Узагальнена модель форми піку в десорбційній мас-спектрометрії

  • O. N. Peregudov Інститут прикладної фізики Національної академії наук України
  • V. Yu. Illiashenko Інститут прикладної фізики Національної академії наук України
  • O. M. Buhay Інститут прикладної фізики Національної академії наук України
  • V. D. Chivanov Інститут прикладної фізики Національної академії наук України
  • O. V. Severinovskaya Інститут хімії поверхні ім. О.О. Чуйка Національної академії наук України

Анотація

На прикладі експериментів по визначенню точної маси, а також експериментів із вивчення впливу параметрів джерела іонів на форму піку показані застосування узагальненої моделі форми піку для одержання кількісної інформації із мас-спектрів, отриманих методами МАЛДІ та ББА. В роботі також показано зв'язок деяких параметрів моделі з фізичними явищами, що відбуваються у джерелах іонів мас-спектрометрів.

Посилання

Muddiman D.C., Gusev A.I., Hercules D.M. Application of secondary ion and matrix-assisted laser desorption-ionization time-of-flight mass spectrometry for the quantitative analysis of biological molecules // Mass Spectrom. Rev. – 1995. – V. 14. – P. 383–429.

Кузема П.А. Анализ малых молекул методом масс спектрометрии с активируемой поверхностью лазерной десорбцией/ионизацией // Масс-спектрометрия. – 2010. № 7. – С. 243–260.

Knochenmuss R., Zenobi R. Molecular dynamics simulations of MALDI: laser fluence and pulse width dependence of plume characteristics and consequences for matrix and analyte ionization // Chem. Rev. – 2003. – V. 103. – P. 441–452.

Stromberg A.G., Selivanona E.V., Romanenko S.V. Simulation of asymmetric peak-shaped analytical signals by the frame representation of their shape using stripping voltametry as an eample // J. Anal. Chem. – 2004. V. 59. – P. 742–748.

Peregudov O.N., Buhay O.M., Sidora O.A. Calculation of the areas of peaks in measurements of isotopic ratios using mi1201sg mass spectrometer // Instrum. Exp. Tech. – 2010. – V. 53. – P. 247–253.

Peregudov O.N., Buhay O.M. The peak shape model for magnetic sector and time-of-flight mass spectrometers // Int. J. Mass Spectrom. – 2010. – V. 295. – P. 1–6.

Cotter R.J. Time-of-flight mass spectrometry for the structural analysis of biological molecules // Anal. Chem. – 1992. – V. 64. – P. 1027A–1039A.

Chernushevich I.V., Loboda A.V., Thomson B.A. An introduction to quadrupole-time-of-flight mass spectrometry // J. Mass Spectrom. – 2001. – V. 36.  P. 849–865.

Laeter J.R. D., Bohlke J.K., Bievre P.D., Hidaka H., Peiser H.S., Rosman K.J.R., Taylor P.D.P. Atomic weights of the elements: review 2000 (IUPAC technical report) // Pure Appl. Chem. – 2003. V. 75. – P. 683–800.

Kempka M., Sjodahl J., Bjork A., Roeraade J. Improved method for peak picking in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry // Rapid Commun. Mass Spectrom. – 2004. – V. 18. – P. 1208–1212.

Feng R., Konishi Y., Bell A.W. High accuracy molecular weight determination and variation characterization of proteins up to 80 ku by ionspray mass spectrometry // J. Am. Soc. Mass Spectrom. – 1991. – V. 2. P. 387–401.

Griffiths N.W., Wyatt M.F., Kean S.D., Graham A.E., Stein B.K., Brenton A.G. Accurate mass measurement by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. I. Measurement of positive radical ions using porphyrin standard reference materials // Rapid Commun. Mass Spectrom. – 2010. – V. 24. – P. 1629–1635.

Raznikov V.V., Dodonov A.F., Lanin E.V. Data acquisition and processing in high-resolution mass spectrometry using ion counting // Int. J. Mass Spectrom. Ion Phys. – 1977. – V. 25. – P. 295–313.

Strittmatter E.F., Rodriguez N., Smith R.D. High mass measurement accuracy determination for proteomics using multivariate regression fitting: application to electrospray ionization time-of-flight mass spectrometry // Anal. Chem. – 2003. – V. 75. – P. 460–468.

Hillenkamp F., Karas M., Beavis R.C., Chait B.T. Matrix-assisted laser desorption/ionization mass spectrometry of biopolymers // Anal. Chem. – 1991. – V. 63. – P. 1193A–1203A.

Zhigilei L.V., Garrison B.J. Microscopic mechanisms of laser ablation of organic solids in the thermal and stress confinement irradiation regimes // J. Appl. Phys. – 2000. – V. 88. – P. 1281–1298.

Knochenmuss R., Zhigilei L.V. Molecular Dynamics Model of Ultraviolet Matrix-Assisted Laser Desorption/Ionization Including Ionization Processes // J. Phys Chem. B. – 2005. – V. 109. – P. 22947–22957.

R. Knochenmuss, L. V. Zhigilei, Molecular dynamics simulations of MALDI: laser fluence and pulse width dependence of plume characteristics and consequences for matrix and analyte ionization // J. Mass Spectrom. – 2010. – V. 45. – P. 333–346.

Cotter R.J., Tabet J.C. Laser desorption mass spectrometry: machanisms and applications // Int. J. Mass Spectrom. Ion Phys. – 1983. – V. 53. – P. 151–166.

Juhasz P., Roskey M.T., Smirnov I.P., Haff L.A., Vestal M.L., Martin S.A. Applications of delayed extraction matrix-assisted laser desorption ionization time-of-flight mass spectrometry to oligonucleotide analysis // Anal. Chem. – 1996. – V. 68. – P. 941–946.

Fournier I., Brunot A., Tabet J.C., Bolbach G. Delayed extraction experiments using a repulsive potential before ion extraction: evidence of clusters as ion precursors in UV-MALDI.Part I: Dynamical effects with the matrix 2,5-dihydroxybenzoic acid // Int. J. Mass Spectrom. – 2002. –V. 213. – P. 203–215.

Fournier I., Brunot A., Tabet J.C., Bolbach G. Delayed extraction experiments using a repulsing potential before ion extraction: evidence of non-covalent clusters as ion precursors in UV matrix-assisted laser desorption/ionization. Part II - Dynamic effects with a-cyano-4-hydroxycinnamic acid matrix // J. Mass Spectrom. – 2005. –V. 40. – P. 50–59.

Wiley W.C., McLaren I.H. Time-of-flight mass spectrometer with improved resolution // the review of scientific instruments. – 1955. – V. 26. – P. 1150–1157.

Huth-Fehre T., Becker C.H. Energetics of gramicidin s after uv laser desorption from a ferulic acid matrix // Rapid Commun. Mass Spectrom. – 1991. – V. 5. – P. 378–382.

Selby D.S., Mlynski V., Guilhaus M. Demonstrating the effect of the ‘polarised grid geometry’ for orthogonal acceleration time-of-flight mass spectrometers // Rapid Commun. Mass Spectrom. – 2000. – V. 14. – P. 616–617.

Lewin M., Guilhaus M., Wildgoose J., Hoyes J., Bateman B. Ion dispersion near parallel wire grids in orthogonal acceleration time-of-flight mass spectrometry: predicting the effect of the approach angle on resolution // Rapid Commun. Mass Spectrom. – 2002. – V. 16. – P. 609–615.

Опубліковано
2011-08-29
Як цитувати
Peregudov, O. N., Illiashenko, V. Y., Buhay, O. M., Chivanov, V. D., & Severinovskaya, O. V. (2011). Узагальнена модель форми піку в десорбційній мас-спектрометрії. Поверхня, (3(18), 142-150. вилучено із https://surfacezbir.com.ua/index.php/surface/article/view/440
Розділ
Фізико-хімія поверхневих явищ