Investigation of the effect of polyethylene glycols of the great molecular mass and a nine polycassamers on the compatibility and molecularity of erythrocyte membranes by the spin zone method

  • L. V. Ivanov Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine
  • O. V. Scherbak Kharkov Veterinary Academy
  • M. T. Kartel Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine
Keywords: lipid fluidity, melting, erythrocyte membrane, axillary proximal nerve, polyethyleneglycols, spin probe method, cell dehydration, erythrocyte integrity

Abstract

Spin-probe methods studied the mechanisms of influence of polyethyleneglycols (PEG) on the fluidity of lipid membranes of erythrocytes, the mechanisms of possible membrane lipid membrane and mechanisms of violation of the integrity of membranes of red blood cells over time. The administration of 15% PEG-1500 in human erythrocytes and rats showed increased fluidity of membranes of erythrocytes by 16 or 30 %, but then membrane fluidity decreased due to dehydration and cell compression. The introduction of hydrophilic poloxamer 407 and 338 into erythrocytes led to the melting of lipid membranes (the effect of increasing the fluidity of membranes 50-70 %), but the integrity of most cells remained. Before the destruction of the membranes, the viscosity of the cytosol decreased sharply and anisotropy of the EPR spectra was observed, which was associated with significant changes in the structure of the red cell cytosol. Involving the experiment, poloxamers containing ethylene glycol and propylene glycol, showed the mechanisms of genuine melting of membranes with a maximum increase in lipidity (70 % effect), which is bounded by partial hemolysis and cell coagulation. Melting of phospholipids of membranes of erythrocytes under the action of poloxamers 407 and 338 showed that the real reason for melting are hydrophobic methylene groups of PEG or propylene glycol poloxamers, which destroy the structure of cell membranes from all directions.

References

1. Belous A.M., Grishchenko V.I. Cryobiology. // K. Science. Dumka. 1994: 432. [in Russian].

2. Ivanov L.V., Gavrilova I.I., Moiseyev V.A. Investigation of the membrane integrity of human erytrocytes at low temperatures ising spin probes // Cryo-Lettes. 1881. 2: 197.

4. Nardid O.A., Dyubko T.S., Soloviova A.S et al. Influence of some polyols on rythrocyte cytoskeleton proteins // Cellular & Molecular Biology Letters. 1998. 3(2): 187.

5. Nardid OA, Tsymbal L.V., Gulevsky A.K. Influence of cryoprotectants on protein-lipid interactions in erythrocyte membranes // Physical and chemical processes in cryobiological systems: Coll. articles. - Kharkov. 1991: 102. [in Russian].

6. Murakami T., Fan J., Yudasaka M., Iijima S., Shiba K. Solubilization of single-wall carbon nanohorns using a PEGdoxorubicin conjugate // Molecular Pharmaceutics. 2006. 3: 407. https://doi.org/10.1021/mp060027a

7. Matsumura S., Ajima K., Yudasaka M., Iijima S. and Shiba K. Dispersion of Cisplatin-Loaded Carbon Nanohorns with a Conjugate Comprised of an Artificial Peptide Aptamer and Polyethylene Glycol // Molecular Pharmaceutics. 2007. 4(5): 723. https://doi.org/10.1021/mp070022t

8. Nikitin I.G., Baikova I.E., Gogova L.M. Clinical pharmacology. Pegylated Drugs: Current State of the Problem and Prospects, Department of Hospital Therapy No. 2 of the Medical Faculty, Russian State Medical University // Medicine 4. 2005: 18. [in Russian].

9. Shuai Ren, Ze Han Liu, Qiong Wu, Kuang Fu, Jun Wu, Li Ting Hou, Ming Li, Xin Zhao, Qing Miao, Yun Long Zhao, Sheng Yu Wang, Yan Xue, Zhen Xue, Ya Shan Guo, Sergio Canavero, Xiao Ping Ren. Polyethylene glycol-induced motor recovery after total spinal transection in rats // CNS Neurosci Ther. 2017. 23(8): 680 https://doi.org/10.1111/cns.12713

10. Britt J.M., Kane J.R., Spaeth C.S., Zuzek A., Robinson G.L., Gbanaglo M.Y., Estler C.J., Boydston E.A., Schallert T., Bittner G.D.J. Polyethylene Glycol Rapidly Restores Axonal Integrity and Improves the Rate of Motor Behavior Recovery After Sciatic Nerve Crush Injury // J Neurophysiol. 2010. 104(2): 695. https://doi.org/10.1152/jn.01051.2009

11. Borgens R.B, Bohnert D. Rapid recovery from spinal cord injury after subcutaneously administered polyethylene glycol // J Neurosci Res. 2001. 66(6): 1179. https://doi.org/10.1002/jnr.1254

12. Ahkong Q.F., Desmazes J.P., Georgescauld D., Lucy J.A. Movements of fluorescent probes in the mechanism of cell fusion induced by poly(ethylene glycol) // J Cell Sci. 1987. 88(3): 389.

13. Bittner G.D., Ballinger M.L., Raymond M.A. Reconnection of severed nerve axons with polyethylene glycol // Brain Res. 1986 367: 351. https://doi.org/10.1016/0006-8993(86)91617-3

14. Ivanov L.V., Lyapunov N.A., Tsymbal L.V. et al., Effect of the Composition of Two-Component Solvents on Biological Membranes // Chem. Pharmaceut. J. 1986. 12: 1437. [in Russian].

15. Ivanov L.V., Orlova I.N. Biopharmaceutical studies aimed at optimizing the composition, properties and route of administration of drugs // In coll. "Technology and standardization of drugs." - Kharkov. 2000. 2: 558. [in Russian].

16. Ivanov L.V. Study of the interaction of some hydrophilic non-aqueous solvents with biomembranes of various cells using spin and fluorescent probes // Farmakom. 1999. 2: 45. [in Russian].

17. Ivanov L.V. Study of the mechanisms of dehydration of erythrocyte cells under the action of hydrophilic non-aqueous solvents // Farmakom.1998. 5: 43. [in Russian].

18. Ivanov L.V., Georgievsky V.P. Study of the mechanisms of influence of excipients on bioavailability // Proceedings of the I International Scientific and Practical Conference '' Creation, production, standardization, pharmacoeconomics of drugs and biological additives '', Ternopil. 2004: 19. [in Russian].

19. Liechtenstein G.I. The method of spin labels in molecular biology // M.: Science. 1974: 12. [in Russian].

20. Berlera L. Method of spin labels. Theory and Applications // Moscow: World. 1979: 639.[in Russian].

21. Ivanov L.V., Cartel N.T. Evaluation of microviscosity of cell membranes of various nature by the method of spin probes // Supplements of the National Academy of Sciences of Ukraine. 2012. 5: 139. [in Russian].

23. Rozantsev E.G. Free iminoxyl radicals // Moscow: Chemistry. 1970: 216. [in Russian].

24. Nardid OA, Cherkashina Ya.O., Ivanov L.V., Nardid E.O., Lyapunov A.N., Mamontov V.V. Effect of propylene glycol and polyethylene glycol with a molecular weight of 1500 on the microviscosity of erythrocyte membranes // Problems of cryobiology and cryomedicine. 2016. 26(1): 35. [in Russian]. https://doi.org/10.15407/cryo26.01.035

25. Ivanov L.V., Lyapunov A.N., Cartel N.T., Nardid O.A., Okotrub A.V., Kirilyuk I.A., Cherkashina Ya.O. Delivery of lipophilic spin probes with carbon nanotubes to erythrocytes and blood plasma // Surface. 2014. 6(21): 292. [in Russian].

26. Ivanov, LV, Moiseev, VA, Gavrilova, et al. Method for determining the degree of cell destruction // A. p. USSR 1049808. Publ. 06/23/1983, Byul. N. 39. [in Russian].

27. Ivanov L.V., Lyapunov A.N., Cartel N.T. et al. Comparative study of the effect of a number of pharmaceutical excipients on the microviscosity of the erythrocyte membranes of human and rat blood by the method of spin probes // Pharmacology and licoric toxicology. 2016. 47(1): 72. [in Russian].

28. Ivanov LV, Kartel N.T., Lyapunov AN and other. Study of mechanisms of cytotoxicity of a number of hydrophilic poloxamers by spin probe // Pharmacology and drug toxicology. 2015. 45(4–5): 46. [in Ukrainian].

Published
2019-01-20
How to Cite
Ivanov, L. V., Scherbak, O. V., & Kartel, M. T. (2019). Investigation of the effect of polyethylene glycols of the great molecular mass and a nine polycassamers on the compatibility and molecularity of erythrocyte membranes by the spin zone method. Surface, (10(25), 298-314. https://doi.org/10.15407/Surface.2018.10.299
Section
Medical and biological problems of surface