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Abstract

In the first part of this work we study the effect of a semi-infinite matrix dispersed
system (MDS) on the external electromagnetic radiation in the electrostatic approximation.
With the help of our previous technique, we obtain general expressions for the multipole
expansion coefficients of the electric potential for a sphere accounting for the interaction
between ambient particles and the substrate. The polarizability tensor and resonant
frequencies of a single sphere show anisotropy due to the influence of a substrate. In the
second part electrodynamical properties of thin percolating layers manufactured on the basis
of the MDS are considered. Transition from 3-D to 2-D behavior, which is observed near the
percolation threshold and shows itself as changing of some parameters (in comparison with
those for 3-D percolating system) like the values of percolation threshold, critical indices of
conductivity and permittivity, were studied.

Introduction

Interest in matrix dispersed systems is stimulated, first of all, by the possibility of
manufacturing materials with predicted optical properties. At the same time, the properties of
MDS may strongly differ from those of the materials used for the formation of MDS [1]. In
the theoretical studies, MDS are usually considered as infinite systems.

In the first part of this work, we take into consideration the effects of an MDS
interface. Namely, the MDS is considered as a half space dielectric matrix with a plane
interface separating it from another half space of homogeneous dielectric. The matrix is filled
with spherical inclusions of different diameters that are randomly located. The results [2]
obtained for the system of spheres on a dielectric substrate can be obtained from our model as
a particular case. Basically, this part is a generalization of [3, 4].

In the second part we consider percolating layer of sizes LxLxH (L<<H), which is
a useful model of disordered composite film, particularly, of metal-dielectric layer deposited
on a substrate. In such a system near the percolation threshold a transition from 3-D to 2-D
behavior is observed, that manifests itself in changing (in comparison with 3-D system) the
values of percolation threshold, critical indices of conductivity and permittivity, frequency
dependence of dielectric response and other parameters. Below scaling expressions for
electrodynamics parameters of percolating layer near the threshold are obtained by method of
percolation renormalization group.

Spheres near a substrate
Basic equations.

We consider a semi-infinite MDS consisting of dielectric spheres of different diameters
embedded in a homogeneous dielectric (ambient) as shown in Fig. 1. Another half space is
filled with another homogeneous dielectric (substrate). The system is placed in the electric
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field proportional to e''. Let ¢,(w) & (w) and & (w) be the dielectric functions of the
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ambient, substrate and the i sphere, respectively, and R be the radius of the i" sphere.

N
e N
N
N
SO
N
.

b \\-» Z O
E
A
@)

Olo

/ &y

X

Fig. 1. Geometry of the semi-infinite matrix dispersed system.

Let the wavelength of the external electromagnetic field be much larger than radii of the
spheres and the distances between them. In other words, we use the electrostatic
approximation. In such a case resulting electric field is caused by the interaction of the
external field with the MDS and the substrate and its potential satisfies the Laplace equation

Ay(F)=0 ()
in the regions | - inside MDS (out of spheres), Il - inside the spheres, 111 - inside the substrate,
and does the standard boundary conditions
oy, oV
=w) =g , 2
i =v;),, {e on € on, J .. 2
where g is dielectric function of the matter filling out the i™ region (i=l, 11, I11),

w; Is the resulting field potential in the i region,
o denotes the common bound surface of the regions i and j.
ij

Using ideas of the image and multipole expansion methods of solving of electrostatic
problems we seek a solution of the problem (1, 2) in the following form:

WI = l//e!xt + Zwil—th spere + W;ubstrate = _EOF + IZ Ailm I:Im (ﬁl )+ IZ A|’Im I:Im (ﬁi’) (3)

' = IZ BitGim (51 4)
m

4 "= l//e!:(: + ‘//(;” + Zcilm Fim (/3;); (5)

ilm
Wl = —EoF = —(Eqx + Eqyy + Eq2)

- (6)
yl = —Eif = —(aE  x + bE,, Y + CE,,2)

F
Where Flm(r)zrililYlm(F); Glm(F)ErIYIm(F); ﬁi EF_F} : ﬁi’EF_ﬁ’;

F is a radius-vector of the center of the i sphere ; ¥ is a radius-vector of the i"" sphere center
image and " is a constant contribution to the potential w"' related with a choice of

radius-vector origin point. Note, that all the individual terms in (3, 4, 5) automatically satisfy
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equation (1), and (6) expresses the idea of force lines refraction on the boundary of different
media.
The unknown coefficients A, Ais BimisCimi»

boundary conditions (2) to the expansions (3, 4, 5).

,a,b,c are obtained after applying the

Boundary conditions on the substrate surface.
1. Potential continuity condition on the surface o, ,, takes the form

(Eo—Ep)F =g + X {AumFim (5i )+ AinFim (51)— CiimFim (1)} = 0.

ilm Sl-1
Different terms here have different arguments. It proves to be more convenient to reduce all
the terms to a common argument, e.g. to p,. Using the fact, that for any point at the boundary

surface o, ,

pi =(pi.6;.0;)

i =(pi.6{.0{)=(pi. 7 —6;,0;)
and using the relation [5]

Ylm(7Z _91§0) = (_1)I+mYlm(91§D)
we obtain

AE// v/ +AE8_FL _l//(%” +”Zr:n{Ailm +( I+m A1Im |Im }Flm 0|=||| |
where we have used decomposition F=F" +F% and analogous to it for AE =E,—E,.
Obtained equation is equivalent to the set
AE! ¥" =0
AEF -FH -y =0 (7)
A + (_1)I+m Aim = Ciim =0
0

2. Potential derivative continuity condition on the surface o, ,, in view of ai ]
n oz

takes the form

0. (+y _
(ces —&,)Ey, +5a”ZmA|Im po Flm(pI )+8a”ZmA,|m e F,m( ) &g chm ; I:|m(/3i )0|j||| 0.

Again, reducing all the terms to argument p, and using relation

0 10
EFlm(”—H#’):(—l)Hm IEFIm(H’Q) )
which can be seen from [5]

1
0 | a+n2-m? f2(af
E[f(r)Y'm(e’q’)]{(zl el +3)} ( r f)Y'”'m(Q’g”) i

N

1©—m o I+1
J{m} [EJ“ . le 1m(0,9)

we obtain equation

(C85 _8a)Eoz +Z[83Aﬂm +8a( )Hm 1Ailm - |Im]%Flm( ) =0

ilm Oi-m

or equivalent set
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ce,—¢, =0

{gaAilm +ga(_l)l+m71Ai’lm _gsCiIm =0
3. The solution of eq. (7, 8) is

(8)

l//o“l = (_a _1j Eo.h 9)

where h, is the height of the global origin over the substrate.

Boundary conditions on the sphere surface and equation for Ajin
1. On the surface of j™ sphere the potential continuity condition takes the form

- EO '?"'_IZAiIm Fim (/3| )+_IZAi’Im Fim (pl) ZBJImGIm (PJ) I_II 0.

ilm ilm i
Applying representations F=T;+p; and p, =p;- (i —Fj), well-known addition
theorem [6] for spherical harmonics

Folf ~R)= ST (R)G, (), (7<R)

where Th™ = (=1)"*™| 4z 2+ (L+M)(L=M)! 2
" (21, + D@L+ (+m)iI—m)i(l, +m)(, —m)! |

L=1+1,, M=m-m,,

and taking into account that 5| = (R,.0,,¢,) We obtain equation

Ti-nj

i (2 )R'l{ iR T (A Fi =)+ A Fo (7= F - B,-m} =B T +(EBy).,
hmy
F (F—T)i#]j
where F"’n(ﬁ_rj)z{ Im(l - J)- J
0,i=j
Interpreting this equation as multipole expansion, we can obtain expression for the
coefficients {..} by using standard procedure [dQ-Y,, -..., that leads to

{A&WRZH + -I-I:;M[AImFI_’M(Fi._F})+A{ImFLM(E’_F})] Jqu}R \/ZTEor@;lgl +_7ZE0R Z[Y (Eo)élm]

While derlvmg last expression we have used relations [5]
IYIm Q)Ylm dQ 5" 6 - 6llnr1m’ !

a-b=ab- cos(é : Bj = E”abé:lYlm (é:){;n (ng .
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2. Potential derivative continuity condition on the surface of jth sphere in view of

91 _ 9 and P;

m Ol apl

= Rj takes the form

G111

| .
Z{ea 1+ R;lAHerh +& Bilm —&, _ImTl:ﬁrTh [AImFL’M (Fu _Fj )+ AFiu (Fi’_rj )]}IlR;llYllml (Qj ) =—¢,(E,- ﬁj )

hmy Il
Applying to this expression the same procedure as earlier, we obtain relation

L +1) 1o = ’ == = 4 L * =
{%Q Rj2Il 1Aﬁm +&; Bilm _8a_| I:;M[AImFLM(ri _rj)+AlmFLM(ri _rj)]}llR; ' :_ém%Eo ZL|:Ylm(EO)é]1:1]

1 ilm M=

Two equations obtained from the boundary conditions on the surface of j™ sphere
form the full set defining unknown coefficients A,, and B, (note, that explicit form of A|
as function of A, was found earlier, see eq. (9)). After some transformations it can be
reduced to the form

_ Bim :_ f(AiIm)

> 3 + K A =V, (10

ilm
10

im m ' (= = +m & — & 2
where Kjn =a;, T, {FLM(ri —rj)+(_1)' ove FLM(E =T )}

= Il(gj_ga) R2k+
B e+ (4,

4 Lo
Vj']_m]_ :Eﬂ-ajllSI]iEo ZlYlm[§0j5r?1 )
m:7

Eo = (EOxv EOyv EOZ): E, - éo-
The explicit form of the function f in (10) is not needed for further consideration.
Second equation of (10) can be written in the matrix form [f+ @Jﬁ:\ﬁ or

K= [f+ l@}l\ﬁ, that allows us to interpret the matrix M = [_’t:+ |\€r, which connects external

potential matrix Vi, and multipole coefficients A;m, as the multipole polarizability matrix of
the MDS spheres.

A single sphere near a substrate. The resonant frequencies.
For a single sphere near a substrate, we can obtain the polarizability tensor in the
dipole-dipole approximation by using (10):

4 a, 0 O
(£=§7zR3ga(g—aa 0 «a, 0| (11)
0 0 a
L 1 g, — &
where o; =|¢, +Li(e-¢,)| ; (i=11,1); L=7|1+1,=2— j
a [8 (8 8)] ( ) L 3(+'8a+€s
1.
2=/
|i=5. ?
" =D

h is the distance between the sphere’s center and the substrate.
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Let us consider the case of Lorentz’s dielectric functions and &, =1 (vacuum):
2 2
0] ) a)ps

p
2 2 - ) gs(a)):l+ 2 2 :
0, —0° —iyw Wy —0° —iy.w

slw) =1+

The resonant frequency is obtained by using the condition ai(a)res) =oo. Inour case it reduces
to the following algebraic equation with respect to the frequency:
o' +a;,0° + a,0° +a,w+a, =0, (12)

where a; =i(y +7,)

2 2 1 2 1 2
a, = —| @y + Wy +§a)p +Ea)ps +77s
] 1 1
a, =i (nwé + oy, +§7sw§ +57w§sj

1 1 1
a, = 0, +§a)§sa)§ +Ea)§a)§s +€(1— ) oliw),
A solution to (12) neglecting damping (;/ =y, = 0) IS

(!,f = % {y1 +Y, i (- Y, ) + 4liy3} (13)

2 2 2
w w ()
Where yy —ag + = Yo =wa + 0 Yam

Particularly, for a metallic sphere on the dielectric substrate from (13), using the inequality
O s /a)p <<1, we obtain the following approximate expressions

w

2 2

(©9)2 =20 41, 2o
32 (14)

()

(©2)? = +1-1,) 22

2
for the four (i=//,1) resonant frequencies. Note that @ %_ is well-known surface plasmon
3

frequency of a sphere and @ %_ is one of a substrate.
2

As we see, substrate changes the dipole moment of a sphere in such a way, that the
four resonant frequencies arise in the absorption spectrum of a sphere. What causes arising of
such a number of the resonant frequencies? First, one pair of the frequencies is observed
when the field direction is parallel to the substrate, while another one — when perpendicular,
and these two pairs don’t coincide in addition. In general case field has both the components
and absorption spectrum has the four resonant frequencies respectively.

Second, under certain field direction (// or L to the substrate) the pair of frequencies
arises due to an interaction between surface plasmons of the sphere and of the substrate.
Under increasing the distance between sphere and substrate this interaction vanishes and we
obtain well-known result: a single sphere and a single half-infinite substrate absorb radiation

at the frequencies @ and @ps respectively.
; o5 B T Tespectively
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Electrodynamical properties of percolating layers based on metal-dielectric

composites

In this part we consider electrophysical and optical properties of percolating system
like a layer consisting of conducting and non-conducting inclusions of typical size a, at that
its volume fractions are p and 1-p respectively. The layer size is supposed to be infinite in the
longitudinal directions, and of thickness H in the transversal direction. The layer is bound by
the planes z=0 and z=H and has cubic packing consisted of randomly arranged conducting
(black) and non-conducting (white) cubes. Such a system structure leads to no loss of
generality of further obtained results, because inclusion shape is insufficient near
metal-dielectric percolation phase transition. The system has anisotropical electrodynamics
properties from the very beginning, because it always has finite conducting cluster that
connects z=0 and z=H planes, when H<< and p is close to a critical value [7]. It is clear,

that percolation threshold for longitudinal direction p! is dependent from H and p/ — p'®
when H — o, where p®) is percolation threshold for 3-D packing. In the case H=a we have
p! = p?, where p{? is percolation threshold for 2-D packing. In our case, as it follows

from [7], p® ~0.3117 (percolation threshold of site problem for cubic lattice) and
p!? ~0.59275 (percolation threshold of site problem for square lattice).

At finite layer thickness a<<H<oo the system properties are defined by the relation
between H and the correlation length of 3-D percolating system
Sy=alp-pg (15)
where v, = 0.9 is the critical index of the correlation length [7]. If £,<<H, then 3-D system

is isotropic and its electrodynamics parameters are independent from H. In this case
evaluation of the parameters should be performed by using the mean field approximation [9]
at &, ~a and the scaling relations at &, >>a. Particularly, the layer conductivity o at

p> p® is given by

o, =0,=0,(p- pés))t3 , (16)
where t, =1.6+2 [7], and o1 is the specific conductivity of respective (black) cubes. At
& > H the layer behaves itself like a 2-D system consisting of effective H x H x H blocks.

Characteristics of the blocks can be calculated by the method of percolation
renormalization group transformation (PRGT) [13, 14]. This transformation fulfils
transition from percolating system consisting of elements of size a to the system,
which is equivalent to that on macroscopical properties but consists of effective
elements (blocks) of magnified n times sizes. The effective element involves n‘
elements of original system (d is the space dimension; in our case d=3).

Applying of PRGT is able under condition an<<¢,. In the transformed system the

fraction of effective conductors p' and its specific conductivity al* are equal to [13]

p"=p +n"(p-pd), (17)
o, =on, (18)
Note, that relations (17, 18) reflect supposition that percolation threshold p® is the fixed

point of PRGT and that correlation length & as well effective conductivity o (16) are
conserving under PRGT.
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Let’s now apply PRGT to the system and put n=H/a. Then we transit from
percolating layer of thickness H=na to 2-D mosaic formed by effective blocks of size
H xH xH (Fig. 2, b). The mosaic properties are defined by the relations (17, 18).

a b

Fig. 2. (a) - Percolating layer; (b) - 2-D percolating system obtained as result of PRGT.

Because the percolation threshold p® for 2-D mosaic is larger, than that for respective 3-D
packing, percolation breakdown in the longitudinal direction occurs when the effective
conductor fraction p~ becomes equal to p?. Therefore the percolation threshold of
percolating layer is defined by the condition

Peo = Pes+(H/2)""3(pey - pes) (19)
and is equal to
Pey = Pes+(Pe2— Pe3)(H /a)illv3 (20)

Dependence (20) of percolation threshold of layer on its thickness for cubic packing is
shown on Fig. 2. It consents qualitatively with experimental results [14] obtained by studying
conductivity of a layer of conducting and nonconducting spheres and with results [13]
obtained in studying of metal-ceramic films Au-Al,Os.

P .

0.3 !
10 20 Ha

Fig. 3. Percolation threshold for longitudinal direction as a function of film thickness.
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Near the percolation threshold at &, > H transversal conductivity of the layer is
defined by the effective conductivity o of the conducting blocks accounting for its
fraction p :

O-J_(H): p'o) = péa)al(H Ja)~evs (21)
This formula corresponds to fractal law of conductivity of isotropic percolating system of
finite size.

Longitudinal characteristics of the layer at &, > H are defined by the critical indices of

2-D systems. In particular, the correlation length is

& =H|p-p®[ " =a(H/a)"+"s|p-p!| (22)
where the critical index v, =4/3 [14] and longitudinal conductivity at p > p! is
oy =0, (p = Pe,) =0y (H/a) 2™ (p" —p))" (23)

where critical index t, ~1,3 [7].
Above used PRGT method allows us, in our opinion, to consider more complicated problems
too.

Evaluation of effective permittivity of the layer is performed in the low frequency

limit. In this case, starting with expression for permittivity of conducting conclusions [1]
2

@y
= -, 24
51(0)) €10 a)(a)+iv) (24)
that at v > w takes the form
g(@)=¢y, +i—47wl(a)) , (25)
(0]

2

where o,(0)= 4—p is conductivity of conclusions near the percolation transition,
VA%

we obtain for effective values of & (w) the same relations as (25), but only with &, instead
of &, and G,(w)=0c(w) instead of o;(w). The form of dependency o(w) is evaluated
earlier, and that of &, can be easily evaluated from the well-known relations [1].

Conclusions

We obtained the general expression for the resonant frequency of the model system,
which is a dielectric sphere in vacuum on a dielectric substrate. The latter results in splitting
and shifting of the resonant frequency depending on a direction of the external field according
to (13). This allows one to suggest that layers of small particles on a substrate possess
anisotropic electrodynamical properties. Using PRGT method, we have developed the theory
on calculation of conductivity and permittivity of metal-dielectric films of any thickness near
the percolation transition. The percolation threshold was found as well as its dependency on
film thickness and scaling dependencies (at &, > H ') of both the longitudinal and transversal

conductivities on the thickness. Obtained theoretical results consent qualitatively with
experimental data [12, 13].
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