Біоцидна активність осадженого кремнезему з поверхневими сполуками Ag, Cu та Zn

  • V. M. Bogatyrov Інститут хімії поверхні ім. О.О. Чуйка Національної академії наук України
  • M. V. Galaburda Інститут хімії поверхні ім. О.О. Чуйка Національної академії наук України
  • O. M. Zaichenko Інституту мікробіології і вірусології Національної академії наук України
  • K. S. Tsyganenko Інституту мікробіології і вірусології Національної академії наук України
  • Ya. I. Savchuk Інституту мікробіології і вірусології Національної академії наук України

Анотація

Модифікуванням поверхні високодисперсного кремнезему аміно-комплексами срібла, міді та цинку з водного розчину з наступною термообробкою, синтезовано кремнеземні нанокомпозити, що містять поверхневі сполуки срібла, міді та цинку. Концентрація срібла в зразках становила 1–2 %, а міді та цинку – 1–5 %. Біоцидну активність одержаних композитів вивчали по відношенню до 18 різних штамів мікроміцетів, фітопатогенних бактерій і водоростей. Встановлено, що найбільша ефективність спостерігається в зразках кремнезему, модифікованого сріблом/міддю, а також сріблом/цинком.

Посилання

Borkow G., Sidwell R.W., Smee D.F., Barnard D.L., Morrey J.D., Lara-Villegas H.H., Shemer-Avni Y., Gabbay J. Neutralizing Viruses in Suspensions by Copper Oxide-Based Filters // Antimicrob. Agents Chemother. – 2007. – V. 51. – P. 2605–2607.

Das D., Nath B.C., Phukon P., Dolui S.K. Synthesis and evaluation of antioxidant and antibacterial behavior of CuO nanoparticles // Colloids Surf. B. – 2013. – V. 101. – 430–433.

Karlsson H.L., Cronholm P., Gustafsson J., Möller L. // Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem. Res. Toxicol. – 2008. – V. 2.  – P. 1726–1732.

Mu Q., David C.A., Galceran J., Rey-Castro C., Krzeminiński Ł., Wallace R., Bamiduro F., Milne S.J., Hondow N.S., Brydson R., Vizcay-barrena G., Routledge M.N., Jeuken L.J.C., Brown A.P. Systematic investigation of the physicochemical factors that contribute to the toxicity of ZnO nanoparticles // Chem. Res. Toxicol. – 2014. – V. 27. – P. 558 – 567.

Nowack B., Krug H.F., Height M. 120 years of nanosilver history: implications for policy makers // Environ. Sci. Technol. – 2011. – V. 45. – P. 1177–1183.

Warheit D.B., Sayes C.M., Reed K.L. Nanoscale and fine zinc oxide particles: can in vitro assays accurately forecast lung hazards following inhalation exposures // Environ. Sci. Technol. – 2009. – V. 43. – P. 7939–7945.

Franklin N.M., Rogers N.J., Apte S.C., Batley G.E., Gadd G.E., Casey P.S., Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility // Environ. Sci. Technol. – 2007. – V. 41. – P. 8484–8490.

Wang Z., Lee Y.-H., Wu B., Horst A., Kang Y., Tang Y.J., Chen D.-R. Antimicrobial Activities of Aerosolized Transition Metal Oxide Nanoparticles // Chemosphere. – 2010. – V. 80. – P. 525–529.

Xu M., Fujita D., Kajiwara S., Minowa T., Li X., Takemura T., Iwai H., Hanagata N. Contribution of physicochemical characteristics of nano-oxides to cytotoxicity // Biomaterials. – 2010. – V.31. – P. 8022-8031.

Rivera-Garza M., Olguín M.T., Garsía-Sosa I., Alcántara D., Rodríguez-Fuentes  G. Silver supported on natural Mexican zeolite as an antibacterial material // Microporous  Mesoporous Mater. – 2000. – V. 39, №3. – P. 431–444.

J. Choma, D. Jamioła, J. Ludwinowicz, M. Jaroniec, Deposition of silver nanoparticles on silica spheres and rods // Colloids Surf., A. – 2012. – V. 411. – P. 74–79.

Egger S., Lehmann R.P., Height M.J., Loessner M.J., Schuppler M. Antimicrobial Properties of a novel Silver-Silica Nanocomposite Material // Appl. Environ. Microbiol. – 2009. –  V.75. – P. 2973–2976.

Flores J.C., Torres V., Popa M., Crespo D., Calderón-Moreno J.M. Preparation of Core-Shell Nanospheres of Silica-Silver: SiO2@Ag // J. Non-Cryst. Solids. – 2008. – V. 354. –  P. 5435– 5439.

Hagura N., Widiyastuti W., Iskandar F., Okuyama K. Characterization of silica-coated silver nanoparticles prepared by a reverse micelle and hydrolysis–condensation process // Chem, Eng. J. – 2010. –V. 156. – P. 200–205.

O. Niitsoo, A. Couzis Facile synthesis of silver core - silica shell composite nanoparticles // J. Colloid Interface Sci. – 2011. – 354 – P. 887–890.

Zhu M., Qian G., Hong Z., Wang Z., Fan X., Wang M. Preparation and characterization of silica–silver core-shell structural submicrometer spheres // J. Phys. Chem. Solids. 2005. – V. 66. – P. 748–752.

Rai M., Yadav A., Gade A. Silver nanoparticles as a new generation of antimicrobials // Biotechnol. Adv. – 2009. –V. 27. – P. 76-83.

Ruparelia J.P., Chatterjee A.K., Duttagupta S.P., Mukherji S. Strain specificity in antimicrobial activity of silver and copper nanoparticles // Acta Biomater. – 2008. – V. 4. – P. 707–716.

Zielecka M., Bujnowska E., Kępska B., Wenda M., Piotrowska M. Antimicrobial additives for architectural paints and impregnates // Prog. Org.Coat. – 2011. –V. 72. – P. 193–201.

Chiericatti C., Basílico J.C., Basílico M.L.Z., Zamaro J.M. Antifungal activity of silver ions exchanged in mordenite // Microporous  Mesoporous Mater. – 2014. – V. 188. – P. 118–125.

Malachová K., Praus P., Rybková Z., Kozák O. Antibacterial and antifungal activities of silver, copper and zinc montmorillonites // Appl. Clay Sci. – 2011. – V. 53. – P. 642–645.

Top A., Ülkü S. Silver, zinc, and copper exchange in a Na-clinoptilolite and resulting effect on antibacterial activity // Appl.Clay Sci. – 2004. – V. 27. – P. 13–14.

Flores J.C., Torres V., Popa M., Crespo D., Calderon-Moreno J.M. Variations in morphologies of silver nanoshells on silica spheres // Colloids Surf., A. – 2008. – V. 330. – P. 86–90.

Kundu S., Mandal M., Ghosh S.K., Pal T. Photochemical deposition of SERS active silver nanoparticles on silica gel // J. Photochem. Photobiol., A. – 2004. – V. 162. – P 625–632.

Lee J.-M., Kim D.-W., Jun Y.-D., Oh S.-G. Preparation of silica–silver heterogeneous nanocomposite particles by one-pot preparation strategy using polyol process: Size-controlled immobilization of silver nanoparticles // Mater. Res. Bull. – 2006. – V. 41. – P. 1407–1416.

Cho J., Salleh N., Blanco C., Yang S., Lee C.-J., Kim Y.-W., Kim J., Liu J. Novel synthetic methodology for controlling the orientation of zinc oxide nanowires grown on silicon oxide substrates // Nanoscale. – 2014. – V. 6. – P. 3861–3867.

Ji Z., Yang C., Liu K., Ye Z. Fabrication and characterization of p-type ZnO films by pyrolysis of zinc-acetate–ammonia solution // J. Cryst. Growth. – 2003. – V. 253. – P. 239–242.

Mbamara U.S., Akinwunmi O.O., Obiajunwa E.I., Ojo I.A.O., Ajayi E.O.B. Deposition and Characterization of N-doped ZnO Thin Films by MOCVD using Zinc Acetate-Ammonium Acetate Precursor // J. Modern Phys. – 2012. – V. 3. – P. 652–659.

Montazer M, Shamei A, Alimohammadi F.// Synthesis of nanosilver on polyamide fabric using silver/ammonia complex // Mater. Sci. Eng., C. – 2014. –  V. 38. – P.170–176.

Smith G.W., Jacobson H.W. Characteristics of adsorption of complex metal-ammines and other complex ions of zinc, copper, cobalt, nickel and silver on silica gel // J. Phys. Chem. – 1956. – V. 60. – P. 1008–1012.

Trouillet L., Toupance T., Villain Ó., Louis C. In situ characterization of the coordination sphere of CuII complexes supported on silica during the preparation of Cu/SiO2 catalysts by cation exchange // Phys. Chem. Chem. Phys. – 2000. – V. 2. – P.  2005–2014.

Tominaga H., Ono Y., Keii T. Spectroscopic study of Cu(II) ions supported on silica gel by cation exchange method // J. Catal. – 1975. – V. 202. – P. 197–202.

Dickerson R.E., Gray H.B., Haight G.P. Chemical principles, 3rd edition, chapter 20.  London-Amsterdam: The Benjamin/Cummings Publishing Co Inc., 1979. – P. 735–786.

Singh J., Yu C.W.F., Kim J.T., Building pathology, investigation of sick buildings – toxic moulds // Indoor Built Environ. – 2010. – V. 19. – P. 40–47.

Опубліковано
2015-09-09
Як цитувати
Bogatyrov, V. M., Galaburda, M. V., Zaichenko, O. M., Tsyganenko, K. S., & Savchuk, Y. I. (2015). Біоцидна активність осадженого кремнезему з поверхневими сполуками Ag, Cu та Zn. Поверхня, (7(22), 119-125. вилучено із http://surfacezbir.com.ua/index.php/surface/article/view/574
Розділ
Фізико-хімія поверхневих явищ