Thermodynamic approach to description of the properties of nanoparticles and nanosystems

  • V. V. Lobanov Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine
  • M. I. Terebinska Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine
  • O. I. Tkachuk Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine
Keywords: nanoparticles, nanosystems, chemical approach, supermolecule, chemical potential, de Broglie wavelength, micelle formation, aggregation, nano-thermodynamics, state diagram, solidus line, liquidus line


Conditions for the applicability of basic concepts of equilibrium and non-equilibrium thermodynamics to the description of nanoparticles and systems built of them are discussed in this review. Coherent interpretation of a nanoparticle as a chemical object allows one to classify both crystalline and amorphous nanoparticles of solids as well as their aggregates of the same nature and increasing size as homologous series; on the other hand, nanoparticles of the same composition but different size are classified as isomers. Such an interpretation is based on the concept of the chemical potential of nanoparticles which takes external energetic conditions into account automatically, while the internal energetic effect is considered in terms of the phase approach.

Application of the chemical approach to describe the properties of micelles allowed one to provide an extended interpretation of the minimum-surface free-energy principle at a given volume of a solid.

In the framework of chemical notions, application of the concepts of the nanothermodynamics allows one to determine the properties of small-sized nanoparticles and describe their behavior as nanosystems grow.

Passing from phase diagrams of bulk materials to those of nanosystems requires a substantial revision of customary notions like “solubility”, “solidus”, “liqvidus”, “solubility diagram”, “nanophase diagram”, etc.


1. Hill T. L. Thermodynamics of small systems. New York: Benjamin, 1963. Part I: 171.

2. Hill T. L. Perspective: nanothermodyna-mics. Nano Let. 2001. 1(3):111, 273.

3. Rusanov, A. I. Nanothermodynamics. Jour. Phys. Chem. 2003. 77(10): 1736. [in Russian].

4. Rusanov A.I. Nanothermodynamics: a chemical approach. Rus. Chem. Jour. 2006. 50(2): 145. [in Russian].

5. Rowlinson J. S. Statistical thermodynamics of small systems and interfaces. Pure & Appl. Chem. 1987. 59(1): 15.

6. Hill T. L. Thermodynamics of small systems // New York: Benjamin. – 1964 – Part II. – 171 p.

7. Tsallis C. Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 1988. 52(1–2): 479.

8. Sevick et al. Fluctuation theorem. Annu. Rev. Phys. Chem. 2008. 59: 633.

9. Rubí J.M. The non-equilibrium thermodynamics approach to the dynamics of mesoscopic systems. Non-Equilib. Thermodyn. 2004 – 29(4): 315.

10. Gemmer J., Mathias M., Günter M. Quantum thermodynamics. emergence of thermodynamic behavior within composite quantum systems. Springer. 2004. 305.

11. Rusanov A. I., Krotov V. V., Cadenhead D. A., Danielli J. E. Acad. Press. 1979. 13: 415.

13. Rusanov A. I., Shchekin A. K. Generalization of the Laplace equation for non-spherical interfaces in external fields . Mendeleev Communications. 2000. 4: 128.

14. Rusanov A.I., Grinin A.P., Kuni F.M., Shchekin A.K. Nanostructured models of micelles and domicellar aggregates. Journal total chemistry 2002. 72(4): 651. [in Russian].

15. Supporter A. Century Thermodynamics of heterogeneous systems. LSU T. 1. 1967: 472, T. 2. 1969: 190. [in Russian].

16. Landau L. D, Lifshits E.M. Theoretical Physics. V. 5, 9. Statistical physics. In 2. M.: FIZMATLIT. 2010. [in Russian].

17. Fortov V.E. The equations of state of matter: from ideal gas to quarkgluon plasma. M.: FIZMATLIT. 2012: 492. [in Russian].

18. Gibbs J. W. The Scientific Papers. Longmans Green. 1906: 219.

19. Nikolis G., Prigogine I. Self-organization in nonequilibrium systems. From dissipative structures to orderliness through fluctuations. M.: Mir. 1979: 512. [in Russian].

20. Gerasimov Ya.I., Dreving VP, Eremin EI, Kiselev AV, Lebedev VP, Panchenkov G.M., Shmygin A.I. The course of physical chemistry. M.: Chemistry. T. 1, 1964: 624, T. 2. 1973: 624.

21. Rusanov A.I. Dokl. Academy of Sciences of the USSR. 1980. 253(4):917. [in Russian].

22. Rusanov A. I. Micel formation in solutions of surface-active substances. Chemistry. 1992: 280. [in Russian].

23. Israelachvili J. N., Mithell D. J., Ninham B. W. J. Chem. Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers // Soc. Faraday Trans. 2. 1976. 72(9) 1525.

24. Rusanov A. I. Colloids Surf. 1993. 76(17): 13.

25. Rusanov A. I., Kuni F. M., Shchekin A. K. Phase and aggregative characterization of micellar systems // Colloids and Surfaces A: Physicochemical and Engineering Aspects.1997. 128: 13.

26. Murray R. C., Hartley G. S. Equilibrium between micelles and simple ions, with particular reference to the solubility of long-chain salts // Trans. Faraday Soc. – 1935. 31(164): 183.

27. Rusanov A.I. West. LSU.1988. 4(4): 35. [in Russian].

28. Gibbs J. V. Thermodynamic works. M.: Goskhimizdat. 1950: 422. [in Russian].

29. Berry R.S., Smirnov B.M. Phase transitions in clusters of various types. UFN. 2009. 179(2): 147. [in Russian].

30. Babuk V. A., Zelikov A. D., Salimullin R. M. Nanothermodynamics as a tool for describing small-sized objects of the natural world. Journal of Technical Physics. 2013. 83(2): 1.

31. Glushko V. P. Thermodynamic and Thermophysical Properties of Combustion Products [Text] // Reference book of the Academy of Sciences of the USSR, VINITI. 1971. 1: 266.

32. Smirnova N. A. Methods of statistical thermodynamics in physical chemistry. M.: Higher School 1982: 356.

33. Wautelet M., Shirinyan A. S. Thermodynamics: Nano vs. Macro Pure Appl. Chem. 2009. 81(10): 1921.

34. D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, S. R. Phillpot. J. Appl. Phys. 2003. 93: 793.

35. Kittel C. Physique de l'Etat Solide. // Dunod, Paris 1998. 640.

36. Wautelet M. Estimation of the variation of the melting temperature with the size of small particles, on the basis of a surface-phonon instability model. J. Phys. D: Appl. Phys. 1991. 24(3): 343.

37. K. K. Nanda, S. N. Sahu, S. N. Behera. Liquid-drop model for the size-dependent melting of low-dimensional systems Phys. Rev. A. 2002. 66: 013208.

38. Guisbiers G., Abudukelimu G., Clement F., Wautelet M. Theoretical investigation of size and shape effects on the melting temperature of ZnO nanostructures J. Comput. Theor. Nanosci. 2007. 4: 309.

39. Guisbiers G., Kazan M., Overschelde Van O., Wautelet M., Pereira S. Mechanical and Thermal Properties of Metallic and Semiconductive Nanostructures J. Phys. Chem. C. 2008. 112(11): 4097.

40. Denbigh, P. N. Marcus R. B. Thin Solid films. J. Appl. Phys. 1966. 37(2):4325.

41. Chopra K. L. Thin Film Epitaxial Structures Phys. Status Solidi 1969. 32(2): 489.

42. Guisbiers G., Overschelde O. Van, Wautelet M. Theoretical investigation of size and shape effects on the melting temperature and energy bandgap of TiO2 nanostructures. Appl. Phys. Lett. 2008. 92: 103121.

43. Shirinyan A. S., Gusak A. M., Desre P. J. Nucleation and Growth in Nanometric Volumes. J. Metastable Nanocryst. Mater. 2000. 7: 17.

44. Wautelet M., Dauchot J. P., Hecq M. Phase diagrams of small particles of binary systems: a theoretical approach. Nanotechnology 2000. 11(6): 1.

45. Vallee R., Wautelet M., Dauchot J. P., Hecq M. Size and segregation effects on the phase diagrams of nanoparticles of binary systems. Nanotechnology 2001. 12: 68.

46. Ulbricht H., Schmelzer J., Mahnke R., Schweitzer F. Thermodynamics of Finite Systems and Kinetics of First-order Phase Transitions // BSB Teubner, Leipzig 1988: 195.

47. Shirinyan A. S., Gusak A. M. Philos. Mag. A. 2004. 84: 579.

48. Shirinyan A. S., Wautelet M. Phase separation in nanoparticles Nanotechnology 2004.15: 1720.

49. Shirinyan A. S., Gusak A. M., Wautelet M. Acta Mater. 2005. 53(19): 4963.

How to Cite
Lobanov, V. V., Terebinska, M. I., & Tkachuk, O. I. (2019). Thermodynamic approach to description of the properties of nanoparticles and nanosystems. Surface, (10(25), 179-215.
Nanomaterials and nanotechnologies