В- та Gd-вмісні наноматеріали і нанокомпозити для нейтронзахопної терапії

  • E. V. Pilipchuk Інститут хімії поверхні ім. О.О. Чуйка Національної академії наук України
  • P. P. Gorbyk Інститут хімії поверхні ім. О.О. Чуйка Національної академії наук України

Анотація

Проаналізовано сучасний стан розробки новітніх засобів для нейтронзахопної терапії. Наведено приклади засобів молекулярної форми на основі порфіразинів та фталоціанінів, які одночасно містять бор та гадоліній. Показано можливості створення Gd-вмісних нанокомпозитів на основі біополімерів, дендримерів, ліпосом, білків та наночастинок.

Посилання

Туранская С.П., Турелик М.П., Петрановская А.Л. Нанокомпозиты в нейтронзахватной терапии // Поверхность. – 2010, – вып. 2 (17) . – С. 355-374

Словник української мови, тт. 1—11, Київ: «Наукова думка», 1970—1980.

Bottrill M. Lanthanides in magnetic resonance imaging / M. Bottrill, L. K. Nicholas, N. J. Long // Chem.Soc. Rev. – 2006. – V.35. – P. 557–571.

Gadolinium (III) chelates as MRI contrast agents: structure, dynamics, and applications / P. Caravan, J. J. Ellison, T. J. McMurry, R. B. Lauffer // Chem.Rev. –1999. – V. 99. –P. 2293–2352.

Lanthanide (III) chelates for NMR biomedical applications / S. Aime, M. Botta, M. Fasano, E. Terreno // Chem. Soc. Rev. –1998. – V.27. – P. 19–29.

Alfassi Z.B. On the effect of gadolinium in neutron capture therapy / Z.B. Alfassi, G. Shani, B.H. Laster // J. Radioanal. Nucl. Chem. –1999. – V.240. –P. 687.

Fukumori Y. Nanoparticles for cancer therapy and diagnosis / Y. Fukumori, H. Ichikawa // Adv. Powder. Technol.– 2006. – V.17. – P. 1–28.

Shellock F. G. Safety of magnetic resonance imaging contrast agents / Shellock F. G., Kanal E. // J. Magn.Reson. Imaging. –1999.–10. – P. 477–484.

Watanabe T. Tumor accumulation of gadolinium in lipid-nanoparticles intravenously injected for neutron-capture therapy of cancer / Watanabe T., Ichikawa H., Fukumori Y. // Eur. J. Pharm. Biopharm. – 2002. – 54. – P. 119–124.

CacherisW. P.The relationship between thermodynamics andthe toxicity of gadolinium complexes /CacherisW. P., Quay S. C., RocklageS. M. // Magn. Reson. Imaging. – 1990. –8. –P. 467–481.

Kumar C. S. S. R. Nanomaterials for Cancer Therapy / Kumar C. S. S. R. // Nanotechnol. Life Sci. 6. Wiley-VCH, Weinheim (2006).

Martin R. F. Induction of DNA double-strand breaksby Gd-157 neutron-capture / Martin R. F., Dcunha G., Pardee M., [et. al.] // Pigment Cell Res.2 – 1989. – P. 330–332.

Martin R.F. Induction of double-strand breaks following neutron-capture by DNA-bound Gd-157/ Martin R.F., Dcunha G., Pardeeand M., [et. al.] // Int. J. Radiat. Biol. – 1988. – 54. – P. 205–208.

Goorley T. Electron and photon spectra for three gadolinium-based cancer therapy approaches / Goorley T., Nikjoo H. // Rad. Res. – 2000. – 154. – P. 556–563.

Hall E. J. Radiobiology for the Radiologist. Lippincott Williams & Wilkins, Philadelphia, PA(2000).

Yanch J. C. Design of a californium-based epithermal neutron beam for neutron-capture therapy / Yanch J. C., Kim J. K., Wilson M. J. // Phys. Med. Biol. – 1993. – 38. – P. 1145–1155.

Allen D. A. A design study for an accelerator-based epithermal neutron beam for BNCT/ Allen D. A., Beynon T. D.// Phys. Med. Biol. – 1995. – 40. – P. 807–821.

C. K. Wang C. A neutronic study of an accelerator-based neutron-irradiation facility for boron neutron-capture therapy / Wang C.K., Blue T. E., Gahbauer R. // Nucl. Technol. – 1989. – 84. – P. 93–107.

Зайцев К.Н., Портнов А.А., Савкин В.А., Кулаков В.Н., Хохлов В.Ф. Нейтронозахватная терапия тепловыми нейтронами на реакторе ИРТ МИФИ / // Атомная енергия. – 2001. – Т.91. – Вып. – 4. – с. 307-314.

Magda D. Motexafin gadolinium: A novel redox active drug for cancer therapy / D. Magda, R.A. Miller // Seminars in Cancer Biology. – 2006. –16. – P. 466–476.

Bandyopadhyaya A. K. Synthesis of novel texaphyrins containing lanthanides and boron / A. K. Bandyopadhyaya et al. // Tetrahedron Letters. – 2007. – 48. –  P. 4467–4469.

Takahashi K. Synthesis and in vivo biodistribution of BPA–Gd–DTPA complex as a potential MRI contrast carrier for neutron capture therapy / K. Takahashi et al. // Bioorg. Med. Chem. – 2005. – 13. – P.735–743.

Nemoto H. The synthesis of a carborane gadolinium – DTPA complex for boron neutron capture therapy / Cai J., Nakamura H., Fujiwara M., Yamamoto Y.// Journal of Organometallic Chemistry. – 1999. –581. –P.170 – 175.

Kahl S.B. Synthesis and Characterization of a Boronated Metallophthalocyanine for Boron Neutron Capture Therapy / Kahl S.B., J.  Li // Inorg.  Chem. – 1996. – 35. – P.3878–3880.

Giuntini F.  Synthesis of tetrasubstituted Zn(II)-phthalocyanines carrying four carboranyl-units as potential BNCT and PDT agents / Giuntini F., Raoul Y., Dei D., Municchi M., Chiti G., Fabris C., Colautti P., Jori G., Roncucci G. // Tetrahedron  Lett. –   2005. – 46. – P. 979–2982.

Li H. Cobaltacarborane–phthalocyanine conjugates: Syntheses and photophysical properties / Li H., Fronczek F.R., Vicente M.G.H. // J.  Organomet.  Chem. – 2009. – 694. – P.1607–1611.

Carboranyl-porphyrazines  and  derivatives  for  boron  neutron  capture therapy:  From  synthesis  to  in  vitro  tests/  D.  Pietrangeli et al.  // Coordination Chemistry Reviews. – 2013. – 257. – P.2213–  2231

Wheeler J. J. Polyethylene-glycol modified phospholipids stabilize emulsions prepared from triacylglycerol / Wheeler J. J., Wong K. F., Ansell S. M, [et.al.]  // J. Pharmac. Sci. – 1994. – 83. – P. 1558–1564.

Liu F. Long-circulating emulsions (oil-in-water) as carriers for lipophilic drugs / Liu F., Liu D. // Pharmac. Res. – 1995. – 12. – P. 1060–1064.

Liuand F. Amphipathic polyethylene-glycol stabilized emulsions(O/W) — physical characterization and in-vivo distribution / Liuand F., Liu D.X. // Int. J. Pharmac. 1995. – 125. – P. 73–80.

Lanza G. M.H-1/F-19 magnetic resonance molecular imaging with perfluorocarbon nanoparticles / Lanza G.M., Winter P.M., Neubauer A.M., [et.al.] // Curr.Topics Dev. Biol.– 2005. –70.–P. 57–76

Miyamoto M. Biodistribution of gadolinium incorporated in lipid emulsions intraperitoneally administered for neutron-capture therapy with tumor-bearing hamsters / Miyamoto M., Hirano, Ichikawa H., [et. al.] // Biol. Pharmac. Bull. – 1999. – 22. – P. 1331–1340.

Miyamoto M.  Preparation of gadolinium-containing emulsions stabilized with phosphatidylcholine-surfactant mixtures for neutron-capture therapy / Miyamoto M., Hirano K., Ichikawa H., [et. al.] // Chem. Pharmac. Bull. – 1999. – 47. – P. 203–208.

Kabalka G.W. Gadolinium-labeled liposomes containing various amphiphilic Gd-DTPA derivatives: targeted MRI contrast enhancement agents for the liver / Kabalka G.W., Davis M.A., Moss T.H., [et. al.] // Magn. Reson. Med. – 1991. – 19. – P. 406–415.

Eckelman W. C. New compounds — fatty-acid and long-chain hydrocarbon derivatives containing a strong chelating agent / Eckelman W. C., Karesh S. M., Reba R. C. // J. Pharmac. Sci. – 1975. – 64. – P. 704–706.

Kabalka G. W. Gadolinium-labeled liposomes containing paramagnetic amphipathic agents — targeted MRI contrast agents for the liver / Kabalka G. W., Buonocore E., Hubner K., [et. al.] // Magn. Reson. Med. – 1988. – 8. – P. 89–95.

Nagayasu A. Is control of distribution of liposomes between tumors and bone marrow possible? / Nagayasu A., Uchiyama K., Nishida T., [et. al.] // Biochim. Biophys. Acta Biomembr. – 1996. – 1278. -  P. 29–34.

Oussoren C. Effect of repeated intravenous administration on the circulation kinetics of poly(ethyleneglycol)-liposomes in rats / Oussoren C., Storm G. // J. Liposome Res. – 1999. – 9. – P.  349–355.

Soloway A. H. International Society for Neutron Capture Therapy, International Union against Cancer and Arthur G. James Cancer Hospital and Research Institute / Soloway A. H., Barth R. F., Carpenter D. E. // Advances in Neutron Capture Therapy. Plenum Press, New York (1993).

Mehnert W. Solid lipid nanoparticles — production, characterization and applications / Mehnert W., Mader K.  // Adv. Drug Deliv. Rev. – 2001. – 47. – P. 165–196.

Muller R. H. Solid lipid nanoparticles (SLN)—in alternative colloidal carrier system for controlled drug-delivery / Muller R. H., Mehnert W., Lucks J. S., [et. al.] // Eur. J. Pharmac. Biopharmac. – 1995. – 41. – P. 62–69.

Schwarz C. Solid lipid nanoparticles (SLN) for controlled drug delivery II. Drug incorporation and physicochemical characterization / Schwarz C., Mehnert W. // J. Microencapsulation – 1999. – 16. – P. 205–213.

ZurMuhlen A. Solid lipid nanoparticles (SLN) for controlled drug delivery — drug release and release mechanism / zurMuhlen A., Schwarzand C., Mehnert W. // Eur. J. Pharmac. Biopharmac – 1998. – 45. – P. 149–155.

Oyewumi M. O. Gadolinium-loaded nanoparticles engineered from mi-croemulsion templates / Oyewumi M. O., Mumper R. J // Drug Dev. Ind. Pharmacy – 2002. – 28. -  317–328.

Oyewumi M. O. Engineering tumor-targeted gadolinium hexanedione nanoparticles for potential application in neutron capture therapy / Oyewumi M. O., Mumper R. J. // Bioconj. Chem. – 2002. – 13. – P. 1328–1335.

Oyewumi M.O. Comparison of cell uptake, biodistribution and tumor retention of folate-coated and PEG-coated gadolinium nanoparticles in tumor-bearing mice / Oyewumi M.O., Yokel R.A., Jay M., [et. al.] // J. Control. Rel. – 2004. – 95. – P.  613–626.

Agnihotri S.A. Recent advances on chitosan-based micro- and nanoparticles in drug delivery / Agnihotri S.A., Mallikarjuna N.N., Aminabhavi T.M.// J. Control. Rel. – 2004. – 100. – P. 5–28.

Aime S. New paramagnetic supramolecular adducts for MRI applications based on non-covalent interactions between Gd(III)-complexes and beta- or gamma-cyclodextrin units anchored to chitosan / Aime S., Gianolio E., Uggeri F., [et. al.]  // J. Inorg. Biochem. – 2006. – 100. – P. 931–938.

Berger J. Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications / Berger J., Reist M., Mayer J. M., [et. al.]  // Eur. J. Pharmac. Biopharmac. – 2004. – 57. – 35–52.

Borchard G. Modern drug delivery applications of chitosan / Borchard G., Junginger H. E. // Adv. Drug Deliv. Rev. – 2001. – 52. – 103.

Shahidi F. Chitin, chitosan, and co-products: chemistry, production, applications, and health effects / Shahidi F., Abuzaytoun R. // Adv. Food. Nutr. Res. – 2005. – 49. – P. 93–135.

Shigemasa Y. Applications of chitin and chitosan for biomaterials, / Shigemasa Y., Minami S. // Biotechnol.Genet. Eng. Rev. – 1996. – 13. – P. 383–420.

Kean T. Trimethylated chitosans as non-viral gene delivery vectors: cytotoxicity and transfection efficiency / Kean T., Roth S., Thanou M. // J. Control. Rel. – 2005. – 103. – P. 643–653.

Saha T. K. Gadolinium diethylenetriaminopentaacetic acid-loaded chitosan microspheres for gadolinium neutron-capture therapy / Saha T. K., Ichikawa H., Fukumori Y. // Carbohydr Res. – 2006. – 341. – P. 2835–2841.

Tokumitsu H. Chitosan–gadopentetic acid complex nanoparticles for gadolinium neutron capture therapy of cancer: preparation by novel emulsion-droplet coalescence technique and characterization / Tokumitsu H., Ichikawa H., Fukumori Y. // Pharmac. Res. – 1999. – 16. – P. 1830–1835.

Tokumitsu H. Preparation of gadopentetic acid-loaded chitosan microparticles for gadolinium neutron capture therapy of cancer by a novel emulsion-droplet coalescence technique // Tokumitsu H., Ichikawa H., Fukumori Y., [et. al.] // Chem. Pharmac. Bull. (Tokyo) – 1999. – 47. – P. 838–842.

Tokumitsu H. Gadolinium neutron-capture therapy using novel gadopentetic acid–chitosan complex nanoparticles: in vivo growth suppression of experimental melanoma solid tumor / Tokumitsu H., Hiratsuka J., Sakurai Y., [et. al.] // Cancer Lett. – 2000. – 150.  – P. 177–182.

Darras V. Chitosan modified with gadolinium diethylenetriaminepentaacetic acid for magnetic resonance imaging of DNA/chitosan nanoparticles / Darras V., et al. // Carbohydrate Polymers. – 2010. – V. – 80. – I. 4. – P. 1137–1146.

Schuhmann-Giampieri G. In vivo and in vitro evaluation of Gd-DTPA-polylysine as a macromolecular contrast agent for magnetic resonance imaging / Schuhmann-Giampieri G., Schmitt-Willich H., Frenzel T., [et.al.] //Invest. Radiol. – 1991. – 26. – P. 969–974.

Siauve N.Capillary leakage of a macromolecular MRI agent, carboxymethyl dextran-Gd-DTPA, in the liver: pharmacokinetics and imaging implications/ Siauve N., Clement O., Cuenod C. A., [et.al.] //Magn. Reson. Imaging. – 1996. –14. –P. 381–390.

Loubeyre P. Carboxymethyl-dextran-gadolinium-DTPA as a blood-pool contrast agent for magnetic resonance angiography. Experimental study in rabbits / Loubeyre P., Canet E., Zhao S., [et.al.] //Invest. Radiol. –1996. – 31. – P. 288–293.

Bogdanov A. A. A new macromolecule as a contrast agent for MR angiography: preparation, properties, and animal studies / Bogdanov A. A., Weissleder Jr, R., Frank H. W., [et.al.] //Radiology. –1993. –187. –P. 701–706.

Newkome G. R. Dendritic Molecules: Concepts, Syntheses, Perspectives / Newkome G. R., Moorefield C. N., Vögtle F., // VCH, Weinheim. – 1996.

Archut A. Functional cascade molecules / Archut A., Vogtle F. // Chem. Soc. Rev. – 1998. – 27. – P. 233–240.

Zeng F. W. Dendrimers in supramolecular chemistry: from molecular recognition to self-assembly / Zeng F. W., Zimmerman S. C. // Chem. Rev. – 1997. – 97. – P. 1681–1712.

Rathgeber S. Starlike dendrimers in solutions: Structural properties and internal dynamics/ Rathgeber S., Monkenbusch M., Hedrick J. L., [et.al.] //J. Chem. Phys. –2006. – 125. – P. 204908.

Crampton H. L.Dendrimers as drug delivery vehicles: non-covalent interactions of bioactive compounds with dendrimers / Crampton H. L., Simanek E. E. // Polym. Int. – 2007. – 56. – P. 489–496.

Gajbhiye V. Pharmaceutical and biomedical potential of PEGylated dendrimers / Gajbhiye V., Kumar P.V., Tekadeand R.K., Jain N.K. //Curr. Pharmac. Des. – 2007. – 13. – P. 415–429.

Tomalia D. A. Dendrimers as multi-purpose nanodevices for oncology drug delivery and diagnostic imaging / Tomalia D. A., Reyna L. A., Svenson S. //Biochem. Soc. Trans. – 2007. – 35. – P. 61–67.

Tomalia D.A. Starburst(R) dendrimers—nanoscopic supermolecules according dendritic rules and principles / Tomalia D.A. // Macromol. Symp. – 1996. –101. –P. 243–255.

Hawker C. J. Preparation of polymers with controlled molecular architecture — a new convergent approach to dendritic macromolecules / Hawker C. J., Frechet J. M. J. // J. Am. Chem. Soc. – 1990. – 112. – P. 7638–7647.

Kimand Y. Applications of dendrimers in bio-organic chemistry / Kimand Y., Zimmerman S. C. //Curr. Opin.Chem. Biol. – 1998. – 2. – P. 733–742.

Tomalia D. A. Starburst dendrimers — molecular-level control of size, shape, surface-chemistry, topology, and flexibility from atoms to macroscopic matter/ Tomalia D. A., Naylor A. M., Goddard W. A. // Angew. Chem. Int. Ed. Engl. – 1990. – 29. – P. 138–175.

Wu C.C. Metal chelate dendrimer antibody constructs for use in radioimmuno therapy and imaging / Wu C.C., Brechbiel M.W., Kozakand R.W., Gansow O.A. // Bioorg. Med. Chem. Lett. – 1994. – 4. – P. 449–454.

Frechet J. M. J. Dendrimers and hyperbranched polymers: two families of three-dimensional macromolecules with similar but clearly distinct properties / Frechet J. M. J., Hawker C. J., Gitsov I., Leon J. W. //J. Macromol. Sci. Pure Appl. Chem. – 1996. – A33. – P. 1399–1425.

Bosman A. W. About dendrimers: structure, physical properties, and applications / Bosman A. W., Janssen H. M., Meijer E. W. // Chem. Rev. – 1999. – 99. – P. 1665–1688.

Grayson S. K.Convergent dendrons and dendrimers: from synthesis to applications / Grayson S. K., Frechet J. M. J. // Chem. Rev. – 2001. – 101. – P. 3819–3867.

Singh P. Coupling of multiple proteins to STARBURST(TM) dendrimers / Singh P. //Abstr. Papers Am.Chem. Soc. – 1996. – 211. – P. 193-BIOT.

Singh P. Terminal groups in starburst dendrimers: activation and reactions with proteins / Singh P. // Bioconj. Chem. – 1998. – 9. – P. 54–63.

Naylor A. M. Starburst dendrimers. 5.Molecular shape control / Naylor A. M., Goddard W. A., Kiefer G. E., Tomalia D. A. // J. Am. Chem. Soc. – 1989. – 111. – P. 2339–2341.

Wiener E. C. Dendrimer-based metal-chelates — a new class of magnetic-resonance-imaging contrast agents / Wiener E. C., Brechbiel M. W., Brothers H., [et.al.]// Magn. Reson. Med. – 1994. – 31. – P. 1–8.

Kobayashi H. Macromolecular MRI contrast agents with small dendrimers: pharmacokinetic differences between sizes and cores/ Kobayashi H., Kawamoto S., Jo S. K., [et.al.]// Bioconj. Chem. – 2003. – 14. – 388–394.

Stiriba S. E. Dendritic polymers in biomedical applications: from potential to clinical use in diagnostics and therapy / Stiriba S. E., Frey H., Haag R. // Angew.Chem.Int.Ed. –2002. – 41. – P. 1329–1334.

Kobayashi H. 3D-micro-MR angiography of mice using macromolecular MR contrast agents with polyamidoamine dendrimer core with reference to their pharmacokinetic properties / Kobayashi H., Sato N., Hiraga A., [et.al.] // Magn. Reson. Med. – 2001. –45. –P. 454–460.

Bourne M. W. Evaluation of the effects of intravascular MR contrast media (gadolinium dendrimer) on 3Dtime of flight magnetic resonance angiography of the body / Bourne M. W., Margerun L., Hylton N., [et.al.] //J. Magn. Reson. Imaging. – 1996. –6. –P. 305–310.

Bryant L.H. Synthesis and relaxometry of high-generation(G= 5,7,9,and10)-PAMAMdendrimer-DOTA-gadolinium chelates / Bryant L. H., Brechbiel M. W., Wu C. C., [et.al.] // J. Magn. Reson. Imaging. – 1999. –9. –P. 48–352.

Kobayashi H. Dendrimer-based macromolecular MRI contrast agents: characteristics and application / Kobayashi H., Brechbiel M. W. // Mol. Imaging. – 2003. –2. –P. 1–10.

Dong Q. Magnetic resonance angiography with gadomer-17. An animal study original investigation / Dong Q., Hurst D. R., Weinmann H. J., [et.al.] // Invest. Radiol. – 1998. –33. –P. 699–708.

Roberts H. C. MRI of acute myocardialischemia: comparing a new contrast agent, Gd-DTPA-24-cascade-polymer, with Gd-DTPA / Roberts H. C., Saeed M., Roberts T. P., [et.al.] // J. Magn. Reson. Imaging. – 1999. –9. –P. 204–208.

Kobayashi H. Dynamic micro-magnetic resonance imaging of liver micrometastasis in mice with a novel liver macromolecular magnetic resonance contrast agent DAB-Am64-(1B4M-Gd) (64) / Kobayashi H., Saga T., Kawamoto S., [et.al.] // Cancer Res. – 2001. –61. –P. 4966–4970.

Kobayashi H. Novel liver macromolecular MR contrast agent with a polypropylenimine diaminobutyl dendrimer core: comparison to the vascular MR contrastagent with the polyamidoamine dendrimer core / Kobayashi H., Kawamoto S., Saga T., [et.al.] // Magn. Reson. Med. – 2001. –46. –P. 795–802.

Sato N. Pharmacokinetics and enhancement patterns of macromolecular MR contrast agents with various sizes of polyamidoamine dendrimer cores / Sato N., Kobayashi H., Hiraga A., [et.al.] // Magn. Reson. Med. – 2001. –46. –P. 1169–1173.

Kobayashi H. Micro-MR angiography of normal and intratumoral vessels in mice using dedicated intravascular MR contrast agents with high generation of polyamidoamine dendrimer core: reference to pharmacokinetic properties of dendrimer-based MR contrast agents / Kobayashi H., Kawamoto S., Saga T., [et.al.] // J. Magn.Reson. Imaging. – 2001. –14. –P. 705–713.

Kobayashi H. Positive effects of polyethylene glycol conjugation to generation-4 polyamidoamine dendrimers as macromolecular MR contrast agents / Kobayashi H., Kawamoto S., Saga T., [et.al.] // Magn. Reson. Med. – 2001. – 46. –P. 781–788.

Kobayashi H. Monoclonal antibody–dendrimer conjugates enable radiolabeling of antibody with markedly high specific activity with minimal loss of immunoreactivity / Kobayashi H., Sato N., Saga T., [et.al.] // Eur. J.Nucl. Med. – 2000. –27. –P. 1334–1339.

Kobayashi H. Avidin–dendrimer–(1B4M-Gd)(254): a tumor-targeting therapeutic agent for gadolinium neutron capture therapy of intraperitoneal disseminated tumor which can be monitored by MRI / Kobayashi H., Kawamoto S., Saga T., [et.al.] // Bioconj. Chem. – 2001. –12. –P. 587–593.

Kobayashi H. Comparison of dendrimer-based macromolecular contrast agents for dynamic micro-magnetic resonance lymph angiography / Kobayashi H., Kawamoto S., Choyke P. L., [et.al.] // Magn. Reson. Med. – 2003. –50. –P. 758–766.

Kobayashi H. 3D MR angiography of intratumoral vasculature using a novel macro-molecular MR contrast agent / Kobayashi H., Sato N., Kawamoto S., [et.al.] // Magn. Reson. Med. – 2001. –46. – P. 579–585.

Shirakawa K. Hemodynamics in vasculogenic mimicry and angiogenesis of inflammatory breast cancer xenograft / Shirakawa K., Kobayashi H., Heike Y., [et.al.] // Cancer Res. – 2002. –62. –P. 560–566.

Kobayashi H. Rapid accumulation and internalization of radiolabeled herceptin in an inflammatory breast cancer xenograft with vasculogenic mimicry predicted by the contrast-enhanced dynamic MRI with the macromolecular contrast agent G6-(1B4M-Gd)(256) / Kobayashi H., Shirakawa K., Kawamoto S., [et.al.] // Cancer Res. – 2002. –62. –P. 860–866.

Kobayashi H. Renal tubular damage detected by dynamic micro-MRI with a dendrimer-based magnetic resonance contrast agent / Kobayashi H., Kawamoto S., Jo S. K., [et.al.] //Kidney Int. – 2002. –61. –P. 1980–1985.

Margerum L. D. Gadolinium(III) DO3A macrocycles and polyethylene glycol coupled to dendrimers — effect of molecular weight on physical and biological properties of macromolecular magnetic resonance imaging contrast agents / Margerum L. D., Campion B. K., Koo M., [et.al.] //J. Alloys Compounds. –1997. –249. –P. 185–190.

Caravan P. The interaction of MS-325 with human serum albumin and its effect on proton relaxation rates / Caravan P., Cloutier N. J., Greenfield M. T., [et.al.] //J. Am. Chem. Soc. – 2002. –124. –P. 3152–3162.

Langereis S. Evaluation of Gd(III) DTPA-terminated poly(propylene imine) dendrimers as contrast agents for MR imaging / Langereis S.,Q.G. deLussanet, M.H.P. vanGenderen, [et.al.] // NMR Biomed. – 2006. –19. –P. 133–141.

Ross J.F. Differential regulation of folate receptor in oformsin normal and malignant-tissues in-vivo and in established cell-lines — physiological and clinical implications / Ross J.F., Chaudhuriand P.K., Ratnam M. // Cancer. – 1994. –73. –P. 2432–2443.

Campbell I.G. Folate-binding protein in amarker for ovarian-cancer / Campbell I.G., Jones T.A., Foulkesand W.D., Trowsdale J. // Cancer Res. – 1991. –51. –P. 5329–5338.

Weitman S. D. Distribution of the folate receptor Gp38 in normal and malignant-cell lines and tissues / Weitman S. D., Lark R. H., Coney L. R., [et.al.] // Cancer Res. – 1992. –52. –P. 3396–3401.

Wiener E. C.Targeting dendrimer-chelates to tumors and tumor cells expressing the high-affinity folate receptor / Wiener E. C., Konda S., Shadron A., [et.al.] // Invest. Radiol. – 1997. –32. –P. 748–754.

Konda S. D. Biodistribution of a Gd-153-folate dendrimer, generation = 4, in mice with folate-receptor positive and negative ovarian tumorxenografts / Konda S. D., Wang S., Brechbiel M., Wiener E. C. //Invest. Radiol. – 2002. –37. –P. 199–204.

Konda S. D. Development of a tumor-targeting MRcontrast agent using the high-affinity folate receptor — work in progress / Konda S. D., Aref M., Brechbiel M., Wiener E. C. // Invest. Radiol. – 2000. –35. –P. 50–57.

Yang W. L. Boronated epidermal growth factor as a delivery agent for neutron capture therapy of EGF receptor positive gliomas / Yang W. L., Barth R. F., Wu G., [et.al.] // Appl. Radiat. Isotopes. –2004. –61. –P. 981–985.

Barth R. F. Neutron capture therapy of epidermal growth factor (plus) gliomas using boronated cetuximab (IMC-C225) as a delivery agent / Barth R. F., Wu G., Yang W. L., [et.al.] // Appl. Radiat. Isotopes. – 2004. –61. –P. 899–903.

Patri A. K. Synthesis andin vitro testing of J591 antibody–dendrimer conjugates for targeted prostate cancer therapy / Patri A. K., Myc A., Beals J., [et.al.] // Bioconj. Chem. – 2004. –15. – P. 1174–1181.

Wolinsky J.B. Therapeutic and diagnostic applications of dendrimers for cancer treatment / J.B. Wolinsky, M.W. Grinstaff / Advanced Drug Delivery Reviews. –     2008. – 60. – P.1037–1055.

Siddiqui T.S. Lanthanide complexes on Ag nanoparticles: Designing contrast agents for magnetic resonance imaging / T.S. Siddiqui et al. / Journal of Colloid and Interface Science. – 2009. – 337. – p. 88–96.

Park J.-A. Gold nanoparticles functionalised by Gd-complex of DTPA-bis(amide) conjugate of glutathione as an MRI contrast agent / J.-A. Park et al. / Bioorg. Med. Chem. Lett. – 2008. – 18. – p. 6135–6137.

Park J.-A. Gold nanoparticles functionalized by gadolinium–DTPA conjugate of cysteine as a multimodal bioimaging agent / J.-A. Park et al. / Bioorg. Med. Chem. Lett. –  2010. – 20. – p. 2287–2291.

Пилипчук Е.В. Синтез и свойства нанокомпозитов на основе магнетита, модифицированного диэтилентриаминпентауксусной кислотой / Е.В. Пилипчук, А.Л. Петрановская, П.П. Горбик // Наноструктурное материаловедение. – 2012 . – № 3. – С.47-53.         

Горбик П.П. Синтез нанокомпозитів магнетит / гідроксоапатит та дослідження їх властивостей / Горбик П.П., Міщенко В.Н., Петрановська А.Л., Демченко Ю.О., Кордубан О.М., Карбовський В.Л., Шпак А.П. // Наносистеми, наноматеріали, нанотехнології. – 2009. – Т. 6, N 4. – С. 1273–1281

Ansar E. B. Synthesis and Characterization of Iron Oxide Embedded Hydroxyapatite Bioceramics / Ansar E. B., Ajeesh M., Yokogawa Y., Wunderlich W., HarikrishnaV. // Am.  Ceram.  Soc. – 2012. – V.95. – p. 2695–2699.

http://www.rmj.ru/articles_7984.htm

Lee S.S. Robinson F.M., Wang H.G., Rapid determination of yeast viability // Biotechn. Bioeng. Symp. – 1981. – N 11. – P.641 – 649

Синтез та властивості нанокомпозитів Fe3O4/гідроксиапатит/памідронова кислота/диетилентриамінпентаоцтова кислота/Gd3+ // Е.В. Пилипчук, Ю.О. Зубчук, А.Л. Петрановська, П.П. Горбик // Хімія, фізика та технологія поверхні. – 2014 в друці.

Kundu A. Strategies for the covalent conjugation of a bifunctional chelating agent to albumin: Synthesis and characterization of potential MRI contrast agents / A. Kundu et al. // Journal of Inorganic Biochemistry. – 2011. –  V.105. – p. 250–255.

Morel S. NMR relaxometric investigations of solid lipid nanoparticles (SLN) containing gadolinium (III) complexes / Morel S., Terreno E., Ugazio E., [et.al.] // Eur. J. Pharmac. Biopharmac. – 1998. –45. –P. 157–163.

Glogard C. Novel high relaxivity colloidal particles basedon the specific phase organisation of amphiphilic gadolinium chelates with cholesterol / Glogard C., Stensrud G., Klaveness J. //Int.J. Pharmac. – 2003. –253. –P. 39–48.

Debouttiere P. J. Design of gold nanoparticles formagnetic resonance imaging / Debouttiere P. J., Roux S., Vocanson F., [et.al.]// Adv. Funct. Mater. – 2006. –16. –P. 2330–2339.

Sitharaman B. Superparamagnetic gadonanotubes are high-performance MRI contrast agents/ Sitharaman B., Kissell K. R., Hartman K. B., [et.al.]// Chem.Commun. – 2005. –P. 3915–3917.

Mikawa M. Paramagnetic water-soluble metallofullerenes having the highest relaxivity for MRI contrastagents / Mikawa M., Kato H., Okumura M., [et.al.]// Bioconj. Chem. – 2001. – 12. –P. 510–514.

Kato H. Lanthanoid endohedral metallofullerenols for MRI contrast agents / Kato H., Kanazawa Y., Okumura M., [et.al.]// J. Am. Chem. Soc. – 2003. –125. –P. 4391–4397.

Toth E.Water-soluble gadofullerenes: toward high-relaxivity, pH-responsive MRIcontrast agents / Toth E., Bolskar R. D., Borel A., [et.al.]// J. Am. Chem. Soc. – 2005. –127. –P. 799–805.

Anderson S. A.Gadolinium-fullerenol as a paramagnetic contrastagent for cellular imaging/ Anderson S. A., Lee K. K., Frank J. A. // Invest. Radiol. – 2006. –41. –P. 332–338.

Hifumi H. Gadolinium-based hybrid nanoparticles as a positive MR contrast agent / Hifumi H., Yamaoka S., Tanimoto A., [et.al.]// J. Am. Chem. Soc. – 2006. –128. –P. 15090–15091.

Yan G. P. Polyaspartamide gadolinium complexes containing sulfadiazine groups as potential macromolecular MRI contrast agents / Yan G. P., Liu M. L., Li L. Y. // Bioconj. Chem. – 2005. –16. –P. 967–971.

Paschkunova-Martic I. Design, synthesis, physical and chemical characterisation, and biological interactions of lectin-targeted latex nanoparticles bearing Gd-DTPA chelates: an exploration of magnetic resonance molecular imaging (MRMI) / Paschkunova-Martic I., Kremser C., Mistlberger K., [et.al.] // Histochem. Cell Biol. –2005. –123. –P. 283–301.

BullS. R. Resonance imaging of self-assembled biomaterial scaffolds / Bull S. R., Guler M. O., Bras R. E., [et.al.] // Bioconj. Chem. –2005. –16. –P. 1343–1348.

XuZ. P.Enhancement of relaxivity rates of Gd-DTPA complexes by intercalation into layered double hydroxide nanoparticles /XuZ. P., KurniawanN. D., Bartlett P. F., LuG. Q. // Chem. Eur. J. –2007. –13. –P. 2824–2830.

Anderson E. A.Viral nanoparticles donning a paramagnetic coat: conjugation of MRI contrast agents to theMS2 capsid /Anderson E. A., Isaacman S., Peabody D. S., [et.al.] // Nano Lett. –2006. –6. –P. 1160–1164.

Platas-Iglesias C. Zeolite GdNaY nanoparticles with very high relaxivity for application as contrast agents in magnetic resonance imaging /Platas-Iglesias C., Vander Elst L., ZhouW. Z., [et.al.] // Chem. Eur. J. –2002. –8. –P. 5121–5131.

Опубліковано
2014-09-07
Як цитувати
Pilipchuk, E. V., & Gorbyk, P. P. (2014). В- та Gd-вмісні наноматеріали і нанокомпозити для нейтронзахопної терапії. Поверхня, (6(21), 150-183. вилучено із http://surfacezbir.com.ua/index.php/surface/article/view/546
Розділ
Наноматеріали і нанотехнології