Каталітичні властивості вуглецевих нанотрубок

  • K. V. Voitko Інститут хімії поверхні ім. О.О. Чуйка Національної академії наук України

Анотація

Висвітлено сучасний стан досліджень щодо каталізу вуглецевими нанотрубками (ВНТ) та їх модифікованими формами. Описані методи підвищення каталітичної здатності ВНТ та використання їх як каталізаторів хімічних реакцій. Проаналізовано зв'язок каталітичної активності ВНТ з їхніми структурними характеристиками та особливостями хімії поверхні. Наведено приклади застосування ВНТ у каталітичних процесах органічного синтезу, очищення стічних вод та атмосферних викидів.

Посилання

Iijima S. Helical microtubules of graphitic carbon // Nature. – 1991. – Vol. 354. – P. 56-58.

Serp P., Corrias M., Kalck P. Carbon nanotubes and nanofibres in catalysis // Appl. Catal. – 2003. – Vol. 253. – P. 337-358.

Planeix J.M., Coustel N., Coq B., Brotons V., Kumbhar P.S., Dutartre R., Geneste P., Bernier P., Ajayan P.V. Application of carbon nanotubes as support in heterogeneous catalysis // JACS. – 1994. – Vol. 116. – P. 7935-7936.

Yang Y., Song S., Rao R., Wang X., Yua Q., Zhang A. Enhanced catalytic activity of benzene hydrogenation over nickel confined in carbon nanotubes // J. Mol. Catal. A. – 2010. – Vol. 323. – P. 33-39.

Hernadi K., Thien-Nga L., Ljubovic E., Forró L. SWNTs as catalyst and/or support in the catalytic decomposition of hydrocarbons // Chem. Phys. Lett. – 2003. – Vol. 367. – P. 475-481.

Chen Z., Higgins D., Chen Z. Electrocatalytic activity of nitrogen doped carbon nanotubes with different morphologies for oxygen reduction reaction // Electrochim. Acta. – 2010. – Vol. 55. – P. 4799-4804.

Santhosh P., Gopalana A., Lee K. Gold nanoparticles dispersed polyaniline grafted multiwall carbon nanotubes as newer electrocatalysts: Preparation and performances for methanol oxidation // J. Catal. – 2006. – Vol. 238. – P. 177-185.

Figueirodo J.L., Pereira M.F.R. The role of surface chemistry in catalysis with carbon // Catal. Today. – 2010. – Vol. 150. – P. 2-7.

Terrones M. Science and technology of the twenty-first century: synthesis, properties, and application of carbon nanotubes // Annu. Rev. Mater. Res. – 2003. – Vol. 33. – P. 419-501.

Hou P., Liu C., Cheng Y. Purification of carbon nanotubes // Carbon. – 2008. – Vol. 46. – P. 2003-2025.

 Kukovecz A., Kanyó T., Kónya Z., Kiricsi I. Long-time low-impact ball milling of multi-wall carbon nanotubes // Carbon. – 2005. – Vol. 43. – P. 994-1000.

  Cao Y., Yu H., Tan J., Peng F., Wang H., Li J., Zheng W., Wong N. Nitrogen-, phosphorous- and boron-doped carbon nanotubes as catalysts for the aerobic oxidation of cyclohexane // Carbon. – 2013. – Vol. 57. – P. 433-442.

  Chen Y.J., Green M.L.H., Griffin J.L., Hammer J., Lago R.M., Tsang S.C. Purification and opening of carbon nanotubes via bromination // Adv. Mater. – 1996. – Vol. 8. – P. 1012-1015.

  Paradise M., Goswami T. Carbon nanotubes – production and industrial applications // Mater. Design. – 2007. – Vol. 28. – P. 1477-1489.

   Dai H. Carbon nanotubes: opportunities and challenges // Surf. Sci. – 2002. – Vol. 500 – P. 218-241.

   Раков Э.Г. Химия и применение углеродных нанотрубок // Успехи химии. – 2001. – № 70 – С. 935-973.

   Kuchibhatla S., Karakoti A.S., Bera D., Seal S. One dimensional nanostructured materials // Prog. Mater. Sci. – 2007. – Vol. 52. – P. 699-913.

   Ebbesen T.W., Takada Т. Topological and sp3 defects structures in nanotubes // Carbon. – 1995. – Vol. 33. – P. 973-978.

   Hu H., Bhowmik P., Zhao B., Hamon M.A., Itkis M.E., Haddon R.C. Determination of the acidic sites of purified single-walled carbon nanotubes by acid–base titration // Chem. Phys. Lett. – 2001. – Vol. 345. – P. 25-28.

   Horner D.A., Redfern P.C., Sternberg M., Zapol P., Curtiss L.A. Increased reactivity of single wall carbon nanotubes at carbon ad-dimer defect sites // Chem. Phys. Lett. – 2007. – Vol. 450. – P. 71-75.

   Wang D., Xu H., Hu Y., Su Z. Comparative study of the electrostatic potential of perfect and defective single-walled carbon nanotubes // Comput. Theor. Chem. – 2011. – Vol. 966. – P. 1-8.

   Bettinger H.F. The reactivity of defects at the sidewalls of single-walled carbon nanotubes: the Stone-Wales defect // J. Phys. Chem. B. – 2005. – Vol. 109. – P. 6922-6924.

   Bera B., Perrault J., Heinrich H., Seal S. Defect studies on as-synthesized and purified carbon nanostructures produced by arc-discharge in solution process // J. Nanosci. Nanotechnol. – 2006. – Vol. 6. – P. 1084-1091.

  Niyogi S., Hamon M.A., Hu H., Zhao B., Bhowmik P., Sen R., Itkis M.E., Haddon R.C. Chemistry of single-walled carbon nanotubes // Acc. Chem. Res. – 2002. – Vol. 35. – P. 1105-1113.

  Hirsch A., Vostrowsky O. Functionalization of carbon nanotubes // Top. Curr. Chem. – 2005. – Vol. 245. – P. 193-237.

   Balasubramanian K., Burghard M. Chemically functionalized carbon nanotubes // Small. – 2005. – Vol. 1. – P. 180-192.

  Song Х., Liu S., Yan H. Gan Z. First-principles study on effects of mechanical deformation on outer surface reactivity of carbon nanotubes // Phys. E: Low-dim. Sys. Nanostr. – 2009. – Vol. 41. – P. 626-630.

  Zhang J., Su D., Zhang A., Wang D. Schlögl R., Hébert C. Nanocarbon as robust catalyst: mechanistic insight into carbon-mediated catalysis // Angew. Chem. Int . Ed. – 2007. – Vol. 46. – P. 7319 -7323.

  Hilding J., Grulke E.A., Zhang Z.G., Lockwood F. Dispersion of carbon nanotubes in liquids // J. Disper. Sci. Technol. – 2003. – Vol. 24. – P. 1-41.

  Ma P.-C., Siddiqui N.A., Marom G., Kim J. Dispersions and functionalization of carbon nanotubes for polymer-based nanocomposites: A review // Composites Part A. – 2010. – Vol. 41. – P. 1345-1367.

  Lu K.L., Lago R.M., Chen Y.K., Green M.L.H., Harris P.J. Tsang S.C. Mechanical damage of carbon nanotubes by ultrasound // Carbon. – 1996. – Vol. 34. – P.814-816.

  Mukhopadhyay K., Dwivedi C.D., Mathur G.N. Conversion of carbon nanotubes to carbon nanofibers by sonication // Carbon. – 2002. – Vol.40. – P. 1373-1376.

  Pierard N., Fonseca A., Konya Z., Willems I., Tendeloo J.V., Nagy J.B. Production of short carbon nanotubes with open tips by ball milling // Chem. Phys. Lett. –2001. – Vol. 335. – P. 1-8.

[1]. Liu F., Zhang X., Cheng J., Tu J., Kong F., Huang W., Chen C. Preparation of short carbon nanotubes by mechanical ball milling and their hydrogen adsorption behavior // Carbon. – 2-3. – Vol. 41. – P. 2527-2532.

  Stepanek I., Maurin G., Bernier P., Gavillet J., Loiseau A., Edwards R., Jaschinski O. Nano-mechanical cutting and opening of single wall carbon nanotubes // Chem. Phys. Lett. – 2000. – Vol. 331. – P. 125-131.

  Liu Z.-Q., Ma J., Cui Y.-H., Zhao L., Zhang B. Influence of different heat treatments on the surface properties and catalytic performance of carbon nanotube in ozonation // Appl. Catal. B: Environ. – 2010. – Vol. 101. – P. 74-80.

  Goncalves A.G., Figueiredo J.L., Orfao J.J.M., Pereira M.F.R. Influence of the surface chemistry of multi-walled carbon nanotubes on their activity as ozonation catalysts // Carbon. – 2010. – Vol. 48. – P. 4369-4381.

  Bégin D., Ulrich G., Amadou J., Su D.S., Pham-Huu C., Ziessel R. Oxidative dehydrogenation of 9,10-dihydroanthracene using multi-walled carbon nanotubes // J. Mol. Catal. A: Chem. – 2009. – Vol. 302. – P.119-123.

  Fazio E., Piperopoulos E., Hameed A.R.S., Lanza M., Faggio G., Mondio G., Neri F., Mezzasalma A.M., Milone S., Santangelo S. Correlation between carbon nanotube microstructure and their catalytic efficiency towards the p-coumaric acid degradation // Curr. App. Phys. – 2013. – Vol. 13. – P. 748-752.

  Delgado J.J., Chen X., Tessonnier J.P., Schuster M.E.Del Rio E.Schlögl RSu D.S. Influence of the microstructure of carbon nanotubes on the oxidative dehydrogenation of ethyl benzene to styrene // Catal. Today. – 2010. – Vol. 150. – P. 49-54.

  Zhao N., He C., Jiang Z., Li J., Li Y. Physical activation and characterization of multi-walled carbon nanotubes catalytically synthesized from methane // Mater. Lett. – 2007. – Vol. 61. – P. 681-685.

  Beuneu F., l’Huillier C. Modification of multiwall carbon nanotubes by electron irradiation: An ESR study // Phys. Rew. B. – 1999. – Vol. 59. – P. 5945-5948.

  Vitusevich S.A., Sydoruk V.A., Petrychuk M.V., Danilchenko B.A.Klein N.Offenhausser A.Ural A.Bosman G. Transport properties of single-walled carbon nanotube transistors after gamma radiation treatment // J. Appl. Phys. – 2010. – Vol. 1076. – P. 063701-063706.

  Safibonab B., Reyhani A., Golikand N., Mortazavi S.Z., Mirershadi S., Ghoranneviss M. Improving the surface properties of multi-walled carbon nanotubes after irradiation with gamma rays // Appl. Surf. Sci. – 2011. – Vol. 258. – P. 766-773.

  Vazquez E., Prato M. Carbon nanotubes and microwaves: interactions, responses, and applications // ACS Nano. – 2009. – Vol.3. – P. 3819-3824.

   Ajayan P.M., Ebbesen T.W., Ichihashi T., Iijima S., Tanigaki K., Hiura H. Opening carbon nanotubes with oxygen and implication for filling // Nature. – 1993. – Vol. 362. – P. 522-525.

   Morishita K., Takarada T. Scanning electron microscope observation of the purification behavior of carbon nanotubes // J. Mater. Sci. – 1999. – Vol. 34. – P. 1169-1174.

   Nagasawa S., Yudasakaa M., Hirahara K., Ichihashi T., Iijimaa S. Effect of oxidation on single-wall carbon nanotubes // Chem. Phys. Lett. – 2000. – Vol. 328. – P. 374-380.

   Hernadi K., Siska A., Thien-Nga L., Forró L., Kiricsi I. Reactivity of different kinds of carbon oxidative purification of catalytically prepared carbon nanotubes // Sol. State Ionics. – 2001. – Vol. 141-142. – P. 203-209.

  Mawhinney D.B., Naumenko V., Kuznetsova A., Yates J.T., Liu J., Smalley R.E. Infrared spectral evidence for the etching of carbon nanotubes:  ozone oxidation at 298 K // JACS. – 2000. – Vol. 122. – P. 2383-2384.

   Mawhinney D.B., Naumenko V., Kuznetsova A., Yates J.T., Liu J., Smalley R.E. Surface defect site density on single walled carbon nanotubes by titration // Chem. Phys. Lett. – 2000. – Vol. 324. – P. 213-216.

   Zimmerman J.L., Bradley R.K., Huffman C.B., Hauge R.H., Margrave J.L. Gas-phase purification of single-walled carbon nanotubes // Chem. Mater. – 2000. – Vol. 12. – P. 1361-1366.

   Chiang I.W., Brinson B.E., Huang A.Y., Willis P.A., Bronikowski M.J., Margrave J.L., Smalley R.E., Hauge R.H. Purification and characterization of single-walled carbon nanotubes (SWCNTs) obtained from the gas-phase decomposition of CO (HiPco Process) // J. Phys. Chem. B. – 2001. – Vol. 105. – P. 8297-8301.

   Xu Y.Q., Peng H.Q., Hauge R.H., Smalley R.E. Controlled multistep purification of single-walled carbon nanotubes // Nano Lett. – 2005. – Vol. 5. – P. 163-168.

   Jeong T., Kim W.Y., Haha Y.B. A new purification method of single-wall carbon nanotubes using H2S and O2 mixture gas // Chem. Phys. Lett. – 2001. – Vol. 344. – P. 18-22.

   Tobias G., Shao L.D., Salzmann C.G., Huh Y., Green M.L.H. Purification and opening of carbon nanotubes using steam // J. Phys. Chem. B. – 2006. – Vol. 110. – P. 2318-2322.

   Hu H., Zhao B., Itkis M.E., Haddon R.C. Nitric acid purification of single-walled carbon nanotubes // J. Phys. Chem. B. – 2003. – Vol. 107. – P. 13838-13842.

   Rosca I.D., Watari F., Uo M., Akasaka T. Oxidation of multiwalled carbon nanotubes by nitric acid // Carbon. – 2005. – Vol. 43. – P. 3124-3131.

   Datsyuk V., Kalyva M., Papagelis K., Parthenios J., Tasis D., Siokou A., Kallitsis I., Galiotis C. Chemical oxidation of multiwalled carbon nanotubes // Carbon. – 2008. – Vol. 46. – P. 833-840.

  Sumanasekera G.U., Allen J.L., Fang S.L., Loper A.L., Rao A.M., Eklund P.C. Electrochemical oxidation of single wall carbon nanotube bundles in sulfuric acid // J. Phys. Chem. B. – 1999. – Vol. 103. – P. 4292-4297.

   Алексашина Е.В., Мищенко С.В., Соцкая Н.В., Ткачев А.Г., Вигдорович В.И., Долгих О.В. Кислотная активация углеродных нанотрубок // Конденсированные среды и межфазные границы. – 2009. – Т. 11. – С. 101-105.

  Kuznetsova A., Popova I., Yates J.T., Bronikowski M.J., Huffman C.B., Liu J., Smalley R.E., Hwu H.H., Chen J.G. Oxygen-containing functional groups on single-wall carbon nanotubes: NEXAFS and vibrational spectroscopic studies // JACS. – 2001. – Vol. 123. – P. 10699-10700.

   Suzuki T., Suhama K., Zhao X.L., Inoue S., Nishikawa N., Ando Y. Purification of single-wall carbon nanotubes produced by arc plasma jet method // Diamond Relat. Mater. – 2007. – Vol. 16. – P. 1116-1120.

   Wang Y.H., Shan H.W., Hauge R.H., Pasquali M., Smalley R.E. A highly selective, one-pot purification method for single-walled carbon nanotubes // J. Phys. Chem. B. – 2007. – Vol. 111. – P. 1249-1252.

   Magera M., Accorsi G., Meneghetti M., Parisini A., Prato M., Bonifazi D. Cap removal and shortening of double-walled and very-thin multi-walled carbon nanotubes under mild oxidative condition // Carbon. – 2009. – Vol. 47. – P. 675-682.

   Ziegler K.J., Gu Z., Peng H., Flor E.L., Hauge R.H., Smalley R.E. Controlled oxidative cutting of single-walled carbon nanotubes // JACS. – 2005. – Vol. 127. – P. 1541-1547.

   Zhang J., Zou H.L., Qing Q., Yang Y., Li Q., Liu Z., Guo X., Du Z. Effect of chemical oxidation on the structure of single-walled carbon nanotubes // J. Phys. Chem. B. – 2003. – Vol. 107. – P. 3712-3718.

   Li Y., Zhang X.B., Luo J.H., Huang W., Cheng J., Luo Z., Li T., Liu F., Xu G., Ke X., Li L., Geise H.J. Purification of CVD synthesized single-wall carbon nanotubes by different acid oxidation treatments // Nanotechnology. – 2004. – Vol.15. – P. 1645-1649.

   Kyotani T., Nakazaki S., Xu W., Tomita A. Chemical modification of the inner walls of carbon nanotubes by HNO3 oxidation // Carbon. – 2001. – Vol. 39. – P. 782-785.

  Yu H., Jin Y., Li Z., Peng F., Wang H. Synthesis and characterization of sulfonated single-walled carbon nanotubes and their performance as solid acid catalyst // J. Solid State Chem. – 2008. – Vol. 181. – P. 432-438.

  Peng F., Zhang L., Wang H., Lv P., Yu H. Sulfonated carbon nanotubes as a strong protonic acid catalyst // Carbon. – 2005. – Vol. 43. – P. 2405-2408.

   Shaffer M.S.P., Fan X., Windle A.H. Dispersion and packing of carbon nanotubes // Carbon. – 1998. – Vol. 36. – P. 1603-1612.

   Aviles F., Cauich-Rodrigues J.V., Moo-Tah L., May-Pat A., Vargas-Coronado R. Evaluation of mild acid oxidation treatment for MWCNT fictionalization // Carbon. – 2009. – Vol. 47. – P. 2970-2975.

   Fang H.T., Liu C.G., Liu C., Li F., Liu M., Cheng H. Purification of single-wall carbon nanotubes by electrochemical oxidation // Chem. Mater. – 2004. – Vol. 16(26). – P. 5744-5750.

   Ye X.R., Chen L.H., Wang C., Aubuchon J.F., Chen I.C., Gapin A.I., Talbot J.B., Jin S. Electrochemical modification of vertically aligned carbon nanotube arrays // J. Phys. Chem. B. – 2006. – Vol. 110. – P. 12938-12942.

  Maciel I. O., Campos-Delgado J., Cruz-Silva E., Pimenta M.A., Sumpter B.J., Meunier V., López-Urías F., Muñoz-Sandoval E., Terrones H., Terrones M., Jorio A. Synthesis, electronic structure, and Raman scattering of phosphorous-doped single-walled carbon nanotubes // Nano Lett. – 2009. – Vol.9. – P. 2267-2272.

  Михайленко О.В., Іванов С.В., Прилуцький Ю.І. Структура і термічна стабільність інтеркальованих азотом вуглецевих нанотрубок // Доповіді Національної академії наук України. – 2012. – №1. – С. 76-81.

  Yu D., Nagelli E., Du F., Dai L. Metal-free carbon nanomaterials become more active than metal catalysts and last longer // Phys. Chem. Lett. – 2010. – Vol. 1. – P. 2165-2173.

  Esrafili M.D. Nitrogen-doped (6,0) carbon nanotubes: A comparative DFT study based on surface reactivity descriptors // Comp. Theor. Chem. – 2013. – Vol. 1015. – P. 1-7.

  Czerw R., Terrones M., Charier J.-C., Blase X., Foley B., Kamalakaran R., Grobert N., Terrones H., Tekleab D., Ajayan P.M., Blau W., Rühle M., Carroll D.L. Identification of electron donor states in N-doped carbon nanotubes // Nano Lett. – 2001. – Vol. 1. – P. 457-460.

  Cruz-Silva E., Cullen D.A., Gu L., Romo-Herrera J.M., Muñoz-Sandoval E., López-Urías F., Sumpter B.G., Meunier V., Charlier J.C., Smith D.J., Terrones H., Terrones MHeterodoped nanotubes: theory, synthesis, and characterization of phosphorus−nitrogen doped multiwalled carbon nanotubes // ACS Nano. – 2008. – Vol.2. – P. 441-448.

  Glerup M., Krstić V., Ewels C., Holzinger M., Lier G.V. Doped Nanomaterials and Nanodevices. –Vol. 3, Chapt.1. – USA: ASP, 2010. – P. 1-28.

  Golberg D., Bando Y., Bourgeois L., Kurashima K., Sato T. Large-scale synthesis and HRTEM analysis of single-walled B- and N-doped carbon nanotubes bundles // Carbon. – 2000. – Vol. 38. – P. 2017-2027.

  Blackburn J.L., Yan Y., Engtrakul C., Parilla P.A., Jones K., Gennett T., Dillon A.C., Heben M.J. Synthesis and characterization of boron-doped single-wall carbon nanotubes produced by the laser vaporization technique // Chem. Mater. – 2006. – Vol. 18. – P. 2558-2566.

[1].         McGuire K., Gothard N., Gai P.A., Dresselhaus M.S., Sumanasekera G., Rao A.M. Synthesis and Raman characterization of boron-doped single-walled carbon nanotubes // Carbon. – 2005. – Vol. 43. – P. 219-227.

  Gai P.L., Stephan O., McGuire K., Rao A.M., Dresselhaus M.S., Dresselhaus G., Colliex C. Structural systematics in boron-doped single wall carbon nanotubes // J. Mater. Chem. – 2004. – Vol. 14. – P. 669-675.

  Droppa R.Jr.Hammer P., Carvalho A.C.M., Santos M.C., Alvarez F. Incorporation of nitrogen in carbon nanotubes // J. Non-Cryst. Solids. – 2002. – Vol. 299–302. – P. 874-879.

  Maultzsch J., Reich S., Thomsen C., Maultzsch J., Reich S., Thomsen C., Webster S., Czerw R., Carroll D.L., Vieira S.M.C., Birkett P.R., Rego C.A. Raman characterization of boron-doped multiwalled carbon nanotubes // Appl. Phys. Lett. – 2002. – Vol. 81. – P. 2647-2650.

  Ceragioli H.J., Peterlevitz A.C., Quispe J.C.R., Larena A., Pasquetto M.P., Sampaio M.A., Baranauskas V. Synthesis and characterization of boron-doped carbon nanotubes // J. Phys. Conf. – 2008. – Vol. 100. – P. 052029.

[1].         Choi H.C., Park J. Distribution and structure of N atoms in multiwalled carbon nanotubes using variable-energy X-Ray photoelectron spectroscopy // J. Phys. Chem. B. – 2005. – Vol. 109. – P. 4333-4340.

  Larrude D.J., Maia da Costa M.E.H., Monteiro F.H., Pinto A.L., Freire F.L. Characterization of phosphorus-doped multiwalled carbon nanotube // J. Appl. Phys. – 2012. – Vol. 111. – P. 064315.

  Kim S.Y., Lee J., Na C.W., Park J., Seo K., Kim B. N-doped double-walled carbon nanotubes synthesized by chemical vapor deposition // Phys. Lett. – 2005. – Vol. 413. – P. 300-305.

  Trasobares S., Stéphan O., Colliex C., Hsu W.K., Kroto H.W., Walton D.R.M. Compartmentalized CNx nanotubes: chemistry, morphology, and growth // J. Chem. Phys. – 2002. – Vol. 116. – P. 8966-8973.

  Dommele S., Jong K.P., Bitter J.H. Nitrogen-containing carbon nanotubes as solid base catalysts // Chem. Commun. – 2006. – Vol. P. 4859-4861.

  Liu J., Webster S., Carroll D.L. Temperature and flow rate of NH3 effects on nitrogen content and doping environments of carbon nanotubes grown by injection CVD method // J. Phys. Chem. B. – 2005. – Vol. 109. – P. 15769-15774.

  Mondal K.C., Coville N.J., Witcomb M.J., Tejral J., Havel J. Boron mediated synthesis of multiwalled carbon nanotubes by chemical vapor deposition // Chem. Phys. Lett. – 2007. – Vol. 437. – P.87-91.

  Luo J., Peng F., Wang H., Yu H. Enhancing the catalytic activity of carbon nanotubes by nitrogen doping in the selective liquid phase oxidation of benzyl alcohol // Catal. Commun. – 2013. – Vol. 39. – P. 44-49.

  Lee C.J., Lyu S.C., Kim H., Li J.H., Cho K.I. Synthesis of bamboo-shaped carbon–nitrogen nanotubes using C2H2–NH3–Fe(CO)5 system // Chem. Phys. Lett. – 2002. – Vol. 359. – P.115-120.

  Amadou J., Chizari K., Houlle M., Janowska I., Ersen O., Bégin D., Pham-Huu C. N-doped carbon nanotubes for liquid-phase C= C bond hydrogenation // Catal. Today. – 2008. – Vol. 138. – P. 62-68.

  Ewels C. P., Glerup M. Nitrogen doping in carbon nanotubes // J. Nanosci. Nanotech. – 2005. – Vol. 5. – P. 1345-1363.

  Tang C., Bando Y., Golberg D., Xu F. Structure and nitrogen incorporation of carbon nanotubes synthesized by catalytic pyrolysis of dimethylformamide // Carbon. – 2004. – Vol. 42. – P. 2625-2633.

  Glerup M., Castignolles M., Holzinger M., Hug G., Loiseau A., Bernier P. Synthesis of highly nitrogen-doped multi-walled carbon nanotubes // Chem. Commun. – 2003. – Vol. 20. – P. 2542-2543.

  Chizari K., Deneuve A., Ersen O., Liu Y., Edouard D., Janowska I., Begin D., Pham-Huu C. Nitrogen-doped carbon nanotubes as a highly active metal-free catalyst for selective oxidation // ChemSusChem. – 2012. – Vol. 102-108.

  Lee Y., Radovic L.R. Oxidation inhibition effects of phosphorus and boron in different carbon fabrics// Carbon. – 2003. – Vol. 41. – P.1987-1997.

  Frank B., Zhang J., Blume R., Schlögl R., Su D.S. Heteroatoms increase the selectivity in oxidative dehydrogenation reaction on nanocarbons // Angew. Chem. Int. Ed. – 2009. – Vol. 48. – P. 6913-6917.

  Yang L., Jiang S., Zhao Y., Zhu L., Chen S., Wang X., Wu Q., Ma J., Ma Y., Hu Z. Boron-doped carbon nanotubes as metal-free electrocatalysts for the oxygen reduction reaction // Angew. Chem. Int. Ed. – 2011. – Vol. 50. – P. 7132-7135.

  Carroll D.L., Redlich Ph., Blase X., Charlier J.-C., Curran S., Ajayan P.M., Roth S., Rühle M. Effects of nanodomain formation on the electronic structure of doped carbon nanotubes // Phys. Rev. Lett. – 1998. – Vol. 81. – P. 2332-2335.

  Raymundo-Pinero E., Azaís P., Cacciaguerra T., Cazorla-Amorós D., Linares-Solano A., Béguin F. KOH and NaOH activation mechanism of multiwalled carbon nanotubes with different structural organization // Carbon. – 2005. – Vol. 43. – P. 786-795.

  Frackowiak E., Delpeux S., Jurewich K., Szostak K., Cazorla-Amorós D., Béguin F. Enchance capacitance of carbon nanotubes through chemical activation // Chem. Phys. Lett. – 2002. – Vol.361. – P. 35-41.

  Lillo-Rodenas M.A., Cazorla-Amoros D., Linares-Solano A. Understanding chemical reactions between carbons and NaOH and KOH: an insight into the chemical activation mechanism // Carbon. – 2003. – Vol. 41. – P. 267-275.

  Raymundo-Pinero E., Cazorla-Amoros D., Linares-Solano A., Delpeux S., Frackowiak E., Szostak K., Béguin F. High surface area nanotubes prepared by chemical activation // Carbon. – 2002. – Vol. 40. – P. 1614-1617.

  Yuca N., Karatepe N. Hydrogen storage in single-walled carbon nanotubes purified by microwave digestion method // World Acad. Sci. Eng. Technol. – 2011. – Vol. 55. – P. 605-610.

  Xing Y., Li L., Chusuei C.C., Hull R.V. Sonochemical oxidation of multiwalled carbon nanotubes // Langmuir. – 2005. – Vol. 21. – P. 4185-4190.

  Лень T.A., Овсієнко І.В., Мацуй Л.Ю., Брусиловець А.І., Капітанчук Л.М. Дія термохімічної обробки на структурно-фазові перетворення в нановуглецевому матеріалі // Фізика і хімія твердого тіла. – 2005. – Т. 6, № 4. – С. 680-684.

  Jung C., Kim D., Choi J., Nho Y.-C.Shin K., Suh D.-H. Shortening of multi-walled carbon nanotubes by г-irradiation in the presence of hydrogen peroxide // Nucl. Inst. Meth. Phys. Res. B – 2008. – Vol. 266. – P. 3491-3494.

  Peng J., Qu X., Wei G., Li J., Qiao J. The cutting of MWNTs using gamma radiation in the presence of dilute sulfuric acid // Carbon. – 2004. – Vol. 42. – P. 2741-2744.

  Wang Y., Iqbal Z., Mitra S. Rapidly functionalized, water-dispersed carbon nanotubes at high concentration // JACS. – 2006. – Vol. 128. – P. 95-99.

  Ago H., Kugler T., Cacialli F, Salaneck W.R., Shaffer M.S.P., Windle A.H., Friend R.H. Work functions and surface functional groups of multiwall carbon nanotubes // J. Phys. Chem. B. – 1999. – Vol. 103. – P. 8116-8121.

  Hou P.X., Bai S., Yang Q.H., Liu C., Cheng H.M. Multi-step purification of carbon nanotubes // Carbon. – 2002. – Vol. 40. – P. 81-85.

  Войтко К.В., Бакалінська О.М., Насєдкін Д.Б., Паляниця Б.Б., Плюто Ю.В., Картель М.Т. Уреазоподібні властивості нанорозмірних вуглецевих матеріалів // Наукові записки НаУКМА. Хімічні науки і технології. – 2012. – Т. 131. – С. 3-11.

   Xu X., Wu Y., Zhang Z. CO oxidation on metal-free nitrogen-doped carbon nanotubes and the related structure-reactivity relationships // J. Mater. Chem. – 2012. – Vol. 22. – P. 15198-15205.

   Xu X., Wu Y., Li H., Zhang Z. Adsorption and activation of O2 on nitrogen-doped carbon nanotubes // J. Phys. Chem. C – 2010. – Vol. 114. – P. 9603-9607.

   Xu X., Zhou Z., Lin Q., Wu Y., Zhang Z. High reactivity of metal-free nitrogen-doped carbon nanotube for the C-H activation // Chem. Phys. Lett. – 2011. – Vol. 503. – P. 287-291.

  Zhang J., Liu X., Blume R., Zhang A., Schlögl R., Su D.S. Surface-modified carbon nanotubes catalyze oxidative dehydrogenation of n-butane // Science. – 2008. – Vol. 322. – P. 73-76.

  Maksimova N., Mestl G., Schlrgl R. Catalytic activity of carbon nanotubes and other carbon materials for oxidative dehydrogenation of ethylbenzene to styrene // Stud. Surf. Sci. Catal. – 2001. – Vol. 133. – P. 383-389.

  Nigrovski B., Scholz P., Krech T., Qui N.V., Pollok K., Keller T., Ondruschka B. The influence of microwave heating on the texture and catalytic properties of oxidized multi-walled carbon nanotubes // Catal. Commun. – 2009. – Vol. 10. – P. 1473-1477.

  Su D.S., Maksimova N., Delgado J.J. Nanocarbons in selective oxidative dehydrogenation reaction // Catal. Today. – 2005. – Vol.102-103. – P. 110-114.

  Pereira M.F.R., Figueiredo J.L., Orfao J.J.M., Serp P., Kalck P., Kihn Y. Catalytic activity of carbon nanotubes in the oxidative dehydrogenation of ethylbenzene // Carbon. – 2004. – Vol. 42. – P. 2807-2813.

   Chen P., Chew L.M., Kostka A., Xie K., Muhler M., Xia W. Purified oxygen- and nitrogen-modified multi-walled carbon nanotubes as metal-free catalysts for selective olefin hydrogenation // J. Energ. Chem. – 2013. – Vol. 22. – P. 312-320.

  Yu H., Peng F., Tan J., Hu X., Wang H., Yang J., Zheng W. Selective catalysis of the aerobic oxidation of cyclohexane in the liquid phase by carbon nanotubes // Angew. Chem. Int. Ed. – 2011. – Vol. 50. – P. 3978-3982.

  Yang X., Wang H., Li J., Zheng W., Xiang R., Tang Z., Yu H., Peng F. Mechanistic insight into the catalytic oxidation of cyclohexane over carbon nanotubes: kinetic and In Situ spectroscopic evidence // Chem. Eur. J. – 2013. – Vol. 19. – P. 9818-9824.

   Luo J., Yu H., Wang H., Wang H., Peng F. Aerobic oxidation of benzyl alcohol to benzaldehyde catalyzed by carbon nanotubes without any promoter // Chem. Eng. J. – 2014. – Vol. 240. – P. 434-442.

   Luo J., Peng F., Yu H., Wang H., Zheng W. Aerobic liquid-phase oxidation of ethylbenzene to acetophenone catalyzed by carbon nanotubes // ChemCatChem – 2013. – Vol. 5. – P. 1578-1586.

   Luo J., Peng F., Yu H., Wang H. Selective liquid phase oxidation of benzyl alcohol by carbon nanotubes // Chem. Eng. J. – 2012. – Vol. 204-206. – P. 98-106.

  Kang Z., Wang E., Mao B., Su Z., Gao L., Niu L., Shan H., Xu L. Heterogeneous hydroxylation catalyzed by multi-walled carbon nanotubes at low temperature // Apl. Cat. A.: General. – 2006. – Vol. 299. – P. 212-217.

   Liu Z.-Q., Ma J., Cui Y.-H., Zhang B.-P. Effect of ozonation pretreatment on the surface properties and catalytic activity of multi-walled carbon nanotubes // Appl. Cat. B. Environ. – 2009. – Vol. 92. – P. 301-306.

   Liu Z.-Q., Ma J.,Cui Y.-H., Zhao L., Zhang B.-P. Factors affecting the catalytic activity of multi-walled carbon nanotubes for ozonation of oxalic acid // Sep. Pur. Technol. – 2011. – Vol. 78. – P. 147-153.

  Gonçalves A.G., Órfão J.J.M., Pereira M.F.R. Catalytic ozonation of sulphamethoxazole in the presence of carbon materials: catalytic performance and reaction pathways // J. Haz. Mat. – 2012. – Vol. 239-240. – P. 167-174.

  Fan X., Restivo J., Órfão J.J.M., Pereira M.F.R., Lapkin A.A. The role of multiwalled carbon nanotubes (MWCNTs) in the catalytic ozonation of atrazine // Chem. Eng. J. – 2014. – Vol. 241. – P. 66-76.

   Liu X., Wang M., Zhang S., Pan B. Application potential of carbon nanotubes in water treatment: A review // J. Environ. Sci. – 2013. – Vol. 25. – P. 1263-1280.

   Soria-Sanchez M., Maroto-Valiente A.,Alvarez-Rodriguez J.,  Muñoz-Andrés V., Rodríguez-Ramos I., Guerrero-Ruíz A. Carbon nanostructured materials as direct catalysts for phenol oxidation in aqueous phase // Appl. Catal. B: Environ. – 2011. – Vol. 104. – P. 101-109.

   Yang S., Li X., Zhu W., Wang J., Descorme C. Catalytic activity, stability and structure of multi-walled carbon nanotubes in the wet air oxidation of phenol // Carbon. – 2008. – Vol.46. – P. 445-452.

   Yang S., Wang X., Yang H., Su Y., Liu Y. Influence of different oxidation treatment on the performance of multi-walled carbon nanotubes in the catalytic wet air oxidation of phenol // J. Haz. Mat. – 2012. – Vol.233-234. – P. 18-24.

   Rocha R.P., Silva A.M.T., Romero S.M.M., Pereira M.F.R., Figueiredo J.L. The role of O- and S-containing surface groups on carbon nanotubes for the elimination of organic pollutants by catalytic wet air oxidation // Appl. Catal. B: Environ. – 2014. – Vol. 147. – P. 314-321.

         Milone C., Hameed A.R.S., Piperopoulos E., Santangelo S., Lanza M., Galvagno S. Catalytic wet air oxidation of p-coumaric acid over carbon nanotubes and activated carbon // Ind. Eng. Chem. Res. – 2011. – Vol. 50. – P. 9043-9053.

  Voitko K.V., Whitby R.L.D., Gun’ko V.M., Bakalinska O.M., Kartel M.T., Laszlo K., Cundy A.B., Mikhalovsky S.V. Morphological and chemical features of nano and macroscale carbons affecting hydrogen peroxide decomposition in aqueous media // J. Colloid Interface Sci. – 2011. – Vol. 361. – P. 129-136.

  Войтко К.В., Дем’яненко Є.М., Бакалінська О.М., Тарасенко Ю.О., Куць В.С., Картель М.Т. Квантовохімічне дослідження термодинамічних та кінетичних характеристик взаємодії гідроксильного радикала з графітоподібними площинами // Хімія, фізика та технологія поверхні. – 2013. – Т.4, №1. – С. 3-13.

  Luo J.Z., Gao L.Z., Leung Y.L., Au S.T. The decomposition of NO on CNTs and 1 wt% Rh/CNTs // Catal. Lett. – 2000. – Vol. 66. – P. 91-97.

   Rocha R.P., Pereira M. F. R., Figueiredo J. L. Carbon as catalyst: esterification of acetic acid with ethanol // Catal. Today. – 2013. – Vol. 218-219. – P. 51-56.

   Wang L., Wang L., Jin H., Bing N. Nitrogen-doped carbon nanotubes with variable basicity: preparation and catalytic properties // Catal. Commun. – 2011. – Vol. 15. – P. 78-81.

   Croston M., Langston J., Sangoi R., Santhanam K.S.V. Catalytic oxidation of p-toluidine at multiwalled carbon nanotubes // Int. J. Nanosci. – 2002. – Vol. 1. – P. 277-283.

   Croston M., Langston J., Takacs G., Morrill T.C., Miri M., Santhanam K.S.V., Ajayan P. Conversation of aniline to azobenzene at functionalized carbon nanotubes: a possible case of nanodimensional reaction // Int. J. Nanosci. – 2002. – Vol. 1. – P. 285-293.

Опубліковано
2014-09-07
Як цитувати
Voitko, K. V. (2014). Каталітичні властивості вуглецевих нанотрубок. Поверхня, (6(21), 122-149. вилучено із http://surfacezbir.com.ua/index.php/surface/article/view/545
Розділ
Наноматеріали і нанотехнології