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Abstract 
In  the  first  part  of  this  work  we  study  the  effect  of  a  semi-infinite  matrix  dispersed  

system (MDS) on the external electromagnetic radiation in the electrostatic approximation. 
With the help of our previous technique, we obtain general expressions for the multipole 
expansion coefficients of the electric potential for a sphere accounting for the interaction 
between ambient particles and the substrate. The polarizability tensor and resonant 
frequencies of a single sphere show anisotropy due to the influence of a substrate. In the 
second part electrodynamical properties of thin percolating layers manufactured on the basis 
of the MDS are considered. Transition from 3-D to 2-D behavior, which is observed near the 
percolation threshold and shows itself as changing of some parameters (in comparison with 
those for 3-D percolating system) like the values of percolation threshold, critical indices of 
conductivity and permittivity, were studied. 

 
 

Introduction 
Interest in matrix dispersed systems is stimulated, first of all, by the possibility of 

manufacturing materials with predicted optical properties. At the same time, the properties of 
MDS may strongly differ from those of the materials used for the formation of MDS [1]. In 
the theoretical studies, MDS are usually considered as infinite systems. 

In  the  first  part  of  this  work,  we  take  into  consideration  the  effects  of  an  MDS  
interface. Namely, the MDS is considered as a half space dielectric matrix with a plane 
interface separating it from another half space of homogeneous dielectric. The matrix is filled 
with spherical inclusions of different diameters that are randomly located. The results [2] 
obtained for the system of spheres on a dielectric substrate can be obtained from our model as 
a particular case. Basically, this part is a generalization of [3, 4]. 

In the second part we consider percolating layer of sizes HLL ´´  (L<<H), which is 
a useful model of disordered composite film, particularly, of metal-dielectric layer deposited 
on a substrate. In such a system near the percolation threshold a transition from 3-D to 2-D 
behavior is observed, that manifests itself in changing (in comparison with 3-D system) the 
values of percolation threshold, critical indices of conductivity and permittivity, frequency 
dependence of dielectric response and other parameters. Below scaling expressions for 
electrodynamics parameters of percolating layer near the threshold are obtained by method of 
percolation renormalization group. 
 
Spheres near a substrate 
Basic equations. 
 We consider a semi-infinite MDS consisting of dielectric spheres of different diameters 
embedded in a homogeneous dielectric (ambient) as shown in Fig. 1. Another half space is 
filled  with  another  homogeneous  dielectric  (substrate).  The  system  is  placed  in  the  electric  
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field proportional to e i tw . Let ( ) ( )e w e wa s,  and ( )e wi  be the dielectric functions of the 
ambient, substrate and the ith sphere, respectively, and Ri  be the radius of the ith sphere. 

 
 

Fig. 1. Geometry of the semi-infinite matrix dispersed system. 
 
 

Let the wavelength of the external electromagnetic field be much larger than radii of the 
spheres and the distances between them. In other words, we use the electrostatic 
approximation. In such a case resulting electric field is caused by the interaction of the 
external field with the MDS and the substrate and its potential satisfies the Laplace equation 

( )Dy rr = 0   (1) 
in the regions I - inside MDS (out of spheres), II - inside the spheres, III - inside the substrate, 
and does the standard boundary conditions 
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where ie  is dielectric function of the matter filling out the ith region (i=I, II, III), 

iy  is the resulting field potential in the ith region, 

ijs  denotes the common bound surface of the regions i and j. 
Using ideas of the image and multipole expansion methods of solving of electrostatic 
problems we seek a solution of the problem (1, 2) in the following form: 
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where ( ) ( )rYrrF lm
l
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rri  is a radius-vector of the center of the ith sphere ; r¢ri is a radius-vector of the ith sphere center 
image and III

0y  is a constant contribution to the potential IIIy  related  with  a  choice  of  
radius-vector origin point. Note, that all the individual terms in (3, 4, 5) automatically satisfy 
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equation (1), and (6) expresses the idea of force lines refraction on the boundary of different 
media. 
 The unknown coefficients cbaCBAA lmilmilmilmi ,,,,,, ¢  are obtained after applying the 
boundary conditions (2) to the expansions (3, 4, 5). 
 
Boundary conditions on the substrate surface. 
 1. Potential continuity condition on the surface IIII -s  takes the form 
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Different terms here have different arguments. It proves to be more convenient to reduce all 
the terms to a common argument, e.g. to ir

r
. Using the fact, that for any point at the boundary 

surface IIII -s  
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where we have used decomposition ^+= rrr rrr //  and analogous to it for 00 EEE
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Obtained equation is equivalent to the set 
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2. Potential derivative continuity condition on the surface IIII -s  in  view  of   
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Again, reducing all the terms to argument ir
r

 and using relation 
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which can be seen from [5] 
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we obtain equation 
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3. The solution of eq. (7, 8) is 
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where 0h  is the height of the global origin over the substrate. 
 
Boundary conditions on the sphere surface and equation for Ailm 
1. On the surface of  jth sphere the potential continuity condition takes the form 
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Applying representations jjrr r
rrr
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--= rr , well-known addition 

theorem [6] for spherical harmonics 
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Interpreting this equation as multipole expansion, we can obtain expression for the 
coefficients { }...  by using standard procedure ò ××W * ...lmYd , that leads to 
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While deriving last expression we have used relations [5] 
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2.  Potential  derivative  continuity  condition  on  the  surface  of  jth sphere in view of  
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Applying to this expression the same procedure as earlier, we obtain relation 
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Two  equations  obtained  from  the  boundary  conditions  on  the  surface  of   jth sphere 
form the full set defining unknown coefficients ilmA  and ilmB  (note, that explicit form of ilmA¢  
as function of ilmA  was found earlier, see eq. (9)). After some transformations it can be 
reduced to the form 
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The explicit form of the function  f  in (10) is not needed for further consideration. 

Second equation of (10) can be written in the matrix form [ ] VAK €€€1€ =+  or 

[ ] VKA €€1€€ 1-
+= , that allows us to interpret the matrix [ ] 1€1€€ -

+º KM , which connects external 
potential matrix Vilm and multipole coefficients Ailm, as the multipole polarizability matrix of 
the MDS spheres. 

 
A single sphere near a substrate. The resonant frequencies. 

For a single sphere near a substrate, we can obtain the polarizability tensor in the 
dipole-dipole approximation by using (10): 
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           h is the distance between the sphere’s center and the substrate. 
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 Let us consider the case of Lorentz’s dielectric functions and ea = 1  (vacuum): 
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The resonant frequency is obtained by using the condition ( )a wi res = ¥ . In our case it reduces 
to the following algebraic equation with respect to the frequency: 
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A solution to (12) neglecting damping ( )g g= =s 0  is 
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Particularly, for a metallic sphere on the dielectric substrate from (13), using the inequality 
1ps pw w << , we obtain the following approximate expressions 
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for the four (i=//,^) resonant frequencies. Note that  
3

pv   is  well-known surface plasmon 

frequency of a sphere and  
2

psv   is one of a substrate. 

As we see, substrate changes the dipole moment of a sphere in such a way, that the 
four resonant frequencies arise in the absorption spectrum of a sphere. What causes arising of 
such a number of the resonant frequencies? First, one pair of the frequencies is observed 
when the field direction is parallel to the substrate, while another one – when perpendicular, 
and these two pairs don’t coincide in addition. In general case field has both the components 
and absorption spectrum has the four resonant frequencies respectively. 

Second, under certain field direction (// or ^ to the substrate) the pair of frequencies 
arises due to an interaction between surface plasmons of the sphere and of the substrate. 
Under increasing the distance between sphere and substrate this interaction vanishes and we 
obtain well-known result: a single sphere and a single half-infinite substrate absorb radiation 
at the frequencies  

3
pv  and  

2
psv  respectively. 
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Electrodynamical properties of percolating layers based on metal-dielectric 
composites 

In  this  part  we  consider  electrophysical  and  optical  properties  of  percolating  system 
like a layer consisting of conducting and non-conducting inclusions of typical size a, at that 
its volume fractions are p and 1-p respectively. The layer size is supposed to be infinite in the 
longitudinal directions, and of thickness H in the transversal direction. The layer is bound by 
the planes z=0 and z=H and has cubic packing consisted of randomly arranged conducting 
(black) and non-conducting (white) cubes. Such a system structure leads to no loss of 
generality of further obtained results, because inclusion shape is insufficient near 
metal-dielectric percolation phase transition. The system has anisotropical electrodynamics 
properties from the very beginning, because it always has finite conducting cluster that 
connects z=0 and z=H planes, when H<<¥  and p is close to a critical value [7]. It is clear, 
that percolation threshold for longitudinal direction //

cp  is dependent from H and ( )3//
cc pp ®  

when ¥®H , where ( )3
cp  is percolation threshold for 3-D packing. In the case H=a  we have 

)2(//
cc pp = , where )2(

cp  is  percolation  threshold  for  2-D  packing.  In  our  case,  as  it  follows  
from [7], ( ) 3117.03 »cp  (percolation threshold of site problem for cubic lattice) and 

59275.0)2( »cp  (percolation threshold of site problem for square lattice). 
At finite layer thickness a<<H<¥  the system properties are defined by the relation 

between H and the correlation length of 3-D percolating system 
3

3
nx --» cppa ,  (15) 

where 9.03 »n  is the critical index of the correlation length [7]. If 3x <<H, then 3-D system 
is isotropic and its electrodynamics parameters are independent from H. In this case 
evaluation of the parameters should be performed by using the mean field approximation [9] 
at a»3x  and the scaling relations at a>>3x . Particularly, the layer conductivity s  at 

)3(
cpp >  is given by 

3)( )3(
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t
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where 26.13 ¸»t  [7], and s1 is the specific conductivity of respective (black) cubes. At 
H>x  the layer behaves itself like a 2-D system consisting of effective HHH ´´  blocks. 

Characteristics of the blocks can be calculated by the method of percolation 
renormalization group transformation (PRGT) [13, 14]. This transformation fulfils 
transit ion from percolating system consisting of elements of size a to the system, 
which is equivalent to that on macroscopical properties but consists of effective 
elements (blocks) of magnified n times sizes. The effective element involves nd 
elements of original system (d is the space dimension; in our case d=3). 

Applying of PRGT is able under condition 3x<<an .  In  the  transformed  system  the  

fraction of effective conductors р' and its specific conductivity *
1s  are equal to [13] 
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.33 /
11
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Note, that relations (17, 18) reflect supposition that percolation threshold )3(

cp  is the fixed 
point of PRGT and that correlation length x  as well effective conductivity s  (16) are 
conserving under PRGT. 
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 Let’s now apply PRGT to the system and put aHn /= . Then we transit from 
percolating layer of thickness H=na to 2-D mosaic formed by effective blocks of size 

HHH ´´  (Fig. 2, b). The mosaic properties are defined by the relations (17, 18). 
 

 

Fig. 2.  (a) - Percolating layer; (b) - 2-D percolating system obtained as result of PRGT. 
 
 
Because the percolation threshold )2(

cp  for 2-D mosaic is larger, than that for respective 3-D 
packing, percolation breakdown in the longitudinal direction occurs when the effective 
conductor fraction р* becomes equal to )2(

cp . Therefore the percolation threshold of 
percolating layer is defined by the condition 
 )()/( 3,||,

3/1
3,2, cccc ppaHpp -+= n   (19) 

and is equal to 
3/1

3,2,3,||, )/)(( n--+= aHpppp cccc   (20) 
Dependence (20) of percolation threshold of layer on its thickness for cubic packing is 

shown on Fig. 2. It consents qualitatively with experimental results [14] obtained by studying 
conductivity of a layer of conducting and nonconducting spheres and with results [13] 
obtained in studying of metal-ceramic films Au-Al2O3. 

Fig. 3. Percolation threshold for longitudinal direction as a function of film thickness. 
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Near the percolation threshold at H>3x  transversal conductivity of the layer is 

defined by the effective conductivity *s  of the conducting blocks accounting for its 
fraction p*: 

( ) 33 /
1

)3(
1 )/( nsss t

c aHppH -**
^ »=   (21) 

This formula corresponds to fractal law of conductivity of isotropic percolating system of 
finite size. 

Longitudinal characteristics of the layer at H>3x  are defined by the critical indices of 
2-D systems. In particular, the correlation length is 
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where the critical index 3/42 =n  [14] and longitudinal conductivity at //
cpp >  is 
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where critical index 3,12 »t  [7]. 
Above used PRGT method allows us, in our opinion, to consider more complicated problems 
too. 

Evaluation of effective permittivity of the layer is performed in the low frequency 
limit. In this case, starting with expression for permittivity of conducting conclusions [1] 
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that at wn >  takes the form 
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where ( )
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w
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4
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pº   is conductivity of conclusions near the percolation transition, 

we obtain for effective values of ( )we1  the same relations as (25), but only with ¥1
~e  instead 

of ¥1e , and ( ) ( )wsws º1
~  instead of ( )ws1 . The form of dependency ( )ws  is evaluated 

earlier, and that of ¥1
~e  can be easily evaluated from the well-known relations [1]. 

 
Conclusions 

We obtained the general expression for the resonant frequency of the model system, 
which is a dielectric sphere in vacuum on a dielectric substrate. The latter results in splitting 
and shifting of the resonant frequency depending on a direction of the external field according 
to  (13).  This  allows  one  to  suggest  that  layers  of  small  particles  on  a  substrate  possess  
anisotropic electrodynamical properties. Using PRGT method, we have developed the theory 
on calculation of conductivity and permittivity of metal-dielectric films of any thickness near 
the percolation transition. The percolation threshold was found as well as its dependency on 
film thickness and scaling dependencies (at H>3x ) of both the longitudinal and transversal 
conductivities on the thickness. Obtained theoretical results consent qualitatively with 
experimental data [12, 13]. 
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