Thermodesorption mass-spectrometry of composites based on resorcinol-formaldehyde resin

  • V. M. Bogatyrov Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine
  • O. V. Mischanchuk Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine
  • M. V. Galaburda Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine
  • V. A. Pokrovskiy Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine
  • V. M. Gun'ko Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine
Keywords: mass spectroscopy, resorcinol-formaldehyde resin, pyrolysis, volatile products

Abstract

The process of pyrolysis of a resorcinol-formaldehyde resin doped with fumed alumina and modified fumed silica (MgxOy/SiO2) has been investigated using thermodesorption mass-spectrometry. The structural characteristics of porous carbon are largely determined by the composition, structural characteristics of the precursor polymer and pyrolysis conditions. Thermal destruction of hydrocarbon structures of the polymer in an inert atmosphere or vacuum accompanied by the formation of volatile compounds removed from the reaction zone and polycyclic structures of amorphous carbon via condensation processes. It has been shown that during the pyrolysis of the polymer the main volatile products are CO, CO2, H2O, and CH4. The appearance of benzene, toluene and phenol in volatile products was less than 2%. The presence of fillers contributes to the formation of methanol and formic acid. The mechanism of the formation of polynuclear structures in the carbon residue was analyzed.

References

1. Stalnova M.A., Matyukhina O.S. Resorcinol-aldehyde resins. Encyclopedia of polymers. V. 3. (Moscow: Soviet Encyclopedia, 1977). [in Russian].

2. Samanta S.K., Misra B.M. Ion exchange selectivity of a resorcinol-formaldehyde polycondensate resin for cesium in relation to other alkali metal ions. Solvent Extr. Ion Exch. 1995. 13(3): 575. https://doi.org/10.1080/07366299508918292

3. El-Gammal B., Ibrahim G.M., El-Naggar I.M. Preparation of some resorcinol formaldehyde resins for the separation of 134CS from acidic waste streams. Desalin. Water Treat. 2014. 52(25–27): 4721. https://doi.org/10.1080/19443994.2013.815690

4. Pekala R.W. Organic aerogels from the polycondensation of resorcinol with formaldehyde. J. Mater. Sci. 1989. 24(9): 3221. https://doi.org/10.1007/BF01139044

5. Al-Muhtaseb S.A., Ritter J.A. Preparation and Properties of Resorcinol–Formaldehyde Organic and Carbon Gels. Adv. Mater. 2003. 15(2): 101. https://doi.org/10.1002/adma.200390020

6. Job N., Panariello F., Crine M., Pirard J.-P., Léonard A. Rheological determination of the sol–gel transition during the aqueous synthesis of resorcinol–formaldehyde resins. Colloids Surf. A. 2007. 293(1–3): 224. https://doi.org/10.1016/j.colsurfa.2006.07.037

7. Elkhatat A.M., Al-Muhtaseb S.A. Advances in tailoring resorcinol–formaldehyde organic and carbon gels. Adv. Mater. 2011. 23(26): 2887. https://doi.org/10.1002/adma.201100283

8. Zhang L., Liu H., Wang M., Chen L. Structure and electrochemical propertiesof resorcinol–formaldehyde polymer-based carbon for electric double-layer capacitors. Carbon. 2007. 45(7): 1439. https://doi.org/10.1016/j.carbon.2007.03.030

9. Lee Y.J., Jung J.C., Park S., Seo J.G., Baeck S.H., Yoon J.R., Yi J., Song I.K. Preparation and characterization of metal-doped carbon aerogel for supercapacitor. Curr. Appl. Phys. 2010 10(3): 947. https://doi.org/10.1016/j.cap.2009.11.078

10. Job N. Carbon xerogels as catalyst supports for PEM fuel cell cathode. Energy Convers. Manage. 2008. 49(9): 2461. https://doi.org/10.1016/j.enconman.2008.03.025

11. Zubizarreta L., Menéndez J.A., Job N., Marco-Lozar J.P., Pirard J.P., Pis J.J., Linares-Solano A., Cazorla-Amorós D., Arenillas A. Ni-doped carbon xerogels for H2 storage. Carbon. 2010. 48(10): 2722. https://doi.org/10.1016/j.carbon.2010.03.068

12. Job N., Théry A., Pirard R., Marien J., Kocon L., Rouzaud J.N., Béguin F., Pirard J.P. Carbon aerogels, cryogels and xerogels: Influence of the drying method on the textural properties of porous carbon materials. Carbon. 2005. 43(12): 2481. https://doi.org/10.1016/j.carbon.2005.04.031

13. Zubizarreta L., Arenillas A., Pirard J.P., Pis J.J., Job N. Tailoring the textural properties of activated carbon xerogels by chemical activation with KOH. Microporous Mesoporous Mater. 2008. 115(3): 480. https://doi.org/10.1016/j.micromeso.2008.02.023

14. Calvo E.G., Juárez-Pérez E.J., Menéndez J.A., Arenillas A. Fast microwave-assisted synthesis of tailored mesoporous carbon xerogels. Adv. Colloid Interface Sci. 2011. 357(2): 541. https://doi.org/10.1016/j.jcis.2011.02.034

15. Zubizarreta L., Arenillas A., Domínguez A., Menendez J.A., Pis J.J. Development of microporous carbon xerogels by controlling synthesis conditions. J. Non-Cryst. Solids. 2008. 354(10–11): 817. https://doi.org/10.1016/j.jnoncrysol.2007.08.015

16. Rojas-Cervantesa M.L., Lopez-Peinadoa A.J., Martın-Aranda R.M., Gómez-Serrano V. Synthesis and characterisation of xTiO2(1-x)SiO2–carbon composites. Carbon. 2003. 41(1): 79. https://doi.org/10.1016/S0008-6223(02)00273-7

17. Jaroniec M., Gorka J., Choma J., Zawislak A. Synthesis and properties of mesoporous carbons with high loadings of inorganic species. Carbon. 2009. 47(13): 3034. https://doi.org/10.1016/j.carbon.2009.06.059

18. Bobrowska M., Typek J., Zolnierkiewicz G., Wardal K., Guskos N., Pelech I., Podsiadly M., Narkiewicz U. Magnetic resonance study of carbon encapsulated Ni nanoparticles. Cent. Eur. J. Chem. 2012. 10(6): 1963.

19. Galaburda M., Bogatyrov V., Oranska O., Gun'ko V., Skubiszewska-Zięba J., Urubkov I. Synthesis and characterization of carbon composites containing Fe, Co, Ni nanoparticles. J. Therm. Anal. Calorim. 2015. 122(2): 553. https://doi.org/10.1007/s10973-015-4819-2

20. Galaburda M.V., Bogatyrov V.M., Tomaszewski W., Oranska O.I., Borysenko M.V., Skubiszewska-Zięba J., Gun'ko V.M. Adsorption/desorption of explosives on Ni-, Co-, and NiCo-carbon composites: Application in solid phase extraction. Colloids Surf. A. 2017. 529: 950. https://doi.org/10.1016/j.colsurfa.2017.06.087

21. Bogatyrov V.M., Borysenko M.V., Oranska O.I, Galaburda M.V., Makhno S.N., Gorbik P.P. Synthesis and properties of metal-carbon nanocomposites Ni/C, Co/C and Cu/C with a high metal content. Surface. 2017. 9(24): 136. https://doi.org/10.15407/Surface.2017.09.136

22. Galaburda M.V., Bogatyrov V.M., Oranska O.I., Skubiszewska Zieba J., Gun'ko V.M., Sternik D. Magneto-Sensitive Ni/C Adsorbents: Synthesis, Properties and Applications. Adsorpt. Sci. Technol. 2015. 33(6–8): 523. https://doi.org/10.1260/0263-6174.33.6-8.523

23. Galaburda M., Bogatyrov V., Oranska O., Gun'ko V., Skubiszewska-Zięba J., Urubkov I. Synthesis and characterization of carbon composites containing Fe, Co, Ni nanoparticles. J. Therm. Anal. Calorim. 2015. 122(2): 553. https://doi.org/10.1007/s10973-015-4819-2

24. Jiang H., Wang J., Wu S., Yuan Z., Hu Z., Wu R., Liu Q. The pyrolysis mechanism of phenol formaldehyde resin. Polym. Degrad. Stab. 2012. 97(8):1527. https://doi.org/10.1016/j.polymdegradstab.2012.04.016

25. Lin J.-M., Ma C-C.M. Thermal degradation of phenolic resin/silica hybrid ceramers. Polym. Degrad. Stab. 2000. 69(2): 229. https://doi.org/10.1016/S0141-3910(00)00068-9

26. Bogatyrov V.M., Borysenko L.I., Oranska O.I, Galaburda M.V. Nanocomposites MxOy/SiObased on acetates of Ni, Mn, Cu, Zn, Mg. Chemistry, Physics and Surface Technology. 2009. 15: 294. [in Russian].

27. Rey-Raap N., Menendez J.A, Arenillas A. RF xerogels with tailored porosity over the entire nanoscale. Microporous Mesoporous Mater. 2014. 195: 266. https://doi.org/10.1016/j.micromeso.2014.04.048

28. https://webbook.nist.gov

>

29. Parker J.A., Winkler E.L. The effects of molecular structure on the thermochemical properties of phenolics and related polymers. (Washington: D.C. NASA technical report TR-276., 1967). P. 39.

30. Bogatyrov V.M., Galaburda M.V., Oranska O.I., Borysenko M.V., Vasilyeva E.A., Voitko I.I. Synthesis and adsorption properties of magneto-sensitive nanocomposites based on C/Ni system. Surface. 2015. 7(22): 196. [in Russian].

Published
2019-01-13
How to Cite
Bogatyrov, V. M., Mischanchuk, O. V., Galaburda, M. V., Pokrovskiy, V. A., & Gun’ko, V. M. (2019). Thermodesorption mass-spectrometry of composites based on resorcinol-formaldehyde resin. Surface, (10(25), 216-227. https://doi.org/10.15407/Surface.2018.10.217
Section
Nanomaterials and nanotechnologies