Властивості, методи одержання та застосування нанооксиду стануму

  • А. Р. Железняк Національний університет «Києво-Могилянська академія»
  • О. М. Бакалінська Інститут хімії поверхні ім. О.О.Чуйка Національної академії наук України
  • А. В. Бричка Інститут хімії поверхні ім. О.О.Чуйка Національної академії наук України
  • Г. О. Каленюк Інститут хімії поверхні ім. О.О.Чуйка Національної академії наук України
  • М. Т. Картель Інститут хімії поверхні ім. О.О.Чуйка Національної академії наук України
Ключові слова: нанорозмірний оксид Стануму, поверхневі дефекти, методи одержання, галузі застосування

Анотація

Розповсюдженість сполук Стануму, економічна доступність та нетоксичність визначають широке коло їх застосування. У огляді проаналізовано сучасну наукову літературу щодо властивостей, методів одержання, та застосування нанооксиду Стануму. Описано основні його характеристики і особливості будови. Здатність катіонів Стануму перебувати у двох ступенях окиснення, легкість відновлення Sn+4 до Sn+2 та зворотного окиснення, визначають окисно-відновні властивості поверхні SnO2. Окрім стабільних оксидів Sn4+ і Sn2+ припускають існування гомологічного ряду Snn+1O2n метастабільних сполук. Доведено, що чотири-координовані катіони Sn+2 на поверхні SnO2 можуть співіснувати тільки з кисневими вакансіями у найближчому оточенні. Подібні катіонні ділянки виявляють властивості сильних кислот Льюїса, та мають високу реакційну здатність. Комп’ютерне моделювання поверхні кристалу SnO2 дозволяє запропонувати ряд каталітичної активності граней SnO2: (110) < (001) < (100) < (101).

Методи одержання та параметри синтезу (природа та тип прекурсора, стабілізуючого агента і розчинника, тривалість та температура реакції, рН реакційної суміші та інш.) визначають фізико-хімічні властивості наночастинок (форму, розмір, морфологію та ступінь кристалічності). У роботі проаналізовано основні (золь-гель, осадження та співосадження, CVD, розпилювальний піроліз, гідротермальний, «зелений») та менш поширені (детонаційний, електричного розряду) методи одержання нано-SnO2. Різномаїття методів синтезу та умов їх перебігу дозволяє одержувати наночастинки SnO2 із наперед заданими властивостями, які визначають активність оксиду Стануму в окисно-відновних реакціях, а саме: нанорозмір та морфологія частинок із превалюванням найбільш реакційно здатних граней - (100) і (101). Серед методів, які не потребують складного апаратурного оформлення можно зупинитися на методах золь-гель, «зеленому» та співосадження.

Оксид Стануму традиційно використовується як абразивний матеріал для полірування металевих, скляних та керамічних виробів. Зменшення частинок до нанорозмірів зумовлює здатність цього матеріалу оборотно поглинати та вивільняти кисень, що визначило застосування при конструюванні газочутливих- та біосенсорів, створенні сонячних батарей, паливних елементів, літій-іонних акумуляторів, каталізаторів окиснення, прозорих та фотопровідників. Багатовалентність та наявність кисневих вакансій на поверхні наночастинок оксиду Стануму, легкість та швидкість проникнення у клітинну мембрану надають нано-SnО2 властивостей лікарськихих препаратів, що дозоляє використовувати його у біомедичних технологіях лікування захворювань, пов’язаних із ураженнями внаслідок окиснювального стресу. Розмір, концентрація наночастинок і модифікування їх поверхні, є ключовими факторами впливу, які зазвичай інтенсифікують антимікробну, антибактеріальну, протипухлинну і антиоксидантну активність матеріалу.

Посилання

1. Govaerts К., Partoens B., Lamoen D. Extended homologous series of Sn-O layered systems: A first-principles study. Solid State Communications. 2016. 243:36. https://doi.org/10.1016/j.ssc.2016.06.006

2. Davydov A.A. Molecular Spectroscopy of Oxide Catalyst Surfaces (Chichester: John Wiley & Sons Ltd, 2003. - 684 p.). https://doi.org/10.1002/0470867981

3. Das S., Jayaraman V. SnO2: A comprehensive review on structures and gas sensors. Progress in Materials Science. 2014. 66: 112. https://doi.org/10.1016/j.pmatsci.2014.06.003

4. Williams D.E., Pratt K.F. Classification of reactive sites on the surface of polycrystalline Тin dioxide. Journal of the Chemical Society, Faraday Transactions. 1998. 94: 3493. https://doi.org/10.1039/a807644h

5. Geurts J., Rau S., Richter W., Schmitte F.J. SnO films and their oxidation to SnO2: Raman scattering, IR reflectivity and X-ray diffraction studies. Thin Solid Films. 1984. 121: 217. https://doi.org/10.1016/0040-6090(84)90303-1

6. Batzill M., Diebold U. The surface and materials science of tin oxide. Progress in Surface Science. 2005. 79: 47. https://doi.org/10.1016/j.progsurf.2005.09.002

7. Korotcenkov G., Cho B.K. Spray pyrolysis deposition of undoped SnO2 and In2O3 films and their structural properties. Progress in Crystal Growth and Characterization of Materials. 2017. 63:1. https://doi.org/10.1016/j.pcrysgrow.2016.12.001

8. Kılıç С., Zunger А. Origins of coexistence of conductivity and transparency in SnO2. Physical Review Letters. 2002. 88: 95. https://doi.org/10.1103/PhysRevLett.88.095501

9. Batzill M., Katsiev K., Diebold U. Surface morphologies of SnO2 (110). Surface Science. 2003. 529: 295. https://doi.org/10.1016/S0039-6028(03)00357-1

10. Gaskov A., Rumyantseva M., Marikutsa A. Chapter 7. Tin oxide nanomaterials: Active centers and gas sensor properties. In book: Tin Oxide Materials - Synthesis, Properties, and Applications, Elsevier. 2020. 163. https://doi.org/10.1016/B978-0-12-815924-8.00007-4

11. Alinauskasa L., Brookeb E., Regoutzb A., Katelnikovasc A., Raudonisa R., Yitzchaikd S., Payneb D.J., Garskaitea E. Nanostructuring of SnO2 via solution-based and hard template assisted method. Thin Solid Films. 2017. 626: 38. https://doi.org/10.1016/j.tsf.2017.02.015

12. Wahab R., Khan F., Al-Khedhairy А. Quantization of SnO2 dots: Apoptosis and intrinsic effect of quantum dots for myoblast cancer cells with caspase 3/7 genes. Ceramics International. 2020. 46: 6383. https://doi.org/10.1016/j.ceramint.2019.11.116

13. Bano S., Ahmad N., Sultana S., Sabir S., Khan M.Z. Preparation and study of ternary polypyrrole-tin oxide-chitin nanocomposites and their potential applications in visible light photocatalysis аnd sensors. Journal of Environmental Chemical Engineering. 2019. 7: 2213. https://doi.org/10.1016/j.jece.2019.103012

14. Liu X., Tang D., Zeng C., Hai K., Xie S. Preparation of Тin oxide self-assembly nanostructures by chemical vapor deposition. Acta Physico-Chimica Sinica. 2007. 23: 361. https://doi.org/10.1016/S1872-1508(07)60027-8

15. Li R., Zhou Y., Sun М., Gonga Z., Guoa Y., Yina X., Wua F., Ding W. Gas sensing selectivity of oxygen-regulated SnO2 films with different microstructure and texture. Journal of Materials Science & Technology. 2019. 35: 2232. https://doi.org/10.1016/j.jmst.2019.06.005

16. Zhang L., Tong R., Ge W., Guo R., Shirsath S.E., Zhu J. Facile one-step hydrothermal synthesis of SnO2 microspheres with oxygen vacancies for superior ethanol sensor. Journal of Alloys and Compounds. 2020. 8:152. https://doi.org/10.1016/j.jallcom.2019.152266

17. Elango G., Kumaran S.M., Kumar S.S., Muthuraja S., Roopan S.M. Green synthesis of SnO2 nanoparticles and its photocatalytic activity of phenolsulfonphthalein dye. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2015. 145: 176. https://doi.org/10.1016/j.saa.2015.03.033

18. Honghao Y., Linsong W., Xiaojie L., Xiaohong W. Detonation synthesis of SnO2 nanoparticles in gas phase. Rare Metal Materials and Engineering. 2013. 42:1325. https://doi.org/10.1016/S1875-5372(13)60078-8

19. Wangyun L., Shanshan C., Xinping Z. Novel and facile synthesis of nano SnO2 with various morphologies by electric current stressing. Rare Metal Materials and Engineering. 2018. 47: 2647. https://doi.org/10.1016/S1875-5372(18)30203-0

20. Zheng K., Boccaccini A.R. Sol-gel processing of bioactive glass nanoparticles: a review. Adv. Colloid Interface Sci. 2017. 249: 363. https://doi.org/10.1016/j.cis.2017.03.008

21. Bagherian S., Zak A.K. X-ray peak broadening and optical properties analysis of SnO2 nanosheets prepared by sol-gel metho. Materials Science in Semiconductor Processing. 2016. 56: 52. https://doi.org/10.1016/j.mssp.2016.07.021

22. Gu F., Wang S., Zhou G., Lü M., Zhou G., Xu D., Yuan D. Photoluminescence properties of SnO2 nanoparticles synthesized by sol−gel method. The Journal of Physical Chemistry. 2004. 108: 8119. https://doi.org/10.1021/jp036741e

23. Hoa N.D., Quy N., Song H., Kang Y., Cho Y., Kim D. Tin oxide nanotube structures synthesized on a template of single-walled carbon nanotubes. Journal of Crystal Growth. 2009. 311: 657. https://doi.org/10.1016/j.jcrysgro.2008.09.076

24. Duraia E.S.M.A., Mansurov Z.A., Tokmoldin S.Z., Klimenov V.V., Nevmerzhitsky I.S., Dochshanov A.M. Synthesis and characterization of tin oxide nanoribbons and nanowires. In: International Siberian Conference on Control and Communications (SIBCON-2009); Proc. (March 27, 2009, Tomsk, Russia). Р. 211. https://doi.org/10.1109/SIBCON.2009.5044858

25. Kolmakov A., Zhang Y., Cheng G., Moskovits M. Detection of CO and O2 using tin oxide nanowire sensors. Advanced Materials.- 2003.15:997. https://doi.org/10.1002/adma.200304889

26. Lin T., Wang L., Wang Y. Hydrothermal synthesis of SnO2 nanostructures with different morphologies and their optical properties. J.Nanomaterials. 2011. 1, Article ID 529874, 10 р. https://doi.org/10.1155/2011/529874

27. Lupan O., Chow L., Chai G., Schulte A., Park S., Heinrich H. A rapid hydrothermal synthesis of rutile SnO2 nanowires. Materials Science and Engineering B. 2009. 157: 101. https://doi.org/10.1016/j.mseb.2008.12.035

28. Jain K., Srivastava A., Rashmi R. Synthesis and controlling the morphology of SnO2 nanocrystals via hydrothermal treatment. ECS Transactions. 2006.1 (21):1. https://doi.org/10.1149/1.2218985

29. Hien V.X., Vuong D.D., Chien N.D. Synthesis of tin dioxide nanoparticles and nanorods by hydrothermal method and gas sensing characteristics. e-Journal of Surface Science and Nanotechnology. 2011. 27(9):503. https://doi.org/10.1380/ejssnt.2011.503

30. Anuchai S., Phanichphant S., Tantraviwat D., Pluengphon P., Bovornratanaraks T. Low temperature preparation of oxygen-deficient Тin dioxide nanocrystals and a role of oxygen vacancy in photocatalytic activity improvement. Journal of Colloid and Interface Science. 2018. 512:105 https://doi.org/10.1016/j.jcis.2017.10.047

31. Xu J, Teng Y., Teng F. Effect of surface defect states on valence band and charge separation and transfer efficiency. Scientific Reports. 2016. 6:32. https://doi.org/10.1038/srep32457

32. Pal G., Rai P., Pandey A. Chapter 1 - Green synthesis of nanoparticles: A greener approach for a cleaner future. In. Green Synthesis, Characterization and Applications of Nanoparticles. Ed. Iravani S., Shukla A (Amsterdam: Elsevier Inc., 2019. - 548 p.) https://doi.org/10.1016/B978-0-08-102579-6.00001-0

33. Tammina S., Mandal B., Ranjan S., Dasgupta N. Cytotoxicity study of Piper nigrum seed mediated synthesized SnO2 nanoparticles towards colorectal (HCT116) and lung cancer (A549) cell lines. J. Photochem. Photobiol. B. 2017.1(166):158. https://doi.org/10.1016/j.jphotobiol.2016.11.017

34. Kumar M., Mehta A., Mishra A., Singh J., Rawat M., Basu S. Biosynthesis of Tin Oxide Nanoparticles using Psidium Guajava Leave Extract for Photocatalytic Dye Degradation under Sunlight. Materials Letters. 2018. 215(3): 121. https://doi.org/10.1016/j.matlet.2017.12.074

35. Honarmand M., Golmohammadi M., Naeimi A. Biosynthesis of tin oxide (SnO2) nanoparticles using jujube fruit for photocatalytic degradation of organic dyes. Advanced Powder Technology. -2019. 30(8):1551. https://doi.org/10.1016/j.apt.2019.04.033

36. Garrafa-Galvez H. E., Nava O., Soto-Robles C. A., Vilchis-Nestor A. R., Castro-Beltrán A., & Luque P. A. Green synthesis of SnO2 nanoparticle using Lycopersicon esculentum peel extract. J.Molecular Structure. 2019.1197:354. https://doi.org/10.1016/j.molstruc.2019.07.052

37. Sears W.M., Gee M.A. Mechanics of film formation during the spray pyrolysis of tin oxide. Thin Solid Films. 1988. 165(1). 265. https://doi.org/10.1016/0040-6090(88)90698-0

38. Leong K.H. Morphology of aerosol particles generated from the evaporation of solution drops. J. Aerosol Science. 1981. 5: 417 https://doi.org/10.1016/0021-8502(81)90037-9

39. Enesca A., Du A. The in fluence of the precursor concentration on the properties of SnO2 thin films. Thin Solid Films. 2010. 519: 568. https://doi.org/10.1016/j.tsf.2010.07.007

40. Perednis D., Gauckler L.J. Thin film deposition using spray pyrolysis. J. Electroceram. 2005.14:103. https://doi.org/10.1007/s10832-005-0870-x

41. Korotcenkov G., Cornet A., Rossinyol E., Arbiol J., Brinzari V., Blinov Y. Faceting characterization of tin dioxide nanocrystals deposited by spray pyrolysis from stannic chloride water solution. Thin Solid Films. 2005. 471:310. https://doi.org/10.1016/j.tsf.2004.06.127

42. Korotcenkov G., Golovanov V., Brinzari V., Cornet A., Morante J., Ivanov M. Distinguishing feature of metal oxide films' structural engineering for gas sensor applications. J.Physics: Conference Series. 2005. 15: 256. https://doi.org/10.1088/1742-6596/15/1/043

43. Choy K.L. Chemical vapour deposition of coatings. Prog Mater Sci. 2003.48:57. https://doi.org/10.1016/S0079-6425(01)00009-3

44. Park J.-H., Sudarshan T.S. (eds.) (2001). Surface Engineering Series Volume 2: Chemical Vapor Deposition (ASM International®, 450 р. ISBN: 0-87170-731-4).

45. Renard L., Brötz J., Fuess H.Gurlo A., Riedel R., Toupance T. Hybrid organotin and Тin oxide-based thin films processed from alkynylorganotins: synthesis, characterization and gas sensing properties. ACS Applied Materials & Interfaces. 2014. 6:17093. https://doi.org/10.1021/am504723t

46. Van Mol A.M.B., Chae Y., McDaniel A.H., Allendorf M.D. Chemical vapor deposition of tin oxide: fundamentals and applications. Thin Solid Films. 2006.502:72. https://doi.org/10.1016/j.tsf.2005.07.247

47. Wu Q., Song J. , Li J. High oxygen vacancy Тin oxide synthesized by combustion chemical vapor deposition (CCVD). Surface and Interface Analysis. 2008. 40:1488. https://doi.org/10.1002/sia.2944

48. Li Y., Wang J., Feng B., Duan K., Weng J. Synthesis and characterization of Аntimony-doped Тin oxide (ATO) nanoparticles with high conductivity using a facile ammonia-diffusion co-precipitation method. Journal of Alloys and Compounds. 2015. 634:37. https://doi.org/10.1016/j.jallcom.2015.02.060

49. Akhir M., Mohamed K., Lee H., Rezan S. Synthesis of tin oxide nanostructures using hydrothermal method and optimization of its crystal size by using statistical design of experiment. Procedia Chemistry. 2016.19: 993. https://doi.org/10.1016/j.proche.2016.03.148

50. Habte A., Hone F., Dejene F. Effect of solution pH on structural, optical and morphological properties of SnO2 nanoparticles. Physica B: Condensed Matter. 2020. 580:411. https://doi.org/10.1016/j.physb.2019.411832

51. Wang X. , Di Q., Zhao H., Zhao H., Liang B., Yang J. Mutual effects of fluorine dopant and oxygen vacancies on structural and luminescence characteristics of F-doped SnO2 nanoparticles. Materials. 2017. 10:1398. https://doi.org/10.3390/ma10121398

52. Honghao Y., Linsong W., Xiaojie L., Xiaohong W. Detonation Synthesis of SnO2 Nanoparticles in Gas Phase. Rare Metal Materials and Engineering. 2013. 42(7): 1325. https://doi.org/10.1016/S1875-5372(13)60078-8

53. Lei D., Zhang M., Hao Q., Chen L., Li Q., Zhang E., Wang T. Morphology effect on the performances of SnO2 nanorod arrays as anodes for Li-ion batteries. Materials Letters. 2011. 65: 1154. https://doi.org/10.1016/j.matlet.2011.01.012

54. Zhang Y., Kolmakov A., Chretien S., Metiu H., Moskovits M. Control of Catalytic Reactions at the Surface of a Metal Oxide Nanowire by Manipulating Electron Density Inside It. Nano Lett. 2004.4:403. https://doi.org/10.1021/nl034968f

55. Wang Z.L. Nanobelts, Nanowires, and Nanodiskettes of Semiconducting Oxides-From Materials to Nanodevices. Adv. Mater. 2003.15:432. https://doi.org/10.1002/adma.200390100

56. Chen Z., Pan D., Li Z., Jiao Z., Wu M., Shek C.-H., Wu C., Lai J. Recent advances in tin dioxide materials: some developments in thin films, nanowires, and nanorods. Chem Rev 2014.114:7442. https://doi.org/10.1021/cr4007335

57. Ferrere S., Zaban A., Gsegg B.A. Dye Sensitization of Nanocrystalline Tin Oxide by Perylene Derivatives. J. Phys. Chem., B.1997.101:4490. https://doi.org/10.1021/jp970683d

58. Wang S., Huang J., Zhao Y., Wang S., Wu S., Zhang S., Huang W. Nanostructure SnO2 and supported Au catalysts: Synthesis, characterization, and catalytic oxidation of CO. Mater. Lett. 2006.60:1706. https://doi.org/10.1016/j.matlet.2005.12.003

59. Presley R.E., Munsee C.L., Park C.-H., Hong D., Wager J.F., Keszler D.A. Tin oxide transparent thin-film transistors. J. Phys. D. 2004. 37:2810. https://doi.org/10.1088/0022-3727/37/20/006

60. Zhang H. Electrode effect on photohole generation in smectic phenylnaphthalene liquid crystalline photoconductor. J. Appl. Phys. 2000.88:270. https://doi.org/10.1063/1.373652

61. Raveendra G., Surenbar M., Sai-Prasad P. Selective conversion of fructose to 5-hydroxymethylfurfural over WO3/SnO2 catalysts. New Journal of Chemistry. 2017. 41:8520 https://doi.org/10.1039/C7NJ00725F

62. Manjunathan P., Marakatti V.S., Chandra P., Kulal A.B., Umbarkar S.B., Ravishankar R., Shanbhag G.V. Mesoporous Тin oxide: An efficient catalyst with versatile applications in acid and oxidation. Catalysis Today. 2018. 309:61. https://doi.org/10.1016/j.cattod.2017.10.009

63. Marakatti V.S., Manjunathan P., Halgeri A.B., Shanbhag G.V. Superior performance of mesoporous Тin oxide over nano and bulk forms in the activation of a carbonyl group: conversion of bio-renewable feedstock. Catalysis Science & Technology. 2016. 6: 2268. https://doi.org/10.1039/C5CY01252J

64. Corcione C., Frigione M. Characterization of nanocomposites by thermal analysis. Materials. 2012.5:2960. https://doi.org/10.3390/ma5122960

65. Ryzhikov A.S., Shatokhin A.N., Putilin F.N., Rumyantseva M.N. Hydrogen sensitivity of SnO2 thin films doped with Pt by laser ablation. Sensors and Actuators B: Chemical. 2005. 107:387. https://doi.org/10.1016/j.snb.2004.10.031

66. Luo Y., Fan S., Hao N., Luo Y. Assembly of SnO2 quantum dots on RGO to form SnO2/N doped RGO as a high-capacity anode material for lithium ion batteries. CrystEngComm. 2015. 17:1741. https://doi.org/10.1039/C4CE02315C

67. Watanabe Y, Endo H, Semba H, Takata M. Electronic structure and optical nonlinearity of tin oxide thin films. J Non Cryst Solids. 1994.178:84-90. https://doi.org/10.1016/0022-3093(94)90269-0

68. Agashe C., Takwale M., Marathe B., Bhide V.G. Structural properties of SnO2: F films deposited by spray pyrolysis. Solar Energy Materials. .1988.17: 99. https://doi.org/10.1016/0165-1633(88)90010-X

69. Vallejos S., Selina S., Annanouch F.E., Gràcia I., Llobet E., Blackman C. Micromachined gas sensors based on Au-functionalized SnO2 nanorods directly integrated without catalyst seeds via AA-CVD. Procedia Eng. 2016.168:1078. https://doi.org/10.1016/j.proeng.2016.11.344

70. Hsu Y.J., Shih-Yuan L. Vapor−solid growth of sn nanowires: growth mechanism and superconductivity. J Phys Chem B. 2005.109:4398. https://doi.org/10.1021/jp046354k

71. Mathur S., Ganesan R., Grobelsek I., Shen H., Ruegamer T., Barth S. Plasma-assisted modulation of morphology and composition in tin oxide nanostructures for sensing applications. Adv Eng Mater. 2007.9:658. https://doi.org/10.1002/adem.200700086

72. Pan J., Hühne S.M., Shen H., Xiao L. SnO2-TiO2 Core-shell nanowire structures: investigations on solid state reactivity and photocatalytic behavior. The Journal of Physical Chemistry. 2011. 115: 17265. https://doi.org/10.1021/jp201901b

73. Joseph J., Murdock A., Seo D., Han Z. Plasma enabled synthesis and processing of materials for lithium‐ion batteries. Advanced Materials Technologies. 2018. 3:1. https://doi.org/10.1002/admt.201800070

74. Zhao Y.M., Zhou Q., Liu L., Xu J., Yan M.M., Jiang Z.Y. A novel and facile route of ink-jet printing to thin film SnO2 anode for rechargeable lithium ion batteries. Electrochim. Acta. 2006. 51:2639. https://doi.org/10.1016/j.electacta.2005.07.050

75. Anderman M. The challenge to fulfill electrical power requirements of advanced vehicles. J Power Sources. 2004.127:2. https://doi.org/10.1016/j.jpowsour.2003.09.002

76. Barth S., Jimenez-Diaz R., Samà J, Prades J. Localized growth and in situ integration of nanowires for device applications. Chemical Communications. 2012. 48:4734. https://doi.org/10.1039/c2cc30920c

77. Carvajal C.G., Rout S., Mundle R., Pradhan A.K. Multilayered approach for TiO2 hollow-shell-protected SnO2 nanorod arrays for superior lithium storage. Langmuir. 2017.33:11. https://doi.org/10.1021/acs.langmuir.6b02801

78. Suvith V.S., Devu V.S., Philip D. Facile synthesis of SnO2/NiO nano-composites: Structural, magnetic and catalytic properties. Ceramics International. 2020. 1:786. https://doi.org/10.1016/j.ceramint.2019.09.033

79. Castano L.M., Flatau A.B. Smart fabric sensors and e-textile technologies: a review. Smart Mater Struct. 2014.23:27. https://doi.org/10.1088/0964-1726/23/5/053001

80. Sultana S., Zain M., Umar K., Ahmed A.S., Shahadat M. SnO2-SrO based nanocomposites and their photocatalytic activity for the treatment of organic pollutants. J. Mol. Struct. 2015.1098: 393. https://doi.org/10.1016/j.molstruc.2015.06.032

81. Suvith V.S., Devu V.S., Philip D. Facile synthesis of SnO2/NiO nano-composites: Structural, magnetic and catalytic properties. Ceramics International. 2020. 46(1):786. https://doi.org/10.1016/j.ceramint.2019.09.033

82. Pal N., Bhaumik A. Mesoporous materials: versatile supports in heterogeneous catalysis for liquid phase catalytic transformations. RSC Adv.2015.5:24363. https://doi.org/10.1039/C4RA13077D

83. Adnan R., Razana N.A., Rahman I.A., Farrukh M.A. Synthesis and Characterization of High Surface Area Tin Oxide Nanoparticles via the Sol-Gel Method as a Catalyst for the Hydrogenation of Styrene. Journal- Chinese Chemical Society Taipei. 2010. 57(2):222. https://doi.org/10.1002/jccs.201000034

84. Bano, S., Ahmad, N., Sultana, S., Sabir, S., & Khan, M. Z. Preparation and study of ternary polypyrrole-tin oxide-chitin nanocomposites and their potential applications in visible light photocatalysis and sensors. Journal of Environmental Chemical Engineering.2019. 7(2): 103012. https://doi.org/10.1016/j.jece.2019.103012

85. Pavlovic J., Popova M., Mihalyi R.M., Mazaj M., Mali G., Kovač J., Lazarova H., Rajic N. Catalytic activity of SnO2- and SO4/SnO2-containing clinoptilolite in the esterification of levulinic acid. Microporous and Mesoporous Materials. 2019.279:10. https://doi.org/10.1016/j.micromeso.2018.12.009

86. Vinodgopal K., Bedja I., Kamat P.V. Nanostructured Semiconductor Films for Photocatalysis. Photoelectrochemical Behavior of SnO2/TiO2 Composite Systems and Its Role in Photocatalytic Degradation of a Textile Azo Dye. Chemistry of Materials. 1996.8:2180. https://doi.org/10.1021/cm950425y

87. Niu M.T., Huang F., Cui L.F., Huang P., Yu Y.L., Wang Y.S. Hydrothermal Synthesis, Structural Characteristics, and Enhanced Photocatalysis of SnO2/α-Fe2O3 Semiconductor Nanoheterostructures. ACS Nano. 2010.4:681. https://doi.org/10.1021/nn901119a

88. Jiang R., Zhu H.Y., Guan Y.J., Fu Y.Q., Xiao L., Yuan Q.Q., Jiang S.T. Effective Decolorization of Azo Dye Utilizing SnO2/CuO/Polymer Films under Simulated Solar Light Irradiation. Chemical Engineering & Technology. 2011.34:179. https://doi.org/10.1002/ceat.201000340

89. Yu J., Liu H., Song S., Wang Y., Tsiakaras P. Electrochemical reduction of carbon dioxide at nanostructured SnO2/carbon aerogels: The effect of tin oxide content on the catalytic activity and formate selectivity. Applied Catalysis A: General. 2017. 545:159. https://doi.org/10.1016/j.apcata.2017.07.043

90. Firooz A.A., Mahjoub A.R., Khodadadi A.A. Hydrothermal synthesis of ZnO/SnO2 nanoparticles with high photocatalytic activity. World Acad. Sci. Eng. Technol. 2011.5:125.

91. Gu N., Meng X., Gao J., Wang K., Zhao P., Qin H. SnO2-montmorillonite composite for removal and inhibition Microcystis aeruginosa assisted by UV-light. Progress in Natural Science: Materials International. 2018.3:281. https://doi.org/10.1016/j.pnsc.2018.04.010

92. Mala N., Ravichandran K., Pandiarajan S., Srinivasan N., Ravikumar B., Nithiyadevi K. Enhanced antibacterial and photocatalytic activity of (Mg+ Co) doped tin oxide nanopowders synthesised using wet chemical route. Mater technol. 2017.32(11):686. https://doi.org/10.1080/10667857.2017.1328082

93. Zhang J., Li C., Wang B. Ag-decorated SnO2 nanorods: microwave-assisted green synthesis and enhanced ethanol gas sensing properties. Micro Nano Lett. 2017.12(4):245. https://doi.org/10.1049/mnl.2016.0564

94. Fang L.M., Zu X.T., Li Z.J., Zhu S., Liu C.M., Wang L.M., Gao F. Microstructure and luminescence properties of Co-doped SnO2 nanoparticles synthesized by hydrothermal method. J Mater Sci Mater Electron. 2008.19:868. https://doi.org/10.1007/s10854-007-9543-7

95. Qamar M.A., Shahid S., Khan S.A., Zaman S., Sarwar M.N. Synthesis characterization, optical and antibacterial studies of co-doped SnO2 nanoparticles. Digest Journal of Nanomaterials and Biostructures. 2017.12:1127.

96. Hou Y.-X., Abdullah H., Kuo D.-H., Leu S.-J., Gultom N.S., Su C.-H. A comparison study of SiO2/nano metal oxide composite sphere for antibacterial application. Compos. Part B. 2018.133:166. https://doi.org/10.1016/j.compositesb.2017.09.021

97. Slavin Y.N., Asnis J., Häfeli U.O., Bach H. Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J. Nanobiotechnol. 2017.15:65. https://doi.org/10.1186/s12951-017-0308-z

98. Wernli D., Jørgensen P.S., Harbarth S., Carroll S.P., Laxminarayan R., Levrat N., Røttingen J.-A., Pittet D. Antimicrobial resistance: the complex challenge of measurement to inform policy and the public. PLoS Med. 2017.14:1, e1002378. https://doi.org/10.1371/journal.pmed.1002378

99. Houghton F. Antimicrobial resistance (AMR) and the United Nations (UN). J. Infect. Public Health. 2017.10:139. https://doi.org/10.1016/j.jiph.2016.10.002

100. Vidhu V.K., Philip D. Phytosynthesis and applications of bioactive SnO2 nanoparticles. Materials Characterization. 2015.101: 97. https://doi.org/10.1016/j.matchar.2014.12.027

101. Askarran A.A., Ghavami M., Agharverdi H., Stroeve P., Mahmoudi M. Bacterial effects and protein corona evaluations: crucial ignored factors in the prediction of bioefficacy of various forms of silver nanoparticles. Chem. Res. Toxicol. 2012.25:1231. https://doi.org/10.1021/tx300083s

102. Subbiahdoss G., Sharifi S., Grijpma D.W., Laurent S., Van der Mei H.C., Mahmoudi M., Busscher H.J. Magnetic targeting of surface-modified superparamagnetic iron oxide nanoparticles yields antibacterial efficacy against biofilms of gentamicin-resistant staphylococci. Acta Biomater. 2012.8:2047. https://doi.org/10.1016/j.actbio.2012.03.002

103. Chávez-Calderón A., Paraguay-Delgado F., Orrantia-Borunda E., Luna-Velasco A. Size effect of SnO2 nanoparticles on bacteria toxicity and their membrane damage. Chemosphere. 2016.165:33. https://doi.org/10.1016/j.chemosphere.2016.09.003

104. Talebian N., Zavvare S.H. Enhanced bactericidal action of SnO2 nanostructures having different morphologies under visible light: Influence of surfactant. Journal of Photochemistry and Photobiology B: Biology. 2014. 30:132. https://doi.org/10.1016/j.jphotobiol.2013.10.018

105. Jasim D.A., Lozano N., Kostarelos K. Synthesis of few-layered, high-purity graphene oxide sheets from different graphite sources for biology. 2D Mater. 2016.3:014006. https://doi.org/10.1088/2053-1583/3/1/014006

106. Mohan A.N., Manoj B. Surface modified graphene/SnO2 nanocomposite from carbon black as an efficient disinfectant against Pseudomonas aeruginosa. Materials Chemistry and Physics. 2019. 232:137. https://doi.org/10.1016/j.matchemphys.2019.04.074

107. Bodey G.P., Bolivar R., Fainstein V., Jadeja L. Infections caused by Pseudomonas aeruginosa. Reviews of Infectious Diseases. 1983.5:279. https://doi.org/10.1093/clinids/5.2.279

108. Ijaz F., Shahid S., Khan S.A., Ahmad W., Zaman S. Green synthesis of copper oxide nanoparticles using Abutilon indicum leaf extract: Antimicrobial, antioxidant and photocatalytic dye degradation activitie. Trop. J. Pharm. Res. 2017.16:743. https://doi.org/10.4314/tjpr.v16i4.2

109. Vidhu V.K., Philip D. Biogenic synthesis of SnO2 nanoparticles: Evaluation of antibacterial and antioxidant activities. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2015. 134:372. https://doi.org/10.1016/j.saa.2014.06.131

110. Turkan I. ROS and RNS: key signalling molecules in plants. Journal of Experimental Botany. 2018.69:3313. https://doi.org/10.1093/jxb/ery198

111. Sun T., Zhang Y.S., Pang B., Hyun D.C., Yang M., Xia Y. Engineered nanoparticles for drug delivery in cancer therapy. Angew. Chem. 2014.53:12320. https://doi.org/10.1002/anie.201403036

112. Li K., Jiang Y., Ding D., Zhang X., Liu Y., Hua J., Feng S., Liu B. Folic acidfunctionalized two-photon absorbing nanoparticles for targeted MCF-7 cancer cell imaging. Chem. Commun. 2011.47:7323. https://doi.org/10.1039/c1cc10739a

113. Manke A., Wang L., Rojanasakul T. Mechanisms of nanoparticle-induced oxidative stress and toxicity. Biomed Res. Int. 2013.2013. https://doi.org/10.1155/2013/942916

114. Khanna P., Ong C., Bay B.H., Baeg G.H. Nanotoxicity: An interplay of oxidative stress, inflammation and cell death. Nanomaterials. 2015.5:1163. https://doi.org/10.3390/nano5031163

115. Tammina S.K., Mandal B.K., Ranjan S., Dasgupta N. Cytotoxicity study of piper nigrum seed mediated synthesized SnO2 nanoparticles towards colorectal (HCT116) and lung cancer (A549) cell lines. Journal of Photochemistry and Photobiology B: Biology. 2017.166:158. https://doi.org/10.1016/j.jphotobiol.2016.11.017

116. Avalos A., Haza A.Z., Mateo D., Morales P. Cytotoxicity and ROS production of manufactured silver nanoparticles of different sizes in hepatoma and leukemia cells. J. Appl. Toxicol. 2014.34:413. https://doi.org/10.1002/jat.2957

117. Khan S.A., Kanwal S., Rizwan K., Shahid S. Enhanced antimicrobial, antioxidant, in vivo antitumor and in vitro anticancer effects against breast cancer cell line by green synthesized un-doped SnO2 and Co-doped SnO2 nanoparticles from Clerodendrum inerme. Microbial Pathogenesis. 2018.125:366. https://doi.org/10.1016/j.micpath.2018.09.041

118. Nasir Z., Shakir M., Wahab R., Shoeb M., Alam P., Khan R.H., Mobin M., Lutfullah. Co-precipitation synthesis and characterization of Co doped SnO2 NPs, HSA interaction via various spectroscopic techniques and their antimicrobial and photocatalytic activities. International Journal of Biological Macromolecules. 2017.94: 554. https://doi.org/10.1016/j.ijbiomac.2016.10.057

119. Wang J., Sun P., Bao Y., Liu J., An L. Cytotoxicity of single-walled carbon nanotubes on PC12 cells. Toxicol in Vitro. 2011.25:242. https://doi.org/10.1016/j.tiv.2010.11.010

120. Antony J.J., Sithika M.A., Joseph T.A., Suriyakalaa U., Sankarganesh A., Siva D., Kalaiselvi S., Achiraman S. In vivo antitumor activity of biosynthesized silver nanoparticles using Ficus religiosa as a nanofactory in DAL induced mice model. Colloids Surf B Biointerfaces. 2013.108:185. https://doi.org/10.1016/j.colsurfb.2013.02.041

1. Govaerts К., Partoens B., Lamoen D. Extended homologous series of Sn-O layered systems: A first-principles study. Solid State Communications. 2016. 243:36. https://doi.org/10.1016/j.ssc.2016.06.006

2. Davydov A.A. Molecular Spectroscopy of Oxide Catalyst Surfaces (Chichester: John Wiley & Sons Ltd, 2003. - 684 p.). https://doi.org/10.1002/0470867981

3. Das S., Jayaraman V. SnO2: A comprehensive review on structures and gas sensors. Progress in Materials Science. 2014. 66: 112. https://doi.org/10.1016/j.pmatsci.2014.06.003

4. Williams D.E., Pratt K.F. Classification of reactive sites on the surface of polycrystalline Тin dioxide. Journal of the Chemical Society, Faraday Transactions. 1998. 94: 3493. https://doi.org/10.1039/a807644h

5. Geurts J., Rau S., Richter W., Schmitte F.J. SnO films and their oxidation to SnO2: Raman scattering, IR reflectivity and X-ray diffraction studies. Thin Solid Films. 1984. 121: 217. https://doi.org/10.1016/0040-6090(84)90303-1

6. Batzill M., Diebold U. The surface and materials science of tin oxide. Progress in Surface Science. 2005. 79: 47. https://doi.org/10.1016/j.progsurf.2005.09.002

7. Korotcenkov G., Cho B.K. Spray pyrolysis deposition of undoped SnO2 and In2O3 films and their structural properties. Progress in Crystal Growth and Characterization of Materials. 2017. 63:1. https://doi.org/10.1016/j.pcrysgrow.2016.12.001

8. Kılıç С., Zunger А. Origins of coexistence of conductivity and transparency in SnO2. Physical Review Letters. 2002. 88: 95. https://doi.org/10.1103/PhysRevLett.88.095501

9. Batzill M., Katsiev K., Diebold U. Surface morphologies of SnO2 (110). Surface Science. 2003. 529: 295. https://doi.org/10.1016/S0039-6028(03)00357-1

10. Gaskov A., Rumyantseva M., Marikutsa A. Chapter 7. Tin oxide nanomaterials: Active centers and gas sensor properties. In book: Tin Oxide Materials - Synthesis, Properties, and Applications, Elsevier. 2020. 163. https://doi.org/10.1016/B978-0-12-815924-8.00007-4

11. Alinauskasa L., Brookeb E., Regoutzb A., Katelnikovasc A., Raudonisa R., Yitzchaikd S., Payneb D.J., Garskaitea E. Nanostructuring of SnO2 via solution-based and hard template assisted method. Thin Solid Films. 2017. 626: 38. https://doi.org/10.1016/j.tsf.2017.02.015

12. Wahab R., Khan F., Al-Khedhairy А. Quantization of SnO2 dots: Apoptosis and intrinsic effect of quantum dots for myoblast cancer cells with caspase 3/7 genes. Ceramics International. 2020. 46: 6383. https://doi.org/10.1016/j.ceramint.2019.11.116

13. Bano S., Ahmad N., Sultana S., Sabir S., Khan M.Z. Preparation and study of ternary polypyrrole-tin oxide-chitin nanocomposites and their potential applications in visible light photocatalysis аnd sensors. Journal of Environmental Chemical Engineering. 2019. 7: 2213. https://doi.org/10.1016/j.jece.2019.103012

14. Liu X., Tang D., Zeng C., Hai K., Xie S. Preparation of Тin oxide self-assembly nanostructures by chemical vapor deposition. Acta Physico-Chimica Sinica. 2007. 23: 361. https://doi.org/10.1016/S1872-1508(07)60027-8

15. Li R., Zhou Y., Sun М., Gonga Z., Guoa Y., Yina X., Wua F., Ding W. Gas sensing selectivity of oxygen-regulated SnO2 films with different microstructure and texture. Journal of Materials Science & Technology. 2019. 35: 2232. https://doi.org/10.1016/j.jmst.2019.06.005

16. Zhang L., Tong R., Ge W., Guo R., Shirsath S.E., Zhu J. Facile one-step hydrothermal synthesis of SnO2 microspheres with oxygen vacancies for superior ethanol sensor. Journal of Alloys and Compounds. 2020. 8:152. https://doi.org/10.1016/j.jallcom.2019.152266

17. Elango G., Kumaran S.M., Kumar S.S., Muthuraja S., Roopan S.M. Green synthesis of SnO2 nanoparticles and its photocatalytic activity of phenolsulfonphthalein dye. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2015. 145: 176. https://doi.org/10.1016/j.saa.2015.03.033

18. Honghao Y., Linsong W., Xiaojie L., Xiaohong W. Detonation synthesis of SnO2 nanoparticles in gas phase. Rare Metal Materials and Engineering. 2013. 42:1325. https://doi.org/10.1016/S1875-5372(13)60078-8

19. Wangyun L., Shanshan C., Xinping Z. Novel and facile synthesis of nano SnO2 with various morphologies by electric current stressing. Rare Metal Materials and Engineering. 2018. 47: 2647. https://doi.org/10.1016/S1875-5372(18)30203-0

20. Zheng K., Boccaccini A.R. Sol-gel processing of bioactive glass nanoparticles: a review. Adv. Colloid Interface Sci. 2017. 249: 363. https://doi.org/10.1016/j.cis.2017.03.008

21. Bagherian S., Zak A.K. X-ray peak broadening and optical properties analysis of SnO2 nanosheets prepared by sol-gel metho. Materials Science in Semiconductor Processing. 2016. 56: 52. https://doi.org/10.1016/j.mssp.2016.07.021

22. Gu F., Wang S., Zhou G., Lü M., Zhou G., Xu D., Yuan D. Photoluminescence properties of SnO2 nanoparticles synthesized by sol−gel method. The Journal of Physical Chemistry. 2004. 108: 8119. https://doi.org/10.1021/jp036741e

23. Hoa N.D., Quy N., Song H., Kang Y., Cho Y., Kim D. Tin oxide nanotube structures synthesized on a template of single-walled carbon nanotubes. Journal of Crystal Growth. 2009. 311: 657. https://doi.org/10.1016/j.jcrysgro.2008.09.076

24. Duraia E.S.M.A., Mansurov Z.A., Tokmoldin S.Z., Klimenov V.V., Nevmerzhitsky I.S., Dochshanov A.M. Synthesis and characterization of tin oxide nanoribbons and nanowires. In: International Siberian Conference on Control and Communications (SIBCON-2009); Proc. (March 27, 2009, Tomsk, Russia). Р. 211. https://doi.org/10.1109/SIBCON.2009.5044858

25. Kolmakov A., Zhang Y., Cheng G., Moskovits M. Detection of CO and O2 using tin oxide nanowire sensors. Advanced Materials.- 2003.15:997. https://doi.org/10.1002/adma.200304889

26. Lin T., Wang L., Wang Y. Hydrothermal synthesis of SnO2 nanostructures with different morphologies and their optical properties. J.Nanomaterials. 2011. 1, Article ID 529874, 10 р. https://doi.org/10.1155/2011/529874

27. Lupan O., Chow L., Chai G., Schulte A., Park S., Heinrich H. A rapid hydrothermal synthesis of rutile SnO2 nanowires. Materials Science and Engineering B. 2009. 157: 101. https://doi.org/10.1016/j.mseb.2008.12.035

28. Jain K., Srivastava A., Rashmi R. Synthesis and controlling the morphology of SnO2 nanocrystals via hydrothermal treatment. ECS Transactions. 2006.1 (21):1. https://doi.org/10.1149/1.2218985

29. Hien V.X., Vuong D.D., Chien N.D. Synthesis of tin dioxide nanoparticles and nanorods by hydrothermal method and gas sensing characteristics. e-Journal of Surface Science and Nanotechnology. 2011. 27(9):503. https://doi.org/10.1380/ejssnt.2011.503

30. Anuchai S., Phanichphant S., Tantraviwat D., Pluengphon P., Bovornratanaraks T. Low temperature preparation of oxygen-deficient Тin dioxide nanocrystals and a role of oxygen vacancy in photocatalytic activity improvement. Journal of Colloid and Interface Science. 2018. 512:105 https://doi.org/10.1016/j.jcis.2017.10.047

31. Xu J, Teng Y., Teng F. Effect of surface defect states on valence band and charge separation and transfer efficiency. Scientific Reports. 2016. 6:32. https://doi.org/10.1038/srep32457

32. Pal G., Rai P., Pandey A. Chapter 1 - Green synthesis of nanoparticles: A greener approach for a cleaner future. In. Green Synthesis, Characterization and Applications of Nanoparticles. Ed. Iravani S., Shukla A (Amsterdam: Elsevier Inc., 2019. - 548 p.) https://doi.org/10.1016/B978-0-08-102579-6.00001-0

33. Tammina S., Mandal B., Ranjan S., Dasgupta N. Cytotoxicity study of Piper nigrum seed mediated synthesized SnO2 nanoparticles towards colorectal (HCT116) and lung cancer (A549) cell lines. J. Photochem. Photobiol. B. 2017.1(166):158. https://doi.org/10.1016/j.jphotobiol.2016.11.017

34. Kumar M., Mehta A., Mishra A., Singh J., Rawat M., Basu S. Biosynthesis of Tin Oxide Nanoparticles using Psidium Guajava Leave Extract for Photocatalytic Dye Degradation under Sunlight. Materials Letters. 2018. 215(3): 121. https://doi.org/10.1016/j.matlet.2017.12.074

35. Honarmand M., Golmohammadi M., Naeimi A. Biosynthesis of tin oxide (SnO2) nanoparticles using jujube fruit for photocatalytic degradation of organic dyes. Advanced Powder Technology. -2019. 30(8):1551. https://doi.org/10.1016/j.apt.2019.04.033

36. Garrafa-Galvez H. E., Nava O., Soto-Robles C. A., Vilchis-Nestor A. R., Castro-Beltrán A., & Luque P. A. Green synthesis of SnO2 nanoparticle using Lycopersicon esculentum peel extract. J.Molecular Structure. 2019.1197:354. https://doi.org/10.1016/j.molstruc.2019.07.052

37. Sears W.M., Gee M.A. Mechanics of film formation during the spray pyrolysis of tin oxide. Thin Solid Films. 1988. 165(1). 265. https://doi.org/10.1016/0040-6090(88)90698-0

38. Leong K.H. Morphology of aerosol particles generated from the evaporation of solution drops. J. Aerosol Science. 1981. 5: 417 https://doi.org/10.1016/0021-8502(81)90037-9

39. Enesca A., Du A. The in fluence of the precursor concentration on the properties of SnO2 thin films. Thin Solid Films. 2010. 519: 568. https://doi.org/10.1016/j.tsf.2010.07.007

40. Perednis D., Gauckler L.J. Thin film deposition using spray pyrolysis. J. Electroceram. 2005.14:103. https://doi.org/10.1007/s10832-005-0870-x

41. Korotcenkov G., Cornet A., Rossinyol E., Arbiol J., Brinzari V., Blinov Y. Faceting characterization of tin dioxide nanocrystals deposited by spray pyrolysis from stannic chloride water solution. Thin Solid Films. 2005. 471:310. https://doi.org/10.1016/j.tsf.2004.06.127

42. Korotcenkov G., Golovanov V., Brinzari V., Cornet A., Morante J., Ivanov M. Distinguishing feature of metal oxide films' structural engineering for gas sensor applications. J.Physics: Conference Series. 2005. 15: 256. https://doi.org/10.1088/1742-6596/15/1/043

43. Choy K.L. Chemical vapour deposition of coatings. Prog Mater Sci. 2003.48:57. https://doi.org/10.1016/S0079-6425(01)00009-3

44. Park J.-H., Sudarshan T.S. (eds.) (2001). Surface Engineering Series Volume 2: Chemical Vapor Deposition (ASM International®, 450 р. ISBN: 0-87170-731-4).

45. Renard L., Brötz J., Fuess H.Gurlo A., Riedel R., Toupance T. Hybrid organotin and Тin oxide-based thin films processed from alkynylorganotins: synthesis, characterization and gas sensing properties. ACS Applied Materials & Interfaces. 2014. 6:17093. https://doi.org/10.1021/am504723t

46. Van Mol A.M.B., Chae Y., McDaniel A.H., Allendorf M.D. Chemical vapor deposition of tin oxide: fundamentals and applications. Thin Solid Films. 2006.502:72. https://doi.org/10.1016/j.tsf.2005.07.247

47. Wu Q., Song J. , Li J. High oxygen vacancy Тin oxide synthesized by combustion chemical vapor deposition (CCVD). Surface and Interface Analysis. 2008. 40:1488. https://doi.org/10.1002/sia.2944

48. Li Y., Wang J., Feng B., Duan K., Weng J. Synthesis and characterization of Аntimony-doped Тin oxide (ATO) nanoparticles with high conductivity using a facile ammonia-diffusion co-precipitation method. Journal of Alloys and Compounds. 2015. 634:37. https://doi.org/10.1016/j.jallcom.2015.02.060

49. Akhir M., Mohamed K., Lee H., Rezan S. Synthesis of tin oxide nanostructures using hydrothermal method and optimization of its crystal size by using statistical design of experiment. Procedia Chemistry. 2016.19: 993. https://doi.org/10.1016/j.proche.2016.03.148

50. Habte A., Hone F., Dejene F. Effect of solution pH on structural, optical and morphological properties of SnO2 nanoparticles. Physica B: Condensed Matter. 2020. 580:411. https://doi.org/10.1016/j.physb.2019.411832

51. Wang X. , Di Q., Zhao H., Zhao H., Liang B., Yang J. Mutual effects of fluorine dopant and oxygen vacancies on structural and luminescence characteristics of F-doped SnO2 nanoparticles. Materials. 2017. 10:1398. https://doi.org/10.3390/ma10121398

52. Honghao Y., Linsong W., Xiaojie L., Xiaohong W. Detonation Synthesis of SnO2 Nanoparticles in Gas Phase. Rare Metal Materials and Engineering. 2013. 42(7): 1325. https://doi.org/10.1016/S1875-5372(13)60078-8

53. Lei D., Zhang M., Hao Q., Chen L., Li Q., Zhang E., Wang T. Morphology effect on the performances of SnO2 nanorod arrays as anodes for Li-ion batteries. Materials Letters. 2011. 65: 1154. https://doi.org/10.1016/j.matlet.2011.01.012

54. Zhang Y., Kolmakov A., Chretien S., Metiu H., Moskovits M. Control of Catalytic Reactions at the Surface of a Metal Oxide Nanowire by Manipulating Electron Density Inside It. Nano Lett. 2004.4:403. https://doi.org/10.1021/nl034968f

55. Wang Z.L. Nanobelts, Nanowires, and Nanodiskettes of Semiconducting Oxides-From Materials to Nanodevices. Adv. Mater. 2003.15:432. https://doi.org/10.1002/adma.200390100

56. Chen Z., Pan D., Li Z., Jiao Z., Wu M., Shek C.-H., Wu C., Lai J. Recent advances in tin dioxide materials: some developments in thin films, nanowires, and nanorods. Chem Rev 2014.114:7442. https://doi.org/10.1021/cr4007335

57. Ferrere S., Zaban A., Gsegg B.A. Dye Sensitization of Nanocrystalline Tin Oxide by Perylene Derivatives. J. Phys. Chem., B.1997.101:4490. https://doi.org/10.1021/jp970683d

58. Wang S., Huang J., Zhao Y., Wang S., Wu S., Zhang S., Huang W. Nanostructure SnO2 and supported Au catalysts: Synthesis, characterization, and catalytic oxidation of CO. Mater. Lett. 2006.60:1706. https://doi.org/10.1016/j.matlet.2005.12.003

59. Presley R.E., Munsee C.L., Park C.-H., Hong D., Wager J.F., Keszler D.A. Tin oxide transparent thin-film transistors. J. Phys. D. 2004. 37:2810. https://doi.org/10.1088/0022-3727/37/20/006

60. Zhang H. Electrode effect on photohole generation in smectic phenylnaphthalene liquid crystalline photoconductor. J. Appl. Phys. 2000.88:270. https://doi.org/10.1063/1.373652

61. Raveendra G., Surenbar M., Sai-Prasad P. Selective conversion of fructose to 5-hydroxymethylfurfural over WO3/SnO2 catalysts. New Journal of Chemistry. 2017. 41:8520 https://doi.org/10.1039/C7NJ00725F

62. Manjunathan P., Marakatti V.S., Chandra P., Kulal A.B., Umbarkar S.B., Ravishankar R., Shanbhag G.V. Mesoporous Тin oxide: An efficient catalyst with versatile applications in acid and oxidation. Catalysis Today. 2018. 309:61. https://doi.org/10.1016/j.cattod.2017.10.009

63. Marakatti V.S., Manjunathan P., Halgeri A.B., Shanbhag G.V. Superior performance of mesoporous Тin oxide over nano and bulk forms in the activation of a carbonyl group: conversion of bio-renewable feedstock. Catalysis Science & Technology. 2016. 6: 2268. https://doi.org/10.1039/C5CY01252J

64. Corcione C., Frigione M. Characterization of nanocomposites by thermal analysis. Materials. 2012.5:2960. https://doi.org/10.3390/ma5122960

65. Ryzhikov A.S., Shatokhin A.N., Putilin F.N., Rumyantseva M.N. Hydrogen sensitivity of SnO2 thin films doped with Pt by laser ablation. Sensors and Actuators B: Chemical. 2005. 107:387. https://doi.org/10.1016/j.snb.2004.10.031

66. Luo Y., Fan S., Hao N., Luo Y. Assembly of SnO2 quantum dots on RGO to form SnO2/N doped RGO as a high-capacity anode material for lithium ion batteries. CrystEngComm. 2015. 17:1741. https://doi.org/10.1039/C4CE02315C

67. Watanabe Y, Endo H, Semba H, Takata M. Electronic structure and optical nonlinearity of tin oxide thin films. J Non Cryst Solids. 1994.178:84-90. https://doi.org/10.1016/0022-3093(94)90269-0

68. Agashe C., Takwale M., Marathe B., Bhide V.G. Structural properties of SnO2: F films deposited by spray pyrolysis. Solar Energy Materials. .1988.17: 99. https://doi.org/10.1016/0165-1633(88)90010-X

69. Vallejos S., Selina S., Annanouch F.E., Gràcia I., Llobet E., Blackman C. Micromachined gas sensors based on Au-functionalized SnO2 nanorods directly integrated without catalyst seeds via AA-CVD. Procedia Eng. 2016.168:1078. https://doi.org/10.1016/j.proeng.2016.11.344

70. Hsu Y.J., Shih-Yuan L. Vapor−solid growth of sn nanowires: growth mechanism and superconductivity. J Phys Chem B. 2005.109:4398. https://doi.org/10.1021/jp046354k

71. Mathur S., Ganesan R., Grobelsek I., Shen H., Ruegamer T., Barth S. Plasma-assisted modulation of morphology and composition in tin oxide nanostructures for sensing applications. Adv Eng Mater. 2007.9:658. https://doi.org/10.1002/adem.200700086

72. Pan J., Hühne S.M., Shen H., Xiao L. SnO2-TiO2 Core-shell nanowire structures: investigations on solid state reactivity and photocatalytic behavior. The Journal of Physical Chemistry. 2011. 115: 17265. https://doi.org/10.1021/jp201901b

73. Joseph J., Murdock A., Seo D., Han Z. Plasma enabled synthesis and processing of materials for lithium‐ion batteries. Advanced Materials Technologies. 2018. 3:1. https://doi.org/10.1002/admt.201800070

74. Zhao Y.M., Zhou Q., Liu L., Xu J., Yan M.M., Jiang Z.Y. A novel and facile route of ink-jet printing to thin film SnO2 anode for rechargeable lithium ion batteries. Electrochim. Acta. 2006. 51:2639. https://doi.org/10.1016/j.electacta.2005.07.050

75. Anderman M. The challenge to fulfill electrical power requirements of advanced vehicles. J Power Sources. 2004.127:2. https://doi.org/10.1016/j.jpowsour.2003.09.002

76. Barth S., Jimenez-Diaz R., Samà J, Prades J. Localized growth and in situ integration of nanowires for device applications. Chemical Communications. 2012. 48:4734. https://doi.org/10.1039/c2cc30920c

77. Carvajal C.G., Rout S., Mundle R., Pradhan A.K. Multilayered approach for TiO2 hollow-shell-protected SnO2 nanorod arrays for superior lithium storage. Langmuir. 2017.33:11. https://doi.org/10.1021/acs.langmuir.6b02801

78. Suvith V.S., Devu V.S., Philip D. Facile synthesis of SnO2/NiO nano-composites: Structural, magnetic and catalytic properties. Ceramics International. 2020. 1:786. https://doi.org/10.1016/j.ceramint.2019.09.033

79. Castano L.M., Flatau A.B. Smart fabric sensors and e-textile technologies: a review. Smart Mater Struct. 2014.23:27. https://doi.org/10.1088/0964-1726/23/5/053001

80. Sultana S., Zain M., Umar K., Ahmed A.S., Shahadat M. SnO2-SrO based nanocomposites and their photocatalytic activity for the treatment of organic pollutants. J. Mol. Struct. 2015.1098: 393. https://doi.org/10.1016/j.molstruc.2015.06.032

81. Suvith V.S., Devu V.S., Philip D. Facile synthesis of SnO2/NiO nano-composites: Structural, magnetic and catalytic properties. Ceramics International. 2020. 46(1):786. https://doi.org/10.1016/j.ceramint.2019.09.033

82. Pal N., Bhaumik A. Mesoporous materials: versatile supports in heterogeneous catalysis for liquid phase catalytic transformations. RSC Adv.2015.5:24363. https://doi.org/10.1039/C4RA13077D

83. Adnan R., Razana N.A., Rahman I.A., Farrukh M.A. Synthesis and Characterization of High Surface Area Tin Oxide Nanoparticles via the Sol-Gel Method as a Catalyst for the Hydrogenation of Styrene. Journal- Chinese Chemical Society Taipei. 2010. 57(2):222. https://doi.org/10.1002/jccs.201000034

84. Bano, S., Ahmad, N., Sultana, S., Sabir, S., & Khan, M. Z. Preparation and study of ternary polypyrrole-tin oxide-chitin nanocomposites and their potential applications in visible light photocatalysis and sensors. Journal of Environmental Chemical Engineering.2019. 7(2): 103012. https://doi.org/10.1016/j.jece.2019.103012

85. Pavlovic J., Popova M., Mihalyi R.M., Mazaj M., Mali G., Kovač J., Lazarova H., Rajic N. Catalytic activity of SnO2- and SO4/SnO2-containing clinoptilolite in the esterification of levulinic acid. Microporous and Mesoporous Materials. 2019.279:10. https://doi.org/10.1016/j.micromeso.2018.12.009

86. Vinodgopal K., Bedja I., Kamat P.V. Nanostructured Semiconductor Films for Photocatalysis. Photoelectrochemical Behavior of SnO2/TiO2 Composite Systems and Its Role in Photocatalytic Degradation of a Textile Azo Dye. Chemistry of Materials. 1996.8:2180. https://doi.org/10.1021/cm950425y

87. Niu M.T., Huang F., Cui L.F., Huang P., Yu Y.L., Wang Y.S. Hydrothermal Synthesis, Structural Characteristics, and Enhanced Photocatalysis of SnO2/α-Fe2O3 Semiconductor Nanoheterostructures. ACS Nano. 2010.4:681. https://doi.org/10.1021/nn901119a

88. Jiang R., Zhu H.Y., Guan Y.J., Fu Y.Q., Xiao L., Yuan Q.Q., Jiang S.T. Effective Decolorization of Azo Dye Utilizing SnO2/CuO/Polymer Films under Simulated Solar Light Irradiation. Chemical Engineering & Technology. 2011.34:179. https://doi.org/10.1002/ceat.201000340

89. Yu J., Liu H., Song S., Wang Y., Tsiakaras P. Electrochemical reduction of carbon dioxide at nanostructured SnO2/carbon aerogels: The effect of tin oxide content on the catalytic activity and formate selectivity. Applied Catalysis A: General. 2017. 545:159. https://doi.org/10.1016/j.apcata.2017.07.043

90. Firooz A.A., Mahjoub A.R., Khodadadi A.A. Hydrothermal synthesis of ZnO/SnO2 nanoparticles with high photocatalytic activity. World Acad. Sci. Eng. Technol. 2011.5:125.

91. Gu N., Meng X., Gao J., Wang K., Zhao P., Qin H. SnO2-montmorillonite composite for removal and inhibition Microcystis aeruginosa assisted by UV-light. Progress in Natural Science: Materials International. 2018.3:281. https://doi.org/10.1016/j.pnsc.2018.04.010

92. Mala N., Ravichandran K., Pandiarajan S., Srinivasan N., Ravikumar B., Nithiyadevi K. Enhanced antibacterial and photocatalytic activity of (Mg+ Co) doped tin oxide nanopowders synthesised using wet chemical route. Mater technol. 2017.32(11):686. https://doi.org/10.1080/10667857.2017.1328082

93. Zhang J., Li C., Wang B. Ag-decorated SnO2 nanorods: microwave-assisted green synthesis and enhanced ethanol gas sensing properties. Micro Nano Lett. 2017.12(4):245. https://doi.org/10.1049/mnl.2016.0564

94. Fang L.M., Zu X.T., Li Z.J., Zhu S., Liu C.M., Wang L.M., Gao F. Microstructure and luminescence properties of Co-doped SnO2 nanoparticles synthesized by hydrothermal method. J Mater Sci Mater Electron. 2008.19:868. https://doi.org/10.1007/s10854-007-9543-7

95. Qamar M.A., Shahid S., Khan S.A., Zaman S., Sarwar M.N. Synthesis characterization, optical and antibacterial studies of co-doped SnO2 nanoparticles. Digest Journal of Nanomaterials and Biostructures. 2017.12:1127.

96. Hou Y.-X., Abdullah H., Kuo D.-H., Leu S.-J., Gultom N.S., Su C.-H. A comparison study of SiO2/nano metal oxide composite sphere for antibacterial application. Compos. Part B. 2018.133:166. https://doi.org/10.1016/j.compositesb.2017.09.021

97. Slavin Y.N., Asnis J., Häfeli U.O., Bach H. Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J. Nanobiotechnol. 2017.15:65. https://doi.org/10.1186/s12951-017-0308-z

98. Wernli D., Jørgensen P.S., Harbarth S., Carroll S.P., Laxminarayan R., Levrat N., Røttingen J.-A., Pittet D. Antimicrobial resistance: the complex challenge of measurement to inform policy and the public. PLoS Med. 2017.14:1, e1002378. https://doi.org/10.1371/journal.pmed.1002378

99. Houghton F. Antimicrobial resistance (AMR) and the United Nations (UN). J. Infect. Public Health. 2017.10:139. https://doi.org/10.1016/j.jiph.2016.10.002

100. Vidhu V.K., Philip D. Phytosynthesis and applications of bioactive SnO2 nanoparticles. Materials Characterization. 2015.101: 97. https://doi.org/10.1016/j.matchar.2014.12.027

101. Askarran A.A., Ghavami M., Agharverdi H., Stroeve P., Mahmoudi M. Bacterial effects and protein corona evaluations: crucial ignored factors in the prediction of bioefficacy of various forms of silver nanoparticles. Chem. Res. Toxicol. 2012.25:1231. https://doi.org/10.1021/tx300083s

102. Subbiahdoss G., Sharifi S., Grijpma D.W., Laurent S., Van der Mei H.C., Mahmoudi M., Busscher H.J. Magnetic targeting of surface-modified superparamagnetic iron oxide nanoparticles yields antibacterial efficacy against biofilms of gentamicin-resistant staphylococci. Acta Biomater. 2012.8:2047. https://doi.org/10.1016/j.actbio.2012.03.002

103. Chávez-Calderón A., Paraguay-Delgado F., Orrantia-Borunda E., Luna-Velasco A. Size effect of SnO2 nanoparticles on bacteria toxicity and their membrane damage. Chemosphere. 2016.165:33. https://doi.org/10.1016/j.chemosphere.2016.09.003

104. Talebian N., Zavvare S.H. Enhanced bactericidal action of SnO2 nanostructures having different morphologies under visible light: Influence of surfactant. Journal of Photochemistry and Photobiology B: Biology. 2014. 30:132. https://doi.org/10.1016/j.jphotobiol.2013.10.018

105. Jasim D.A., Lozano N., Kostarelos K. Synthesis of few-layered, high-purity graphene oxide sheets from different graphite sources for biology. 2D Mater. 2016.3:014006. https://doi.org/10.1088/2053-1583/3/1/014006

106. Mohan A.N., Manoj B. Surface modified graphene/SnO2 nanocomposite from carbon black as an efficient disinfectant against Pseudomonas aeruginosa. Materials Chemistry and Physics. 2019. 232:137. https://doi.org/10.1016/j.matchemphys.2019.04.074

107. Bodey G.P., Bolivar R., Fainstein V., Jadeja L. Infections caused by Pseudomonas aeruginosa. Reviews of Infectious Diseases. 1983.5:279. https://doi.org/10.1093/clinids/5.2.279

108. Ijaz F., Shahid S., Khan S.A., Ahmad W., Zaman S. Green synthesis of copper oxide nanoparticles using Abutilon indicum leaf extract: Antimicrobial, antioxidant and photocatalytic dye degradation activitie. Trop. J. Pharm. Res. 2017.16:743. https://doi.org/10.4314/tjpr.v16i4.2

109. Vidhu V.K., Philip D. Biogenic synthesis of SnO2 nanoparticles: Evaluation of antibacterial and antioxidant activities. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2015. 134:372. https://doi.org/10.1016/j.saa.2014.06.131

110. Turkan I. ROS and RNS: key signalling molecules in plants. Journal of Experimental Botany. 2018.69:3313. https://doi.org/10.1093/jxb/ery198

111. Sun T., Zhang Y.S., Pang B., Hyun D.C., Yang M., Xia Y. Engineered nanoparticles for drug delivery in cancer therapy. Angew. Chem. 2014.53:12320. https://doi.org/10.1002/anie.201403036

112. Li K., Jiang Y., Ding D., Zhang X., Liu Y., Hua J., Feng S., Liu B. Folic acidfunctionalized two-photon absorbing nanoparticles for targeted MCF-7 cancer cell imaging. Chem. Commun. 2011.47:7323. https://doi.org/10.1039/c1cc10739a

113. Manke A., Wang L., Rojanasakul T. Mechanisms of nanoparticle-induced oxidative stress and toxicity. Biomed Res. Int. 2013.2013. https://doi.org/10.1155/2013/942916

114. Khanna P., Ong C., Bay B.H., Baeg G.H. Nanotoxicity: An interplay of oxidative stress, inflammation and cell death. Nanomaterials. 2015.5:1163. https://doi.org/10.3390/nano5031163

115. Tammina S.K., Mandal B.K., Ranjan S., Dasgupta N. Cytotoxicity study of piper nigrum seed mediated synthesized SnO2 nanoparticles towards colorectal (HCT116) and lung cancer (A549) cell lines. Journal of Photochemistry and Photobiology B: Biology. 2017.166:158. https://doi.org/10.1016/j.jphotobiol.2016.11.017

116. Avalos A., Haza A.Z., Mateo D., Morales P. Cytotoxicity and ROS production of manufactured silver nanoparticles of different sizes in hepatoma and leukemia cells. J. Appl. Toxicol. 2014.34:413. https://doi.org/10.1002/jat.2957

117. Khan S.A., Kanwal S., Rizwan K., Shahid S. Enhanced antimicrobial, antioxidant, in vivo antitumor and in vitro anticancer effects against breast cancer cell line by green synthesized un-doped SnO2 and Co-doped SnO2 nanoparticles from Clerodendrum inerme. Microbial Pathogenesis. 2018.125:366. https://doi.org/10.1016/j.micpath.2018.09.041

118. Nasir Z., Shakir M., Wahab R., Shoeb M., Alam P., Khan R.H., Mobin M., Lutfullah. Co-precipitation synthesis and characterization of Co doped SnO2 NPs, HSA interaction via various spectroscopic techniques and their antimicrobial and photocatalytic activities. International Journal of Biological Macromolecules. 2017.94: 554. https://doi.org/10.1016/j.ijbiomac.2016.10.057

119. Wang J., Sun P., Bao Y., Liu J., An L. Cytotoxicity of single-walled carbon nanotubes on PC12 cells. Toxicol in Vitro. 2011.25:242. https://doi.org/10.1016/j.tiv.2010.11.010

120. Antony J.J., Sithika M.A., Joseph T.A., Suriyakalaa U., Sankarganesh A., Siva D., Kalaiselvi S., Achiraman S. In vivo antitumor activity of biosynthesized silver nanoparticles using Ficus religiosa as a nanofactory in DAL induced mice model. Colloids Surf B Biointerfaces. 2013.108:185. https://doi.org/10.1016/j.colsurfb.2013.02.041

Опубліковано
2020-12-03
Як цитувати
Железняк , А. Р., Бакалінська, О. М., Бричка , А. В., Каленюк , Г. О., & Картель, М. Т. (2020). Властивості, методи одержання та застосування нанооксиду стануму. Поверхня, (12(27), 193-230. https://doi.org/10.15407/Surface.2020.12.193
Розділ
Наноматеріали і нанотехнології