Методи розрахунку оптичних властивостей матеріалів на основі багатошаровіх вуглецевих нанотрубок

  • V. I. Kanyevskyy Інститут хімії поверхні ім. О.О. Чуйка Національної академії наук України
  • V. M. Rozenbaum Інститут хімії поверхні ім. О.О. Чуйка Національної академії наук України

Анотація

Обговорено методику розрахунку оптичних властивостей матеріалів на основі багатошарових вуглецевих нанотрубок. Наведено огляд методів розрахунку тензора діелектричної проникності вказаних нанотрубок: модель Друде–Лоренца, методи гомогенізації, а також  ab initio розрахунки. Розглянуто кінцево-елементний підхід для розрахунку розсіювання плоскої хвилі на багатошарових вуглецевих нанотрубках.

Посилання

Iijima S. Helical microtubules of graphitic carbon // Nature. – 1991. – V. 354. – P.56- 58.

Treacy M., Ebbesen T.W., Gibson J.M. Experimentally high Young’s modulus observed for individual carbon nanotubes // Nature. – 1996. – V. 381. – P. 678-680.

Zhang J., Yang G., Cheng Y. Stationary scanning X-ray source based on carbon nanotube  field emitters // Appl. Phys. Lett. – 2005. – V. 86. – P. 376-379.

LeMieux M. C.,  Roberts M., Barman S., Jin Y.W., Kim J.M., Bao Z. Self-Sorted, Aligned  Nanotube Networks for Thin-Film Transistors // Science. – 2008. – V. 321. –P. 101-104.

Nikolic B.K., Saha K.K., Markussen T., First-principles quantum transport modeling of  thermoelectricity in single-molecule nanojunctions with graphene nanoribbon electrodes // J. Comput. Electron. – 2012. – V. 11. – P. 78-92.

Ying L., Baoqing Z., Properties of carbon nanotube optical antennae // International  Journal of Infrared and millimeter Waves. – 2008. – V. 29. – P. 990-996.

Murmu T.,.McCarth M.A., Adhikari S., Vibration response of double-walled carbon nanotubes subjected to an externally applied longitudinal magnetic field: A nonlocal  elasticity approach // J. Sound and Vibration. – 2012. – V. 331. – P. 5069-5086.

Merkulov V.I., Lowndes D.H., Wei Y.Y., Eres G. Patterned Growth of Individual and Multiple Vertically Aligned Carbon Nanofibers // Appl. Phys. Lett.  2000. – V. 76. P. 3555-3557.

Melechko A.V., Merkulov V.I., McKnight T.E., Guillorn M.A. Vertically Aligned Carbon Nanofibers and Related Structures: Controlled Synthesis and Directed Assembly // J. Appl. Phys.  2005.  V. 97.  P. 041301-041310.

But H., Dai Q., Wilkinson T.D., Photonic crystals and metamaterial filters based on 2D arrays of silicon nanopillars // Progr. Electromagn.       Res.  2011.  V. 113. P. 179-194.

Falvo M.R., Clary G.J., Taylor R.,M., Chi V. Bending and buckling of carbon nanotubes under large strain // Nature. 1997.  V. 389.  P. 582-584.

Bandaru P.R. Electrical properties and applications of carbon nanotube structures // Nanosci. Nanotechnol. 2007.  V. 7.  P. 1-29.

Li H.J., Lu W.G., Li J.J., Bai X.D, Gu C.Z. Multichannel ballistic transport in multiwall carbon nanotubes // Phys. Rev. Lett.  2005.  V. 95.  P. 086601-086605.

Xu H.Q. Nanotubes: the logical choice for electronics // Nat. Mater.  2005.  V.4  P. 649-650.

Berber S., Kwon Y.K., Tomanek D. Unusually high thermal conductivity of carbon  nanotubes // Phys. Rev. Lett.  2000.  V. 84. P.  4613-4617.

Zutic, I. Spintronics: Fundamentals and applications  // Rev. Mod. Phys. – 2004.  V. 76.  P. 323-410.

Sun Z., Rozhin A.G., Wang F., Ferrari A.C.  LBand Ultrafast Fiber Laser Mode Locked by Carbon Nanotubes // Appl. Phys. Lett.  2008. – V. 93.  P. 061114-061115.

Itkis M.E., Borondics F., Yu A., Haddon R.C. Bolometric Infrared Photo-response  of  Suspended Single-Wall Carbon Nanotube Films // Science. – 2006. – V. 312. – P. 413–  416.

Lopez C. Materials Aspects of Photonic Crystals // Adv.  Mater. – 2003. – V. 15. – P. 1679–1704.

John S. Strong Localization of Photons in Certain Disordered Dielectric Superlattices // Phys. Rev. Lett. – 1987. – V. 58. – P.  2486–2489.

Johnsosn G.S., Mekis A., Fan S.H., Joannopoulos J.D. Modeling the Flow of Light // Comput. Sci. Eng. – 2001. – V. 3. – P. 38–47.

Luo C., Johnson S.G., Joannopoulos J.D., Pendry J.B. All-angle Negative Refraction without Negative Effective Index // Phys. Rev. B. – 2002. – V. 65. – P. 201104–201114.

Soukoulis C.M., Linden S., Wegener M. Negative Refractive Index at Optical Wavelengths // Science. – 2007. – V. 315. – P. 47–49.

Ishau A., Yan L., Husnain G., Lu Bo, Khalid A. Tuning the optical properties of multiwall carbon nanotube thin films by ion beams irradiation // ACS Nano. – 2011. – V. 6. – P. 357–365.

Soldano K., Rossella F., Bellani V., Gludicatti S., Kar S. Cobalt nanocluster filled carbon nanotube arrays : engineering photonic bandgap and optical reflectivity // ACS Nano. –  2010. – V. 4. – P.  6573–6578.

Ishaq A., Yan L., Husnain G., Lu Bo, Arshad M., Tunning the optical properties of   multiwall carbon nanotube thin films by  ion beams irradiation // Nano. – 2011. – V. 6.  – P. 357.

Hao J, Hanson G.W. Infrared and optical properties of carbon nanotube dipole antennas // IEEE Tans. On Nanotechnology. – 2006. – V. 5. – P. 766–771.

Pederson T.G. Variational approach to excitons in carbon nanotubes // Phys. Rev. B. – 2003. – V. 67. – P. 073401–073405.

Vang Zu-Po, Ci L., Bur J.,A.,Lin Shawn-Yu , Ajaean P.,M. Experimental Observation of  an Extremely Dark Material Made By a Low-Density Nanotube Array // Nano Lett. – 2008. – V. 8. – P. 446–451.

Guo G., Chu K., Wang D.S., Duan S.G.  Linear and Nonlinear Optical Properties of Carbon Nanotubes from First-Principals Calculations Phys. Rev. B. – 2004. – V. 69. – P. 205416–205429.

Partoens B., Peeters F.M.  From Graphene to Graphite: Electronic Structure around the K Point // Phys. Rev. B. –2004. – V. 74. – P. 205416–205429.

Wooten F. Optical properties of solids. – Academic Press: New York, 1972. – 260 p.

Markovic M.I., Rackis D. Determination of the reflections of laser light of wavelengths from the surface of aluminum using the Drude-Lorentz model // Appl. Opt. – 1990. – V.29. – P. 3479–3483.

Markovic M.I., Rackis D. Determination of optical properties of aluminum including electron reradiation in the Lorentz-Drude Model // Opt. Laser Technol. – 1990. – V.22. – P. 394–398.

Kim C.C., Garland J.W, Abad H., Raccah P.M. Modeling the optical dielectric function of semiconductors: Extension of the critical-point parabolic-band approximation // Phys Rev. B. – 1992. – V.45. – P.11749–11767.

Lidorakis E., Ferrari A.C. Photonics with multiwall carbon nanotube arrays // ACS Nano. – 2009. – V. 3. – 1238–1248.

Djurisic A.B., Li E.H. Optical properties of graphite // J. Appl. Phys. – 1999. – V.85. – P.7 404–7410.

Djurisic A.B., Rakic A.D., Elazar J.M. Modeling the optical constants of solids using acceptance-probability-controlled simulated annealing with an adaptive move generation procedure // Phys. Rev. E. – 1997. – V.55. – P. 4797–4803.

Garcia-Vidal F.J., Pitarke J.M., Pendry J.B. Effective medium theory of the optical properties of aligned carbon nanotubes // Phys. Rev. Lett. – 1997. – V. 78. – P. 4289–4292.

Lu W., Dong J., Li Zhen-Ya Optical properties of aligned carbon nanotube systems studied by effective-medium approximation method // Phys. Rev. B. – 2000. – V. 63. – P.033401–033404.

Johnson L.G., Dresselhaus G. Optical properties of Graphite // Phys. Rev. B. – 1973. – V. 7. – P. 2275–2285.

Ahuja R., Auluck S., Wills J.M., Alouani M., Johansson B., Eriksson O. Optical properties of graphite from first-principles  calculations // Phys. Rev. B. – 1997 .– V. 55. – P. 4999–5005

Painter G.S., Ellis D.E.  Electronic band Structure and optical properties of graphite from a variational approach //  Phys. Rev. B. – 1970. – V. 1. – P. 4747–4752.

Greenaway D.L, Harbeke G. Anisotropy of optical constants and the band structure graphite // Phys. Rev. – 1969. – V. 178. – P. 1340–1348.

Willis R.F., Fitton B. Secondary-electron emission spectroscopy and observation of high-energy excited states in graphite: theory and experiment // Phys. Rev. B. – 1999. – V.9. – P. 1926–1937.

Ellis D.E. Painter G.S., Discrete variational method for the energy-band problem with general crystal potentials // Phys. Rev. B. – 1970. – V. 2. – P. 2887–2898.

Stephan O., Taverna D., Kociak M., Suenaga K., Henrard L., Colliex C. Discretic response of isolated carbon nanotubes investigated by spatially resolved electron energy-loss spectroscopy: From multi-walled to single-walled nanotubes // Phys. Rev. B. – 2002. – V. 66. – P. 155422-155433.

Tanaka K., Yamabe T., Fukui K.  The Science and Technology of Carbon Nanotubes. – New York:  Elsevier, 1999. – 199 p.

Ni C., Bandaru F. Enhanced optical absorption cross-section characteristics of multi-wall carbon nanotubes // Carbon. – 2009. – V. 47. – P. 2898–2903.

Baylis A., Gunzburger M., Turkel M. Boundary Conditions for the Numerical Solutions of Elliptic Equations in Exterior regions // SIAM J. Appl. Math. – 1980. – V.1. – P. 371–385.

Volakis J.L., Cbatterjee A., Kempel L.C.  Finite Element Method for Electromagnetics. – IEEE Press, 1998. – 344 p.

Berenger J.P. A perfectly matched layer for the absorption of electromagnetic waves // J. Comput.Phys. – 1994. – V. 114. – P. 185–200.

Jin J. The Finite Element Method in Electromagnetics. Second Edition. – New York:  Wiley, 2002. – 753 p.

Sadiku M. Numerical Techniques in Electromagnetics – CRC Press, 2001. – 750 p.

Kawano K., Kitoh T. Introduction to optical waveguide analysis: solving Maxwell’s equations and the Schrödinger equation  – John Wiley & Sons, Inc., 2001.

Segerlind L.J, Applied Finite Element Analysis. Second Edition. – New York:  Wiley, 1984. – 428 p.

Ise K., Inoue K., Koshiba M. Three-dimensional finite-element solution of dielectric scattering obstacles in rectangular waveguide // IEEE Trans. Microwave Theory Tech. – 1990.– V. 38. – P. 1352–1359.

G. Pelosi, R. Coccioli, S. Selleri, Quick Finite Elements for Electromagnetic Waves, – Artech House, 2009. – 289 p.

Chew W.C., Weedon W.C. A 3D perfectly matched medium from modified Maxwell’s equations with stretched coordinates // Microwave Opt. Tech. Lett. – 1994. – V.7. – P. 599–604.

Sacks Z.S., Kingsland D.M., Lee R., Lee J.F. A perfectly matched anisotropic absorber for use as an absorbing boundary condition // IEEE Trans. Antennas Propagat. – 1995. – V. 43. – P. 1460–1463.

Матвеев А.Н.  Оптика. – Москва: Высш. шк., 1985. – 342 с.

Опубліковано
2012-09-04
Як цитувати
Kanyevskyy, V. I., & Rozenbaum, V. M. (2012). Методи розрахунку оптичних властивостей матеріалів на основі багатошаровіх вуглецевих нанотрубок. Поверхня, (4(19), 61-81. вилучено із https://surfacezbir.com.ua/index.php/surface/article/view/472
Розділ
Теорія хімічної будови і реакційної здатності поверхні.