th particle of the order l  in the 

field 0E
r

. At 1=l  (dipole polarization) formula (11) transforms into formula (5.36) [2], and аt 
,0=iq  )(i

la  coincides with the l  order multipole polarization of the i-th sphere–balls [6]. 
 
2. Effective dielectric permittivity of MDS with two-layer inclusions 
 Comparing relations (10) and (11) with corresponding formulas of papers [7, 10, 11] 
(for example, formulas (10) аnd (11) from [10]) we may note that the system of equations for 

)(i
lmB  in the case of MDS with two-layer inclusions differ from equations of MDS for one-layer 

inclusions by the magnitude of the multipole polarization of the l-th order ( )(i
la )  of  a  

particular inclusion. In other words, to obtain e~ of the MDS systems under consideration one 
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may use directly by formulas of papers [7, 10, 11] changing relation )(i
la  with  (11).  For  

example, by using formula (1) of paper [11], we may straight forward obtain e~  for MDS with 
two-layer spherical inclusions accounting the pair dipole interaction between them: 
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Here coefficients )(
1

ia  are given by relation (11) at l =1, pkkp rrR
rr

-= , 
V
Nn K

K =  is a density 

number of the k-th type of particles, ( )kpRf  is the two-particle distribution function of 
inclusions that was chosen in the form: 
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In the case of pair dipole interaction ( 1' == ll ), the coefficients II
ijb  і ^

ijb  take the form: 
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Expressions of ( )ij

i R)(
10c  and ( )ij

i R)(
11c  (at 1' == ll ) may be obtained from (10) 
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 Taking into account the explicit form of ( )ijRf  (13) and relations (14)-(15) and using 
(12), we obtain the formula of effective dielectric permittivity e~  of  МDS  with  two-layer  
spherical inclusions in the approximation of dipole-dipole interaction between them: 
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            (16) 
 
 Neglecting  the  second  term  in  the  right  hand  side  of  (16),  we  obtain  the  
Maxwell-Garnet relation for MDS with two-layer inclusions which represent mixture of 
particles with different sizes and different electrodynamics characteristics (different )(

2,1
ie ). In 

the case of identical particles, relation (16) gives: 
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Formula (18) coincides with formula (18) of paper [14], аnd formula (19) coincides with 
formulas (5) and (7) of paper [6], provided that ( )00 ®= aq . 

 
Conclusion 
 The results obtained in this paper allow us to make some general conclusions. The 
form  of  system  of  equations  (10)-(11)  shows  that  the  problem  of  obtaining  the  coefficients  

)(i
emB  and the effective dielectric permittivity e~  of МDS with complex spherical inclusions 

(one-layer of different radius, two-layer, inhomogeneous, and so on) is completely equivalent 
to the problem of obtaining these coefficients and e~  of  МDS  with  continuous  spherical  
inclusions but with a new magnitude of the multipole polarization of an individual inclusion 

)(i
la . This is a result of the boundary conditions (8), since corrections due to the multipole 

interaction (coefficients )( j
lmB  in (18) are added to the interaction coefficients of inclusions 
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with the external field )(i
lmd , formula (9). An analogous picture takes place for MDS with 

ellipsoidal inclusions. We would like to stress that the above-developed calculation method of 
effective dielectric permittivity e~  for similar МDS enables one to take into account even the 
higher term of mulipole interaction between inclusions. However, this requires knowledge of 
the many-particle (three, four, and so on) statistical distribution functions of inclusions in a 
matrix. Unfortunately, exact expressions of these functions are unknown at present with the 
exception of the two-particle function [15]. 
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