Лазер-індуковані фазові перетворення та абляція на поверхні твердих тіл (Огляд)

  • O. Yu. Semchuk Інститут хімії поверхні ім. О.О.Чуйка Національної академії наук України
  • O. O. Havryliuk Інститут хімії поверхні ім. О.О.Чуйка Національної академії наук України https://orcid.org/0000-0003-4487-0537
  • A. A. Biliuk Інститут хімії поверхні ім. О.О.Чуйка Національної академії наук України
Ключові слова: лазерне випромінювання, фазові перетворення, фазові переходи, лазерне загартування, лазерна абляція, напівпровідники, лазер-індуковані нестійкості, дефекти

Анотація

Фазові переходи лежать в основі широкого кола процесів зміни складу, структури та властивостей матеріалів, протікання яких в часі визначається кінетикою переносу тепла та маси в твердих тілах. Основною відмінністю лазерного впливу на конденсоване середовище, на відміну від інших джерел енергії, є локальність. Зокрема, локальність по часу визначає можливість отримання великої потужності, локальність в просторі визначає високу густину енергії, локальність в частотному діапазоні визначає передумови для управління процесом поглинання випромінювання речовиною. Тому класична теорія фазових переходів, що будується на термодинамічних уявленнях про повільні процеси переносу тепла та маси, в багатьох випадках виявляється непридатною для описання лазер-індукованих фазових переходів і вимагає суттєвої модифікації. Об’ємний характер поглинання лазерного випромінювання, неоднорідність розподілу інтенсивності теплових джерел в просторі і часі, нестаціонарність та неізотермічність протікаючих процесів суттєво ускладнюють фізичні та математичні моделі фазових переходів, ініційованих лазерним випромінюванням. В огляді детально розглядаються особливості фазових переходів (перетворень) та абляції, що відбуваються під впливом інтенсивного лазерного випромінювання в непрозорих поглинаючих твердих тілах. Розглянуто сучасні моделі структурно-фазових переходів в твердому стані та переходів твердий стан-рідина в ковалентних напівпровідниках. Окремо проаналізовано механізми утворення лазер-індукованих нестійкостей в твердих тілах. Проаналізовано різні теоретичні моделі лазерної абляції та межі їх застосування. Розглянуто процес лазерної абляції великих молекул зі спеціально виготовлених матриць.

Посилання

1. Rethfeld V.V., Temnov K., Sokolowski-Tinten P., Tsu P. Superfast thermal melting of solids under the action of femtosecond laser pulses. J. Opt. Technol. 2004. 71 (6): 348. [in Russian]. https://doi.org/10.1364/JOT.71.000348

2. Yakovlev E.B. Overheating of solids during melting. Proc. USSR Academy of Sciences. Ser. Phis. 1989. 53(3):591. [in Russian].

3. Panchenko V.Ya. Laser technologies for materials processing: modern problems of fundamental research and applied research. (Moscow: FIZMATLIT, 2004). [in Russian].

4. Carslaw H.S., Jaeger J.C. Conduction of Heat in Solids. (London: Oxford University Press, 1959).

5. Gverdzitely I.G., Gerasimov A.B., Pkakadze M.G., Tsercvadze A.A. On the possible mechanism of the solid-liquid phase transition in covalent semiconductors. BULLETIN of the ACADEMY of SCIENCES of the GEORGIAN SSR. 1984. 115(3): 513. [in Russian].

6. Kopaev Yu.V., Meniailenko V.V., Molotkov S.N. Nonequilibrium phase transition in covalent semiconductors under the laser irradiation. Solid State Physics. 1988 .27(11): 3288. [in Russian].

7. Gverdzitely I.G., Gerasimov A.B., Dzhibuti Z.V., Pkakadze M.G. On the mechanism of laser annealing of semiconductors. "Surface" (physics, chemistry, mechanics). 1985. 11: 132. [in Russian].

8. Emelyanov V.I., Kashkarov P.K., Chechenin N.G., Dietrich T. Formation of periodic structures of defects on the surface of semiconductors under pulsed laser irradiation. Solid State Physics. 1988. 30: 2259. [in Russian].

9. Emelyanov V.I., Uvarova I.F. Electron deformation thermal instability and phase transition of a semiconductor-metal under the action of laser radiation with the formation of superstructures. ZhETF. 1988. 94(8): 255. [in Russian].

10. Emelyanov V.I., Uvarova I.F. Vacantion deformation instability with the formation of ordered structures under laser action on thin metal plates. Metallofizika. 1989. 11(5): 101. [in Russian].

11. Emelyanov V.I., Sumtabov A.A. Crystallization-deformation-thermal instability and formation of ordered structures at laser crystallization. "Surface" (physics, chemistry, mechanics). 1988. 7: 122. [in Russian].

12. Mirzoev F.Kh., Panchenko V.Ya., Shelepin L.A. Spatial ordering of defects by laser radiation. J. Soviet Laser Res. 1989. 10(5): 404. https://doi.org/10.1007/BF01120337

13. Mirzoev F.Kh., Shelepin L.A. Nonlinear waves of deformation and defect density in metal plates under the influence of external energy flows. Zhurnal tekhnicheskoy fiziki. 2001. 71(8): 22. [in Russian].

14. Emelyanov V.I., Makin B.C., Uvarova I.F. Formation of ordered vacancy-deformation structures on the surface of a metal under laser irradiation. Physics and Chemistry of Materials Treatment. 1990. 2: 12. [in Russian].

15. Landau L.D., Lifshits E.M. Theoretical Physics: A Manual for University Students. (Moscow: Nauka, 1987). [in Russian].

16. Anisimov S.I., Bonch-Bruevich A.M., Elyashevich M.A., Imas Ya.A., Pavlenko H.A., Romanov G.S. Effect of powerful light streams on metals. Zhurnal tekhnicheskoy fiziki. 1966. 36: 1273. [in Russian].

17. Krueger J., Kautek W. Femtosecond-pulse visible laser processing of transparent materials. Appl. Surf. Sci. 1996. 96–98: 430. https://doi.org/10.1016/0169-4332(95)00446-7

18. Rosenfeld A., Campbelli E.E.B. Picosecond UV-laser ablation of Au and Ni films. Appl. Surf. Sci. 1996. 96-98: 439. https://doi.org/10.1016/0169-4332(95)00447-5

19. Cavalleri A., Sokolowski-Tinten K., Bialkowski J., von der Linde D. Femtosecond Laser Ablation of Gallium Arsenide investigated with Time of Flight Mass Spectroscopy. Appl. Phys. Lett. 1998. 72(19): 2385. https://doi.org/10.1063/1.121364

20. Bäuerle D. Laser Processing and Chemistry. (Berlin: Springer, 2000). https://doi.org/10.1007/978-3-662-04074-4

21. Bäuerle D., Luk'yanchuk B., Bityurin N., Anisimov S. Pulsed-Laser Ablation. Excimer Lasers. (Dordrecht: Kluwer Academic Publ.,1994).

22. Haglund R.F. Mechanisms of Laser-Induced. Laser Ablation and Desorption. 1997. 30: 15. https://doi.org/10.1016/S0076-695X(08)60394-4

23. Arnold N., Luk'yanchuk B., Bityurin N. A fast quantitative modeling of ns laser ablation based on non-stationary averaging technique. Appl. Surf. Sci. 1998. 127-129: 184. https://doi.org/10.1016/S0169-4332(97)00630-2

24. Arnold N., Luk'yanchuk B., Bityurin N.N., Himmelbauer V. UV-Laser ablation of polyimide: From long to ultra short pulses. Nucl. Instrum. Methods Phys. Res., Sect. B. 1997. 122(3): 347.

25. Arnold N., Luk'yanchuk B., Bityurin N., Baeuerle D. Modeling of nanosecond-laser ablation: calculations based on a nonstationary averaging technique (spatial moments). Proc. SPIE. 1998. 3343: 484. https://doi.org/10.1117/12.321526

26. Gray D.E. American Institute of Physics Handbook 3rd ed. (McGraw-Hill Book Company, 1972).

27. Anisimov S.I., Imas Ya.A., Romanov G.S., Khodyko Yu.V. Effect of high power radiation on metals. (Moscow: Nauka, 1970). [in Russian].

28. Vorobev Yu.M. The method of moments in applied mathematics. (Moscow: Fizmatgiz, 1958). [in Russian].

29. Samara A.A., Galaktionov V.A., Kurdyumov S.P., Mikhailov A.P. Modes with aggravation in problems for quasilinear parabolic equations. (Moscow: Nauka, 1987). [in Russian].

30. Zwillinger D. Handbook of Differential Equations. (Boston: Academic Press, 1989).

31. Kirchhoff G. Lectures on the theory of heat. (Leipzig, 1894).

32. Brunco D.P., Thompson M.O., Otis C.E., Goodwin P.M. Temperature measurements of polyimide during KrF excimer laser ablation. J. Appl. Phys. 1992. 72(9): 4344. https://doi.org/10.1063/1.352198

33. Preuss S., Demchuk A., Stuke M. Sub-picosecond UV laser ablation of metals. Appl. Phys. 1995. 61(1): 33. https://doi.org/10.1007/BF01538207

34. Götz T., Stuke M. Short-pulse UV laser ablation of solid and liquid metals: indium. Appl. Phys. 1997. 64(6): 539.

35. Andronov A.A., Witt A.A., Khaikin S.E. Theory of Oscillations. (Moscow: Nauka, 1981). [in Russian].

36. Falkovskii L.A., Mishchenko E.Zh. Phonon-plasmon bonded modes in hetero-superlattices. JETP Lett. 2005. 82(2): 103. [in Russian].

37. Anisimov S.I., Rethfeld B. On the theory of ultrashort laser pulse interaction with a metal. Bulletin of the Russian Academy of Sciences: Physics. 1997. 61(8): 1284.

38. Hohlfeld J., Müller J.G., Wellershoff S.-S., Matthias E. Time-resolved thermoreflectivity of thin gold films and its dependence on film thickness. Appl. Phys. 1997. 64(3): 387. https://doi.org/10.1007/s003400050189

39. Güdde J., Hohlfeld J., Müller J.G., Matthias E. Damage threshold dependence on electron–phonon coupling in Au and Ni films. Appl. Surf. Sci. 1998. 127–129: 40. https://doi.org/10.1016/S0169-4332(98)00002-6

40. Luk'yanchuk B.S., Anisimov S.I., Lu Yongfeng. Dynamics of subpicosecond laser ablation examined by moments technique. Nonresonant Laser-Matter Interaction. 2001. 4423: 141. https://doi.org/10.1117/12.431216

41. Anisimov S.I., Galburt V.A., Ivanov M.F., Poyurovskaya I.E., Fisher V.I. Contribution to the theory of interaction between laser radiation and metals. Zhurnal tekhnicheskoy fiziki. 1979. 49(3): 512. [in Russian].

42. Zeldovich Ya.B., Raiser Yu.P. Physics of shock waves and high-temperature hydrodynamic phenomena. (Moscow: Nauka, 1966). [in Russian].

43. Kikoin I.K., Senchenko A.P. Electrical conductivity and the equation of state of mercury in the temperature range 0-200 °C and a pressure of 200-5000 atmospheres. Fizika Metallov i Metallovedeniye. 1967. 24(5): 843. [in Russian].

44. Landau L.D., Lifshits I.M. Theoretical Physics. V. 5. Part 1. Statistical physics. Ed. 4th, correct. (Moscow: Nauka, 1995). [in Russian].

45. Anisimov S.I., Bendersky V.A., Farkash, D. Nonlinear Photoelectric Effect in Metals Under the Action of Laser Radiation. Physics-Uspekhi. 1977. 122: 185. [in Russian].

46. Kontorovich I.I. Nonlinear surface photoelectric effect of metal materials under the action of high-power light radiation. Zhurnal tekhnicheskoy fiziki. 1977. 47(2): 660. [in Russian].

47. Girardeau-Montaut J.P., Girardeau-Montaut C. Theory of ultrashort nonlinear multiphoton photoelectric emission from metals. Phys. Rev. B. 1995. 51: 13560. https://doi.org/10.1103/PhysRevB.51.13560

48. Agranat M.B., Anisimov S.I., Makshantsev B.I. The anomalous thermal radiation from metals produced by ultrashort laser pulses. Appl. Phys. 1988. 47(3): 209. https://doi.org/10.1007/BF00697339

49. Agranat M.B., Anisimov S.I., Makshantsev B.I. The anomalous thermal radiation of metals produced by ultrashort laser pulses. Appl. Phys. 1992. 55(5): 451. https://doi.org/10.1007/BF00325186

50. Von der Linde D., Sokolowski-Tinten K., Bialkowski J. Laser–solid interaction in the femtosecond time regime. Appl. Surf. Sci. 1996. 109–110: 1.

51. Sokolowski-Tinten K., Bialkowski J., Cavalleri A., Boing M., Schueler H., Von der Linde D. Dynamics of femtosecond-laser-induced ablation from solid surfaces. Proceedings of SPIE - The International Society for Optical Engineering. 1998. 3343: 46.

52. Sokolowski-Tinten K., Bialkowski J., Cavalleri A., Von der Linde D., Oparin. A., Meyer-ter-Vehn J., Anisimov S.I. Transient States of Matter during Short Pulse Laser Ablation. Phys. Rev. Lett. 1998. 81: 224. https://doi.org/10.1103/PhysRevLett.81.224

53. Inogamov N.A., Oparin A.M., Petrov Yu.V., Shaposhnikov N.V., Anisimov S.I., Fon der Linde D., Mayer-ter-Fen Y. Scattering of a substance heated by an ultrashort laser pulse. JETP Lett. 1999. 69(4): 284. [in Russian].

54. Inogamov N.A., Anisimov S.I., Retfeld B.Zh. The rarefaction wave and gravitational equilibrium in a two-phase liquid – vapor medium. JETP. 1999. 88(6): 1143. https://doi.org/10.1134/1.558903

55. Anisimov S.I, Inogamov N.A., Oparin A.M., Rethfeld B., Yabe T., Ogawa M., Fortov V.E. Pulsed laser evaporation: equation-of-state effects. Appl. Phys. 1999. 69(6): 617. https://doi.org/10.1007/s003390051041

56. Bushman A.V., Lomonosov I.V., Fortov V.E. Equations of state of metals at high energy densities. (Chernologovka: Institute of Chemical Physics, RAN, 1992). [in Russian].

57. Bennett B.I., Johnson J.D., Kerley G.I., Rood G.T. Recent developments in the Sesame equation-of-state library. (New Mexico: Los Alamos Scientific Lab., 1978). https://doi.org/10.2172/5150206

58. Luk'yanchuk B., Bityurin N., Anisimov S., Bäuerle D. The role of excited species in UV-laser materials ablation Part I: Photophysical ablation of organic polymers. Appl. Phys. 1993. 57(4): 367. https://doi.org/10.1007/BF00332291

59. Luk'yanchuk B., Bityurin N., Anisimov S., Bäuerle D. The role of excited species in UV-laser materials ablation Part II. The stability of the ablation front. Appl. Phys. 1993. 57(5): 449. https://doi.org/10.1007/BF00331785

60. Luk'yanchuk B. Bityurin N. Anisimov S. Bäuerle D. The role of excited species in UV-laser materials ablation Part III. Non-stationary ablation of organic polymers. Appl. Phys. 1996. 62(5): 397. https://doi.org/10.1007/BF01567110

61. Luk'yanchuk B., Bityurin N., Himmelbauer M., Arnold N. UV-laser ablation of polyimide: from long to ultra-short laser pulses. Nucl. Instrum. Methods Phys. Res. 1997. 122: 347. https://doi.org/10.1016/S0168-583X(96)00759-8

62. Luk'yanchuk B., Bityurin N., Malyshev A., Anisimov S., Arnold N., Bäuerle D. Photophysical ablation. High-Power Laser Ablation. 1998. 3343: 58. https://doi.org/10.1117/12.321601

63. Frisoli J.K., Hefetz Y., Deutsch T.F. Time-resolved UV absorption of polyimide. Appl. Phys. 1991. 52(3): 168. https://doi.org/10.1007/BF00750946

64. Aksenov V., Mikhailova G., Boneberg J., Leiderer P., Muenzer H. Thermally stimulated luminescence from porous silicon. Nonresonant Laser-Matter Interaction. 2001. 4423: 70. https://doi.org/10.1117/12.431204

65. Akhsakhalyan A.D., Gaponov S.V., Luchin V.I., Chirimanov A.P. Angular distribution of erosive laser plasma expanding into vacuum. Zhurnal tekhnicheskoy fiziki. 1988. 58(10): 1885. [in Russian].

66. Venkatesan T., Wu X.D., Inam A., Wachtman J.B. Observation of two distinct components during pulsed laser deposition of high Tc superconducting films. Appl. Phys. Lett. 1988. 52: 1193. https://doi.org/10.1063/1.99673

67. Serna R., Afonso C.N. In situ growth of optically active erbium doped Al2O3 thin films by pulsed laser deposition. Appl. Phys. Lett. 1998. 69: 1541. https://doi.org/10.1063/1.117998

68. Kools J.C.S., Baller T.S., De Zwart S.T., Dieleman J. Gas flow dynamics in laser ablation deposition. J. Appl. Phys. 1998. 71: 4547. https://doi.org/10.1063/1.350772

69. Antonio Miotello, Roger Kelly, Bodil Braren, Charles Otis. Novel geometrical effects observed in debris when polymers are laser sputtered. Appl. Phys. Lett. 1992. 61: 2784. https://doi.org/10.1063/1.108090

70. Anisimov S.I., Bäuerle D., Luk'yanchuk B.S. Gas dynamics and film profiles in pulsed-laser deposition of materials. Phys. Rev. 1993. 48: 12076. https://doi.org/10.1103/PhysRevB.48.12076

71. Singh R., Narayan J. Pulsed-laser evaporation technique for deposition of thin films: Physics and theoretical model. Phys. Rev. 1990. 41: 8843. https://doi.org/10.1103/PhysRevB.41.8843

72. Basov N.G., Dementiev V.A., Krokhin O.N., Sklizkov G.V. Heating and expansion of the plasma produced by the interaction of a focused giant laser pulse on a solid target. JETP. 1967. 24(4): 659.

73. Hansen T.N., Lunney J.G. Langmuir probe study of plasma expansion in pulsed laser ablation. Appl. Phys. A. 1999. 69(6): 601. https://doi.org/10.1007/s003390051485

74. Geohegan D. Physics and diagnostics of laser ablation plume propagation for high-Tc superconductor film. Thin Solid Films. 1992. 220(1–2): 138. https://doi.org/10.1016/0040-6090(92)90562-P

75. Matzen M.K., Morse R.L. Structure and observable characteristics of laser driven ablation. The Physics of Fluids. 1979. 22: 654. https://doi.org/10.1063/1.862636

76. Dyson J. Dynamics of a Spinning Gas Cloud. Journal of Mathematics and Mechanics. 1968. 18(1): 91. https://doi.org/10.1512/iumj.1969.18.18009

77. Dawson J., Kaw P., Green B. Optical Absorption and Expansion of Laser Produced Plasmas. The Physics of Fluids. 1969. 12: 875. https://doi.org/10.1063/1.1692570

78. Anisimov S.I., Luk'yanchuk B.S., Luches A. Dynamics of three-dimensional expansion of vapor during pulsed laser evaporation. JETP. 1995. 81(1): 129.

79. Karas M., Hillenkamp F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal. Chem. 60(20): 2299. https://doi.org/10.1021/ac00171a028

80. Berkenkamp S., Kirpekar F., Hillenkamp F. Infrared MALDI Mass Spectrometry of Large Nucleic Acids. Science. 1998. 281(5374): 260. https://doi.org/10.1126/science.281.5374.260

81. Ákos Vértes, Renaat Gijbels, Freddy Camiel, Valentin Adams. Laser ionization mass analysis. (New York: Wiley, 1993).

82. Dong-Jing Fu, Kai Tang, Andreas Braun, Dirk Reuter, Brent L. Iverson, Brigitte Darnhofer-Demar, Daniel P. Little, Maryanne J. O'Donnell, Charles R. Cantor, Hubert Köster. Sequencing exons 5 to 8 of the p53 gene by MALDI-TOF mass spectrometry. Nat. Biotechnol. 1998. 16: 381. https://doi.org/10.1038/nbt0498-381

83. Puretzky A.A., Geohegan D.B., Hurst G.B., Buchanan M.V., Luk'yanchuk B.S. Imaging of Vapor Plumes Produced by Matrix Assisted Laser Desorption: A New Plume Sharpening Effect. Phys. Rev. Lett. 1999. 83(2): 444. https://doi.org/10.1103/PhysRevLett.83.444

84. Luk'yanchuk B.S., Kirichenko N.A., Puretzky A.A., Geohegan D.B. Dynamics of the vapor plumes produced by the MALDI technique. Proc. SPIE. 2000. 4070: 166. https://doi.org/10.1117/12.378152

85. Werwa E., Seraphin A.A., Chin L.A., Zhou Chuxin, Kolenbrander K.D. Synthesis and processing of silicon nanocrystallites using a pulsed laser ablation supersonic expansion method. Appl. Phys. Lett. 1994. 64(14): 1821.  https://doi.org/10.1063/1.111766

86. Marine W. Advanced Laser Processing of Materials: Fundamentals and Applications (Pittsburgh, Pa.: Materials Res. Soc., 1996).

87. Movtchan I.A., Marinea W., Dreyfusa R.W., Leb H.C., Sentisb M., Autricb M. Optical spectroscopy of emission from Si—SiOx nanoclusters formed by laser ablation. Appl. Surf. Sci. 1996. 96–98: 251. https://doi.org/10.1016/0169-4332(95)00429-7

88. Yuka Yamada, Takaaki Orii, Ikurou Umezu, Shigeru Takeyama, Takehito Yoshida. Optical Properties of Silicon Nanocrystallites Prepared by Excimer Laser Ablation in Inert Gas. Jpn. J. Appl. Phys. 1996. 35(1): 1361. https://doi.org/10.1143/JJAP.35.1361

89. Tetsuya Makimura, Yasuhiko Kunii, Naoto Ono, Kouichi Murakami. Visible Light Emission from SiOx Films Synthesized by Laser Ablation. Jpn. J. Appl. Phys. 1996. 35(12B, Part 2): 4680.

90. Shoutian Li., Silvers S.J., Samy El-Shall M. Surface Oxidation and Luminescence Properties of Weblike Agglomeration of Silicon Nanocrystals Produced by a Laser Vaporization−Controlled Condensation Technique. J. Phys. Chem. 1997. 101(10): 1794. https://doi.org/10.1021/jp963192m

91. Serna R., Afonso C.N. In situ growth of optically active erbium doped Al2O3 thin films by pulsed laser deposition. Appl. Phys. Lett. 1996. 69(11): 1541. https://doi.org/10.1063/1.117998

92. Raiser Yu.P. Residual Ionization of a Gas Expanding in Vacuum. JETP. 1960. 10(2): 411.

93. Luk'yanchuk B., Marine W., Anisimov S.I. Condensation of Vapor and Nanoclusters Formation within the Vapor Plume, Produced by ns-Laser Ablation of Si. Laser Phys. 1998. 8(1): 291.

94. Luk'yanchuk B.S., Marine W., Anisimov S.I., Simakina G.A. Condensation of vapor and nanoclusters formation within the vapor plume produced by nanosecond laser ablation of Si, Ge, and C. High-Power Laser Ablation. 1999. 3618: 434. https://doi.org/10.1117/12.352703

95. Kuwata Y., Luk'yanchuk B.S., Yabe Takashi. Nanocluster formation within the vapor plume produced by nanosecond laser ablation: effect of the initial density and pressure distributions. Proc. SPIE. 2000. 4065: 441. https://doi.org/10.1117/12.407397

96. Luk'yanchuk B.S., Luches A., Blanco A., Orofino V. Physical modeling of interstellar dust. Proc. SPIE. 2000. 4070: 154. https://doi.org/10.1117/12.378151

97. Frenkel Ya.I. Kinetic theory of liquids. Collected Works. V. 3. (Leningrad: From-USSR Academy of Sciences, 1959). [in Russian].

98. Lifshits E.M., Pitaevsky L.P. Theoretical physics. Physical kinetics. V. 10. (Moscow: Nauka, 1979). [in Russian].

99. Gunton J.D., San Miguel M., Sahni P.S. The Dynamics of First Order Phase Transitions. Phase Transitiona and Critical Phemomena. 1983. 8: 269.

100. Bashkirov A.G. Nonequilibrium Statistical Mechanics of Heterogeneous Fluid Systems. (Boca Raton, FL: CRC Press, 1995).

101. Luk'yanchuk B., Arnold N., Bityurin N. Non-stationary effects in laser ablation of indium: Calculations based on spatial moments technique. Laser. Phys. 1998. 8(1): 47.

102. Arnold N.D., Luk'yanchuk B.S., Bityurin N., Baeuerle D. Modeling of nanosecond-laser ablation: calculations based on a nonstationary averaging technique (spatial moments). High-Power Laser Ablation. 1998. 3343: 484. https://doi.org/10.1117/12.321526

103. Marine W., Luk'yanchuk B., Senti M. Silicon nanocluster synthesis by conventional laser Ablation. Le Vide Sci. Tech. Appl. 1998. 288: 440.

Опубліковано
2019-01-11
Як цитувати
Semchuk, O. Y., Havryliuk, O. O., & Biliuk, A. A. (2019). Лазер-індуковані фазові перетворення та абляція на поверхні твердих тіл (Огляд). Поверхня, (10(25), 62-117. https://doi.org/10.15407/Surface.2018.10.062
Розділ
Теорія хімічної будови і реакційної здатності поверхні.