Interfacial phenomena at a surface of individual and complex fumed nanooxides

  • V. M. Gun'ko Chuiko Institute of Surface Chemistry NAS of Ukraine
  • V. V. Turov Chuiko Institute of Surface Chemistry NAS of Ukraine
  • O. V. Goncharuk Chuiko Institute of Surface Chemistry NAS of Ukraine
  • E. M. Pakhlov Chuiko Institute of Surface Chemistry NAS of Ukraine
  • O. K. Matkovsky Chuiko Institute of Surface Chemistry NAS of Ukraine
Keywords: Nanosilica, Complex nanooxides, Interfacial phenomena, Adsorption, Evaporation, Confined space effects

Abstract

The aim of this review paper was to analyze investigation results on interfacial and temperature behaviors of nonpolar and polar adsorbates interacting with individual and complex fumed metal or metalloid oxides (FMO), initial and subjected to various treatments or chemical functionalization and compared to such porous adsorbents as silica gels, precipitated silica, mesoporous ordered silicas, and polymeric composites. Note that the particulate morphology of FMO depends strongly not only the flame reaction conditions but also on the types and amounts of reagents, as well their distribution in the flame. Therefore, complex nanooxides can include core-shell nanoparticles, (CSNP) of 50-200 nm in size with titania or alumina cores and silica or alumina shells in contrast to simple and smaller nanoparticles of individual FMO. CSNP could be destroyed under high-pressure cryogelation (HPCG) or mechanochemical activation (MCA). These treatments as well simple hydrocompaction (controlled wetting-drying) affect the structure of aggregates of nanoparticles and agglomerates of aggregates, resulting in their becoming more compacted. The analysis shows that complex FMO could be more sensitive to external actions than simple nanooxides such as fumed silica. Any treatment of ‘soft’ FMO affects the interfacial and temperature behaviors of polar and nonpolar adsorbates. Rearrangement of secondary particles and surface functionalization affect the freezing-melting point depression of adsorbates. For some adsorbates, open hysteresis loops became readily apparent in adsorption-desorption isotherms. Clustering of adsorbates bound in pores causes reduced changes in enthalpy during phase transitions (freezing, fusion). Freezing point depression and melting point elevation cause significant hysteresis freezing-melting effects for adsorbates bound to initial and treated FMO in textural pores (voids between nanoparticles in secondary structures). Relaxation phenomena for both low- and high-molecular weight adsorbates or of filled polymeric composites are affected by the morphology of primary particles, structural organization of secondary particles of differently treated or functionalized FMO, content of adsorbates, co-adsorption order, and temperature.

References

Bergna H.E., Roberts W.O. (editors). Colloidal Silica: Fundamentals and Applications. (CRC Press, Boca Raton, 2006).

Hastie J.W. (editor). Materials Chemistry at High Temperatures. Vol. 1, Characterization. Vol. 2, Processing and Performance. (NJ: Clifton, Humana Press, 1990). https://doi.org/10.1007/978-1-4612-0481-7

Ullmann's Encyclopedia of Industrial Chemistry. Wiley-VCH, Weinheim. 2008.

Basic Characteristics of Aerosil. Technical Bulletin Pigments, No 11, Degussa AG, Hanau. 1997.

Shchukin E.D., Zelenev A.S. Physical-Chemical Mechanics of Disperse Systems and Materials. (CRC Press, Boca Raton, 2015). https://doi.org/10.1201/b19054

Cabot Corporation. http://www.cabotcorp.com/solutions/products-plus/fumed-metal-oxides/.

DuPont. http://www.dupont.com/.

Evonik Ind. http://corporate.evonik.com/en/Pages/default.aspx; http://www.aerosil.com/product/aerosil/en/services/downloads/Pages/test-methods.aspx.

Kulkarni P., Baron P.A., Willeke K. (editors). Aerosol Measurement: Principles, Techniques, and Applications. Third Edition. (New York : John Wiley & Sons, 2011). https://doi.org/10.1002/9781118001684

Büchel K.H., Moretto H.-H., Woditsch P. Industrial inorganic chemistry. (Weinheim: Wiley-VCH Verlag GmbH, 2000). https://doi.org/10.1002/9783527613328

Auner N., Weis J. (editors). Oganosilicon Chemistry VI. (Weinheim: Wiley-VCH Verlag GmbH, 2005). https://doi.org/10.1002/9783527618224

Piemonte V., De Falco M., Basile A. (editors). Sustainable Development in Chemical Engineering - Innovative Technologies. First Edition. (UK: Chichester , John Wiley & Sons, 2013). https://doi.org/10.1002/9781118629703

Kriechbaum G.W., Kleinschmit P. Superfine oxide powders- flame hydrolysis and hydrothermal synthesis. Adv. Mater. 1989.10:330. https://doi.org/10.1002/adma.19890011004

Gutsch A., Mühlenweg H., Krämer M. Tailor-made nanoparticles via gas-phase synthesis. Small . 2005.1:30. https://doi.org/10.1002/smll.200400021

Jacobsen H., Kleinschmit P. Flame Hydrolysis. In: Ertl G, Knozinger H, Weitkamp J (editors), Preparation of Solid Catalysts. (Weinheim: Wiley-VCH Verlag GmbH, 1999, pp. 99-109). https://doi.org/10.1002/9783527619528.ch3f

Afyon S., Hagemann M., Somer M., Isfort C.S. Thermal and hydrothermal stability of flame hydrolytically synthesized SiO2/TiO2 mixed oxides. Solid State Sci. 2013.18: 91. https://doi.org/10.1016/j.solidstatesciences.2013.01.002

Albers P., Maier M., Reisinger M., Hannebauer B., Weinand R. Physical boundaries within aggregates - differences between amorphous, para-crystalline, and crystalline structures. Cryst. Res. Technol. 2015.1: 20. https://doi.org/10.1002/crat.201500040

Schaefer D.W., Hurd A.J. Growth and structure of combustion aerosols: fumed silica. Aerosol Sci. Technol. 1990. 12(4): 876. https://doi.org/10.1080/02786829008959400

Roth P. Particle synthesis in flames. Proceedings of the Combustion Institute. 2007. 31: 1773. https://doi.org/10.1016/j.proci.2006.08.118

Pratsinis S.E. Flame aerosol synthesis of ceramic powders. Prog. Energy Combust. Sci. 1998. 24: 197. https://doi.org/10.1016/S0360-1285(97)00028-2

Mueller R., Madler L., Pratsinis S.E. Nanoparticle synthesis at high production rates by flame spray pyrolysis. Chem. Eng. Sci. 2003. 58: 1969. https://doi.org/10.1016/S0009-2509(03)00022-8

Camenzind A., Caseri W.R., Pratsinis S.E. Flame-made nanoparticles for nanocomposites. Nano Today. 2010. 5: 48. https://doi.org/10.1016/j.nantod.2009.12.007

Teoh W.Y., Lutz M. Flame spray pyrolysis: An enabling technology for nanoparticles design and fabrication. Nanoscale. 2010.2: 1324. https://doi.org/10.1039/c0nr00017e

Weston J.S., Venkataramani D., Aichele C.P., Grady B.P., Harwell J., Resasco D. Pseudosolid, shear-thinning gel formation in binary dispersions of metal oxide nanoparticles at low volume fractions. Langmuir. 2014. 30: 14982. https://doi.org/10.1021/la503442a

Gun'ko V.M., Mironyuk I.F., Zarko V.I., Voronin E.F., Turov V.V., Pakhlov E.M., Goncharuk E.V., Nychiporuk Yu.M., Kulik T.V., Palyanytsya B.B., Pakhovchishin S.V., Vlasova N.N., Gorbik P.P., Mishchuk O.A., Chuiko A.A., Skubiszewska-Zięba J., Janusz W., Turov A.V., Leboda R. Morphology and surface properties of fumed silicas. J. Colloid. Interface Sci. 2005. 289: 427. https://doi.org/10.1016/j.jcis.2005.05.051

Gun'ko V.M., Nychiporuk Yu.M., Zarko V.I., Goncharuk E.V., Mishchuk O.A., Leboda R., Skubiszewska-Zięba J., Skwarek E., Janusz W., Yurchenko G.R., Osovskii V.D., Ptushinskii Y.G., Turov V.V., Gorbik P.P., Blitz J.P., Gude K. Relationships between surface compositions and properties of surfaces of mixed fumed oxides. Appl. Surf. Sci. 2007. 253: 3215. https://doi.org/10.1016/j.apsusc.2006.07.013

Gun'ko V.M., Blitz J.P., Gude K., Zarko V.I., Goncharuk E.V., Nychiporuk Yu.M., Leboda R., Skubiszewska-Zięba J., Osovskii V.D., Ptushinskii Y.G., Mishchuk O.A., Pakhovchishin S.V., Gorbik P.P. Surface structure and properties of mixed fumed oxides. J. Colloid. Interface. Sci. 2007. 314: 119. https://doi.org/10.1016/j.jcis.2007.05.025

Gun'ko V.M., Zarko V.I., Turov V.V., Oranska O.I., Goncharuk E.V., Nychiporuk Yu.M., Pakhlov E.M., Yurchenko G.R., Leboda R., Skubiszewska-Zięba J., Osovskii V.D., Ptushinskii Y.G., Derzhypolskyi A.G., Melenevsky D.A., Blitz J.P. Morphological and structural features of individual and composite nanooxides with alumina, silica, and titania in powders and aqueous suspensions. Powder Technology. 2009. 195: 245. https://doi.org/10.1016/j.powtec.2009.06.005

Gun'ko V.M., Bogatyrev V.M., Borysenko M.V., Galaburda M.V., Sulim I.Y., Petrus L.V., Korduban O.M., Polshin E.V., Zaulychnyy Ya.V., Karpets M.V., Foya O.O., Myronyuk I.F., Chelyadyn V.L., Dzhura U.Ya., Leboda R., Skubiszewska-Zięba J., Blitz J.P. Morphological, structural and adsorptional features of oxide composites of different origin. Applied Surface Science. 2010. 256: 5263. https://doi.org/10.1016/j.apsusc.2009.12.115

Gun'ko V.M., Yurchenko G.R., Turov V.V., Goncharuk E.V., Zarko V.I., Zabuga A.G., Matkovsky A.K., Leboda R., Skubiszewska-Zięba J., Janusz W., Phillips G.J., Mikhalovsky S.V. Adsorption of polar and nonpolar compounds onto complex nanooxides with silica, alumina, and titania. J. Colloid Interface Sci. 2010. 348: 546. https://doi.org/10.1016/j.jcis.2010.04.062

Park H.K., Park K.Y., Jung K.Y. Alumina-precursor nanoparticles prepared by partial hydrolysis of AlCl3 vapor in tubular flow reactor: Effect of hydrolysis conditions on particle size distribution. Ind. Eng. Chem. Res. 2014. 53: 10372. https://doi.org/10.1021/ie501400c

Dorigato A., Pegoretti A. The role of alumina nanoparticles in epoxy adhesives. J. Nanopart. Res. 2011. 13: 2429. https://doi.org/10.1007/s11051-010-0130-0

Sabzi M., Mirabedini S.M., Zohuriaan-Mehr J., Atai M. Surface modification of TiO2 nano-particles with silane coupling agent and investigation of its effect on the properties of polyurethane composite coating. Prog. Org. Coating. 2009. 65: 222. https://doi.org/10.1016/j.porgcoat.2008.11.006

Rodríguez-Castellón E., Jiménez-López A., Maireles-Torres P., Jones D.J., Rozière J., Trombetta M., et al. Textural and structural properties and surface acidity characterization of mesoporous silica-zirconia molecular sieves. J. Solid. State Chem. 2003. 175: 159. https://doi.org/10.1016/S0022-4596(03)00218-4

Liang S., Neisius N.M., Gaan S. Progress in organic coatings recent developments in flame retardant polymeric coatings. Prog. Org. Coating. 2013. 76: 1642. https://doi.org/10.1016/j.porgcoat.2013.07.014

Allahverdi A., Ehsani M., Janpour H., Ahmadi Sh. The effect of nanosilica on mechanical, thermal and morphological properties of epoxy coating. Prog. Org. Coating. 2012. 75: 543. https://doi.org/10.1016/j.porgcoat.2012.05.013

Iler R.K. The Chemistry of Silica. (Chichester: Wiley, 1979).

Legrand A.P. (editor). The Surface Properties of Silicas. (New York: Wiley, 1998).

Blitz J.P., Gun'ko V.M. (editors). Surface Chemistry in Biomedical and Environmental Science. NATO Science Series II: Mathematics, Physics and Chemistry. Springer, Vol. 228. (Dordrecht: Springer, 2006). https://doi.org/10.1007/1-4020-4741-X

Chuiko A.A. (editor). Chemistry of Silica Surface. (Kiev: UkrINTEI, 2001). [in Russian].

Nicolais L., Borzacchiello A., Lee S.M. (editors). Wiley Encyclopedia of Composite. Materials, 5-Volume set, 2nd ed. (NJ: Wiley, Hoboken, 2012).

Dodiuk H., Goodman S. (editors). Handbook of Thermoset Plastics. Third Edition. (UK: Oxford, Elsevier, 2014). https://doi.org/10.1016/B978-1-4557-3107-7.00027-0

Wicks Z.W., Jr, Jones F.N., Pappas S.P., Wicks D.A. Organic Coatings: Science and Technology. Third Edition. (New York: John Wiley & Sons, 2007). https://doi.org/10.1002/047007907X

Ghosh S.K. (editor). Functional Coatings. (Weinheim: Wiley-VCH Verlag GmbH, 2006).

Wu L., Baghdachi J. (editors). Functional Polymer Coatings: Principles, Methods, and Applications. First Edition. (New York: John Wiley & Sons, 2015). https://doi.org/10.1002/9781118883051

Gun'ko V.M., Turov V.V., Zarko V.I., Pakhlov E.M., Matkovsky A.K., Oranska O.I., Palyanytsya B.B., Remez O.S., Nychiporuk Yu.M., Ptushinskii Y.G., Leboda R., Skubiszewska-Zięba J. Cryogelation of individual and complex nanooxides under different conditions. Colloids Surf. A: Physicochem. Eng. Aspects. 2014. 456: 261. https://doi.org/10.1016/j.colsurfa.2014.05.045

Gun'ko V.M., Zarko V.I., Pakhlov E.M., Matkovsky A.K., Remez O.S., Charmas B., Skubiszewska-Zięba J. Low-temperature high-pressure cryogelation of nanooxides. Journal of Sol-Gel Science and Technology. 2015. 74: 45. https://doi.org/10.1007/s10971-014-3575-2

Gun'ko V.M., Ilkiv V.Ya., Zaulychnyy Ya.V., Zarko V.I., Pakhlov E.M., Karpetz МV. Structural features of fumed silica and alumina alone, blend powders and fumed binary systems. J. Non-Crystal Solid. 2014: 403: 30. https://doi.org/10.1016/j.jnoncrysol.2014.07.001

Gun'ko V.M., Zaulychnyy Ya.V., Ilkiv BI, Zarko V.I., Nychiporuk Yu.M., Ptushinskii Yu.G., Pakhlov E.M., Leboda R., Skubiszewska-Zięba J. Textural and electronic characteristics of mechanochemically activated composites with nanosilica and activated carbon. Appl. Surf. Sci. 2011: 258: 1115. https://doi.org/10.1016/j.apsusc.2011.09.047

Ertl G., Knozinger H., Weitkamp J. (editors). Handbook of Heterogeneous Catalysis. (Weinheim: VCH Verlagsgesellschaft mbH, 1997). https://doi.org/10.1002/9783527619474

Busca G. Heterogeneous Catalytic Materials: Solid State Chemistry, Surface Chemistry and Catalytic Behaviour. (Amsterdam: Elsevier, 2014).

Regalbuto J. (editor). Catalyst Preparation: Science and Engineering. (Boca Raton: CRC Press, 2007).

Gun'ko V.M., Turov V.V. Nuclear Magnetic Resonance Studies of Interfacial Phenomena. (Boca Raton: CRC Press, 2013). https://doi.org/10.1201/b14202

Pietsch W. Agglomeration in Industry. (Weinheim: Wiley-VCH Verlag GmbH, 2005).

Sandkühler P., Lattuada M., Wu H., Sefcik J., Morbidelli M. Further insights into the universality of colloidal aggregation. Adv. Colloid Interface Sci. 2005. 113: 65. https://doi.org/10.1016/j.cis.2004.12.001

Schießl K., Babick F., Stintz M. Calculation of double layer interaction between colloidal aggregates. Advanced Powder Technology. 2012. 23: 139. https://doi.org/10.1016/j.apt.2011.01.005

Karlsson H.L., Toprak M.S., Fadeel B. Toxicity of metal and metal oxide nanoparticles. In: Nordberg G.F., Fowler B.A., Nordberg M. (editors). Handbook on the Toxicology of Metals. Fourth Edition. (Amsterdam: Elsevier, 2015, pp. 75-112). https://doi.org/10.1016/B978-0-444-59453-2.00004-4

Bolis V., Busco C., Ciarletta M., Distasi C., Erriquez J., Fenoglio I., Livraghi S., Morel S. Hydrophilic/hydrophobic features of TiO2 nanoparticles as a function of crystal phase, surface area and coating, in relation to their potential toxicity in peripheral nervous system. J. Colloid Interface Sci. 2012. 369: 28. https://doi.org/10.1016/j.jcis.2011.11.058

Theodore L., Kunz R.G. Nanotechnology: Environmental Implications and Solutions. (NJ: Hoboken, John Wiley & Sons, 2005). https://doi.org/10.1002/0471711705

Theodore L. Nanotechnology: Basic Calculations for Engineers and Scientists. (NJ: Hoboken, John Wiley & Sons, 2006). https://doi.org/10.1002/0471752010

Mills A. The freezing bomb. Phys. Education. 2010. 45: 153. https://doi.org/10.1088/0031-9120/45/2/004

Vidovskii A.L. Experimental determination of pressure during ice expansion. Hydrotechnical Construction. 1972. 6: 791. https://doi.org/10.1007/BF02377294

Gun'ko V.M., Turov V.V., Zarko V.I., Pakhlov E.M., Prykhod'ko G.P., Remez O.S., Leboda R., Skubiszewska-Zięba J., Blitz J.P. High-pressure cryogelation of nanosilica and surface properties of cryosilicas. Colloids Surf. A: Physicochem. Eng. Aspects. 2013. 436: 618. https://doi.org/10.1016/j.colsurfa.2013.07.036

Gun'ko V.M., Zarko V.I., Turov V.V., Leboda R., Chibowski E. The effect of second phase distribution in disperse X/silica (X= Al2O3, TiO2, and GeO2) on its surface properties. Langmuir. 1999. 15: 5694. https://doi.org/10.1021/la981311e

Gun'ko V.M., Turov V.V., Zarko V.I., Voronin E.F., Tischenko V.A., Dudnik V.V., Pakhlov E.M., Chuiko A.A. Active site nature of pyrogenic alumina/silica and water bound to surfaces. Langmuir. 1997. 13: 1529. https://doi.org/10.1021/la960441p

Gun'ko V.M., Zarko V.I., Turov V.V., Voronin E.F., Tischenko V.A., Chuiko A.A. Dielectric properties and dynamic simulation of water bound to titania/silica surfaces. Langmuir. 1995. 11: 2115. https://doi.org/10.1021/la00006a044

Gun'ko V.M., Zarko V.I., Chibowski E., Dudnik V.V., Leboda R., Zaets V.A. Structure of fumed titania and silica/titania and influence of the nature of surface sites on interaction with water. J. Colloid Interface Sci. 1997. 188: 39. https://doi.org/10.1006/jcis.1996.4728

Gun'ko V.M., Mironyuk I.F., Zarko V.I., Turov V.V., Voronin E.F., Pakhlov E.M., Goncharuk E.V., Leboda R., Skubiszewska-Zięba J., Janusz W., Chibowski S., Levchuk Yu.N., Klyueva A.V. Fumed silicas possessing different morphology and hydrophilicity. J. Colloid Interface Sci. 2001. 242: 90. https://doi.org/10.1006/jcis.2001.7736

Gun'ko V.M., Turov V.V., Zarko V.I., Goncharuk E.V., Gerashchenko I.I., Turova A.A., Mironyuk I.F., Leboda R., Skubiszewska-Zięba J., Janusz W. Comparative characterization of polymethylsiloxane hydrogel and silylated fumed silica and silica gel. J Colloid Interface Sci. 2007. 308: 142. https://doi.org/10.1016/j.jcis.2006.12.053

Blitz J.P., Christensen J.M., Gun'ko V.M. Silica surface modification reactions with aluminum and boron alkyls and (alkyl) chlorides: reactivities and surface nanostructures. J. Nanoscience & Nanotechnology. 2008. 8: 660. https://doi.org/10.1166/jnn.2008.C199

Frei R., Blitz J.P., Gun'ko V.M., Frost B.E., Sergeev V.S. Kinetics and computational studies of an aminosilane reaction with a silsesquioxane silanol. J. Phys. Chem. A. 2009. 113: 6612. https://doi.org/10.1021/jp9002998

Gun'ko V.M., Turov V.V., Myronyuk I.F., Goncharuk O.V., Pakhlov E.M., Bezruka N.A., , Skwarek E., Janusz W., Blitz J.P. Interfacial phenomena at a surface of partially silylated nanosilica. J. Colloid Interface Sci. 2014. 434(15): 28. https://doi.org/10.1016/j.jcis.2014.08.008

Blitz J.P., Gun'ko V.M., Samala R., Lawrence B.A. Mixed bifunctional surface-modified silicas using tethered aminofunctional silane catalysts. Colloids Surf. A: Physicochem. Eng. Aspects. 2014. 462: 1. https://doi.org/10.1016/j.colsurfa.2014.08.010

Terpilowski K., Rymuszka D., Goncharuk O.V., Sulym I.Y., Gun'ko V.M. Wettability of modified silica layers deposited on glass support activated by plasma. Appl. Surf. Sci. 2015. 353: 843. https://doi.org/10.1016/j.apsusc.2015.06.200

Gun'ko V.M., Voronin E.F., Nosach L.V., Turov V.V., Wang Z., Vasilenko A.P., Leboda R., Skubiszewska-Zięba J., Janusz W., Mikhalovsky S.V. Structural, textural and adsorption characteristics of nanosilica mechanochemically activated in different media. J. Colloid. Interface Sci. 2011. 355: 300. https://doi.org/10.1016/j.jcis.2010.12.008

Zaulychnyy Ya.V., Gun'ko V.M., Yavorskyi Y.V., Zarko V.I., Petrovska S.S., Mischenko V.N. Effect of mechanical activation of highly disperse SiO2/α-Fe2O3 mixtures on distribution of valence electrons. Metallofizika i Noveishie Tekhnologii. 2015. 37: 1063. https://doi.org/10.15407/mfint.37.08.1063

Sulim I.Y., Borysenko M.V., Korduban O.M., Gun'ko V.M. Influence of silica matrix morphology on characteristics of grafted nanozirconia. Appl. Surf. Sci. 2009. 255: 7818. https://doi.org/10.1016/j.apsusc.2009.04.185

Boratyrev V.M., Gun'ko V.M., Galaburda M.V., Borysenko M.V., Pokrovsky V.A., Oranska O.I., Polshin E.V., Korduban O.M., Leboda R., Skubiszewska-Zięba J. Synthesis and characterization of Fe2O3/SiO2 nanocomposites. J. Colloid Interface Sci. 2009. 338: 376. https://doi.org/10.1016/j.jcis.2009.06.044

Gun'ko V.M., Bogatyrev V.M., Leboda R., Skubiszewska-Zięba J., Petrus L.V., Nychiporuk Yu.M., Oranska O.I., Dudarko O.A., Osovskii V.D., Ptushinskii Y.G. Titania deposits on nanosilicas. Annales Universitatis Marie Curie-Sklodowska Sectio Chemia. 2009. 64: 21. https://doi.org/10.2478/v10063-008-0004-9

Gun'ko V.M., Bogatyrov V.M., Oranska O.I., Borysenko LI, Skubiszewska-Zięba J., Książek A., Leboda R. Structural features of ZnxOy/nanosilica composites. Appl. Surf. Sci. 2013. 276: 802. https://doi.org/10.1016/j.apsusc.2013.04.002

Nazarkovsky M.A., Gun'ko V.M., Zarko V.I., Skwarek E., Skubiszewska-Zięba J., Leboda R., Janusz W. Textural characteristics of SnO2-doped titania/nanosilica and transition of phase of bound water. Journal of Chemical Technology and Metallurgy (Sofia, Bulgaria). 2013. 48: 373.

Sulym I., Goncharuk O., Skwarek E., Sternik D., Borysenko M.V., Derylo-Marczewska A., Janusz W., Gun'ko V.M. Silica-supported ceria-zirconia and titania-zirconia nanocomposites: Structural characteristics and electrosurface properties. Colloids Surf. A: Physicochem. Eng. Aspects. 2015. 482: 631. https://doi.org/10.1016/j.colsurfa.2015.07.015

Myronyuk L.I., Myronyuk I.F., Chelyadyn V.L., Sachko V.M., Nazarkovsky M.A., Leboda R., Skubiszewska-Zięba J., Gun'ko V.M. Structural and morphological features of crystalline nanotitania synthesized in different aqueous media. Chem. Phys. Lett. 2013. 583: 103 https://doi.org/10.1016/j.cplett.2013.07.068

Adamson A.W., Gast A.P. Physical Chemistry of Surface. Sixth edition. (New York: Wiley, 1997).

Gregg S.J., Sing K.S.W. Adsorption, Surface Area and Porosity. (London: Academic Press, 1982).

Gun'ko V.M. Composite materials: textural characteristics. Applied Surface Sci. 2014. 307: 444. https://doi.org/10.1016/j.apsusc.2014.04.055

Schmidt M.W., Baldridge K.K., Boatz J.A., Elbert S.T., Gordon M.S., Jensen J.H., Koseki S., Matsunaga N., Nguyen K.A., Su S.J., Windus T.L., Dupuis M., Montgomery J.A. General atomic and molecular electronic structure system. J. Comput. Chem. 1993. 14: 1347. https://doi.org/10.1002/jcc.540141112

Gun'ko V.M., Leboda R., Skubiszewska-Zięba J. Heating effects on morphological and textural characteristics of individual and composite nanooxides. Adsorption. 2009. 15: 89. https://doi.org/10.1007/s10450-009-9160-2

Gun'ko V.M., Skubiszewska-Zięba J., Leboda R., Khomenko K.N., Kazakova O.A., Povazhnyak M.O., Mironyuk I.F. Influence of morphology and composition of fumed oxides on changes in their structural and adsorptive characteristics on hydrothermal treatment at different temperatures. J. Colloid Interface Sci. 2004. 269: 403. https://doi.org/10.1016/j.jcis.2003.07.015

Gun'ko V.M., Zarko V.I., Goncharuk O.V., Matkovsky A.K., Remez O.S., Skubiszewska-Zięba J., Wojcik G., Walusiak B., Blitz J.P. Nature and morphology of fumed oxides and features of interfacial phenomena. Appl. Surf. Sci. 2016. 366: 410. https://doi.org/10.1016/j.apsusc.2016.01.062

Gun'ko V.M., Turov V.V., Zarko V.I., Pakhlov E.M., Charmas B., Skubiszewska-Zięba J. Influence of structural organization of silicas on interfacial phenomena. Colloids Surf. A: Physicochem. Eng. Aspects. 2016. 492: 230. https://doi.org/10.1016/j.colsurfa.2015.12.030

Nishihara H., Mukai S.R., Fujii Y., Tago T., Masuda T., Tamon H. Preparation of monolithic SiO2-Al2O3 cryogels with inter-connected macropores through ice template. J. Mater. Chem. 2006. 16: 3231. https://doi.org/10.1039/B604780G

Nishihara H., Iwamura S., Kyotani T. Synthesis of silica-based porous monoliths with straight nanochannels using an ice-rod nanoarray as a template. J. Mater. Chem. 2008. 18: 3662. https://doi.org/10.1039/b806005c

Mukai S.R., Nishihara H., Tamon H. Porous microfibers and microhoneycombs synthesized by ice templating. Catal. Surv. Asia. 2006. 10: 161. https://doi.org/10.1007/s10563-006-9015-8

Nishihara H., Mukai S.R., Shichi S., Tamon H. Preparation of titania-silica cryogels with controlled shapes and photocatalysis through unidirectional freezing. Materials Letters. 2010. 64: 959. https://doi.org/10.1016/j.matlet.2010.01.073

Mukai S.R., Nishihara H., Shichi S., Tamon H. Preparation of porous TiO2 cryogel fibers through unidirectional freezing of hydrogel followed by freeze-drying. Chem. Mater. 2004. 16: 4987. https://doi.org/10.1021/cm0491328

Shlyakhtin OA, Oh Y-J. Inorganic cryogels for energy saving and conversion. J. Electroceram. 2009. 23: 452. https://doi.org/10.1007/s10832-008-9488-0

Pons A., Casas Ll., Estop E., Molins E., Harris K.D.M., Xu M. A new route to aerogels: Monolithic silica cryogels. J. Non-Crystal Solid. 2012. 358: 461. https://doi.org/10.1016/j.jnoncrysol.2011.10.031

Tamon H., Akatsuka T., Mori H., Sano N. Synthesis of zeolite monolith with hierarchical micro/macropores by ice-templating and steam-assisted crystallization. Chem. Eng. Trans. 2013. 32: 2059.

Chen L., Ye G., Xu D., Zhu L., Lu Z., Dong L., Liu Y. Chemical bond change of gibbsite and fumed silica mixture during mechanic al activation. Materials Letters. 2012. 85: 91. https://doi.org/10.1016/j.matlet.2012.06.103

Gun'ko V.M., Goncharuk O.V., Goworek J. Evaporation of polar and nonpolar liquids from silica gels and fumed silica. Colloids Surf. A: Physicochem. Eng. Aspects. 2015. 474: 52. https://doi.org/10.1016/j.colsurfa.2015.03.007

Voronin E.F., Gun'ko V.M., Guzenko N.V., Pakhlov E.M., Nosach L.V., Malysheva M.L., Skubiszewska-Zięba J., Leboda R., Borysenko M.V., Chuiko A.A. Interaction of poly(ethylene oxide) with fumed silica. J. Colloid Interface Sci. 2004. 279: 326. https://doi.org/10.1016/j.jcis.2004.06.073

Gun'ko V.M., Turov V.V., Leboda R., Zarko V.I., Skubiszewska-Zięba J., Charmas B. Adsorption, NMR and thermally stimulated depolarization current methods for comparative analysis of heterogeneous solid and soft materials. Langmuir. 2007. 23: 3184. https://doi.org/10.1021/la062648g

Gun'ko V.M., Turov V.V., Bogatyrev V.M., Petin A.Y., Turov A.V., Trachevskyi V.V., Blitz J.P. The influence of pre-adsorbed water on adsorption of methane on fumed and nanoporous silicas. Appl. Surf. Sci. 2011. 258: 1306. https://doi.org/10.1016/j.apsusc.2011.08.126

Kiselev A.V., Lygin V.I. Infrared Spectra of Surface Compounds. (New York: Wiley, 1975).

McCool B., Murphy L., Tripp C.P. A simple FTIR technique for estimating the surface area of silica powders and films. J. Colloid Interface Sci. 2006. 295: 294. https://doi.org/10.1016/j.jcis.2005.08.010

Gun'ko V.M., Leboda R., Skubiszewska-Zięba J., Goncharuk E.V., Nychiporuk Yu.M., Zarko V.I., Blitz J.P. Influence of different treatments on characteristics of nanooxide powders alone or with adsorbed polar polymers or proteins. Powder Technology. 2008. 187: 146. https://doi.org/10.1016/j.powtec.2008.02.007

Gude K., Gun'ko V.M., Blitz J.P. Adsorption and photocatalytic decomposition of methylene blue on surface modified silica and silica-titania. Colloids Surf. A: Physicochem. Eng. Aspects. 2008. 325: 17. https://doi.org/10.1016/j.colsurfa.2008.04.035

Gun'ko V.M., Blitz J.P., Zarko V.I., Turov V.V., Pakhlov E.M., Oranska O.I., Goncharuk E.V., Gornikov Y.I., Sergeev V.S., Kulik T.V., Palyanytsya B.B., Samala R.K. Structural and adsorption characteristics and catalytic activity of titania and titania-containing nanomaterials. J. Colloid Interface Sci. 2009. 330: 125. https://doi.org/10.1016/j.jcis.2008.10.049

Silberberg M.A. Chemistry - The Molecular Nature of Matter and Change. Fourth edition. (New York: McGraw-Hill, 2006).

Ashgriz V. (editor). Handbook of Atomization and Sprays. (Heidelberg: Springer, 2011). https://doi.org/10.1007/978-1-4419-7264-4

Fujikawa S., Yano T., Watanabe M. Vapor-Liquid Interfaces, Bubbles and Droplets. (Heidelberg: Springer, 2011). https://doi.org/10.1007/978-3-642-18038-5

McElroy M.B. The Atmospheric Environment. (Princeton: Princeton University Press, 2002).

Ahsan A. (editor), Evaporation, Condensation and Heat Transfer. (Rijeka: InTech, Croatia, 2010). https://doi.org/10.5772/1042

Sazhin S.S. Droplets and Sprays. (London: Springer, 2014). https://doi.org/10.1007/978-1-4471-6386-2

Chapman S., Cowling T.G. The Mathematical Theory of Nonuniform Gases. (Cambridge: Cambridge University Press, 1970).

Tamim J., Hallett W.L.H. A continuous thermodynamics model for multicomponent droplet vaporization. Chem. Eng. Sci. 1995. 50: 2933. https://doi.org/10.1016/0009-2509(95)00131-N

Lippert A.M., Reitz R.D. Modeling of multicomponent fuels using continuous distributions with application to droplet evaporation and sprays. SAE Technical Paper 1997, 972882. https://doi.org/10.4271/972882

Hallett W.L.H. A simple model for the vaporization of droplets with large numbers of components. Combustion and Flame. 2000. 121: 334. https://doi.org/10.1016/S0010-2180(99)00144-3

Zhu G.-S., Reitz R..D. A model for high-pressure vaporization of droplets of complex liquid mixtures using continuous thermodynamics. Int. J. Heat Mass Transf. 2002. 45: 495. https://doi.org/10.1016/S0017-9310(01)00173-9

Derkachov G., Kolwas K., Jakubczyk D., Zientara M., Kolwas M. Drying of a microdroplet of water suspension of nanoparticles: from surface aggregates to microcrystal. J. Phys. Chem. C. 2008. 112: 16919. https://doi.org/10.1021/jp806349q

Sefiane K., Ward C.A. Recent advances on thermocapillary flows and interfacial conditions during the evaporation of liquids. Adv. Colloid Interface Sci. 2007. 134-135: 201. https://doi.org/10.1016/j.cis.2007.04.020

Erbil H.Y. Evaporation of pure liquid sessile and spherical suspended drops: a review. Adv. Colloid Interface Sci. 2012. 170: 67. https://doi.org/10.1016/j.cis.2011.12.006

Erbil H.Y. Control of stain geometry by drop evaporation of surfactant containing dispersions. Adv. Colloid Interface Sci. 2015. 222: 275. https://doi.org/10.1016/j.cis.2014.08.004

Sokolowski S., Fischer J. Liquid-vapour' density profiles for fluids in pores from density functional theory. J. Chem. Soc. Faraday Trans. 1993. 89: 789. https://doi.org/10.1039/FT9938900789

Bucior K., Yelash L., Binder K. Molecular-dynamics simulation of evaporation processes of fluid bridges confined in slitlike pores. Phys. Rev. E. 2009. 79: 031604 (1-12). https://doi.org/10.1103/PhysRevE.79.031604

Morishige K., Shikimi M. Adsorption hysteresis and pore critical temperature in a single cylindrical pore. J. Chem. Phys. 1998. 108: 7821. https://doi.org/10.1063/1.476218

Paulik F., Paulik J. Investigations under quasi-isothermal and quasi-isobaric conditions by means of the Derivatograph. J. Thermal Anal. 1973. 5: 253. https://doi.org/10.1007/BF01950373

Meyers R.A. (editor). Encyclopedia of Analytical Chemistry. (Chichester: John Wiley & Sons Ltd., 2000).

Haines P.J. (editor). Principles of Thermal Analysis & Calorimetry. Ch. 4. (Cambridge: Royal Society of Chemistry, 2002). https://doi.org/10.1039/9781847551764

Semenov S., Trybala A., Rubio R.G., Kovalchuk N., Starov V., Velarde M.G. Simultaneous spreading and evaporation: recent developments. Adv. Colloid Interface Sci. 2014. 206: 382. https://doi.org/10.1016/j.cis.2013.08.006

Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian, Inc., Wallingford CT, 2009., Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT; 2013.

Chai J.-D., Head-Gordon M. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys. Chem. Chem. Phys. 2008. 10: 6615. https://doi.org/10.1039/b810189b

Yang K., Zheng J., Zhao Y., Truhlar D.G. Tests of the RPBE, revPBE, τ-HCTHhyb, ωB97X-D, and MOHLYP density functional approximations and 29 others against representative databases for diverse bond energies and barrier heights in catalysis. J. Chem. Phys. 2010. 132: 164117. https://doi.org/10.1063/1.3382342

Marenich A.V., Cramer C.J., Truhlar D.G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B. 2009. 113: 6378. https://doi.org/10.1021/jp810292n

Becke A.D. Perspective: Fifty years of density-functional theory in chemical physics. J. Chem. Phys. 2014. 140: 18A301. https://doi.org/10.1063/1.4869598

Ho J., Coote M.L., Cramer C.J., Truhlar D.G. Theoretical calculations of reduction potentials. In : Hammerich O., Speiser B (editors). Organic Electrochemistry. Fifth Edition. (Boca Raton: CRC Press, 2016, pp. 229-59). https://doi.org/10.1201/b19122-8

Gun'ko V.M., Nasiri R., Sazhin S.S., Lemoine F., Grisch F. A quantum chemical study of the processes during the evaporation of real-life Diesel fuel droplets. Fluid Phase Equilibria. 2013. 356: 146. https://doi.org/10.1016/j.fluid.2013.07.022

Gun'ko V.M., Nasiri R., Sazhin S.S. A study of the evaporation and condensation of n-alkane clusters and nanodroplets using quantum chemical methods. Fluid Phase Equilibria. 2014. 366: 99. https://doi.org/10.1016/j.fluid.2014.01.010

Ortega I.K., Kupiainen O., Kurtén T., Olenius T., Wilkman O., McGrath M.J., Loukonen V., Vehkamäki H. From quantum chemical formation free energies to evaporation rates. Atmos. Chem. Phys. 2012. 12: 225. https://doi.org/10.5194/acp-12-225-2012

Kupiainen O., Ortega I.K., Kurtén T., Vehkamäki H. Amine substitution into sulfuric acid - ammonia clusters. Atmos. Chem. Phys. 2012. 12: 3591. https://doi.org/10.5194/acp-12-3591-2012

Beverley K.J., Clint J.H., Fletcher P.D.I., Thubron S. Evaporation rates of water contained within porous silica particles. Phys. Chem. Chem. Phys. 1999. 1: 909. https://doi.org/10.1039/a809241i

Yaws C.L. (editor). Thermophysical Properties of Chemicals and Hydrocarbons. (NY: William Andrew Inc., Norwich, 2008).

Gun'ko V.M., Nasiri R., Sazhin S.S. Effects of the surroundings and conformerisation of n-dodecane molecules on evaporation/condensation processes. J. Chem. Phys. 2015. 142: 034502. https://doi.org/10.1063/1.4905496

Goworek J., Stefaniak W., Prudaczuk M. The influence of polarity of liquids on the parameters characterizing the porosity of silica gels estimated by thermogravimetric analysis. Thermochimica Acta. 2001. 379: 117. https://doi.org/10.1016/S0040-6031(01)00610-4

Singh M.P., Singh R.K., Chandra S. Ionic liquids confined in porous matrices: Physicochemical properties and applications. Prog. Mater. Sci. 2014. 64: 73. https://doi.org/10.1016/j.pmatsci.2014.03.001

Gubbins K.E., Long Y., Sliwinska-Bartkowiak M. Thermodynamics of confined nano-phases. J. Chem. Thermodynamics. 2014. 74: 169. https://doi.org/10.1016/j.jct.2014.01.024

Wang L., Yu Q. Methane adsorption on porous nano-silica in the presence of water: An experimental and ab initio study. J. Colloid Interface Sci. 2016. 467: 60. https://doi.org/10.1016/j.jcis.2015.09.061

Gun'ko V.M., Sulym I.Y., Borysenko M.V., Turov V.V. Interfacial behavior of water bound to zirconia/nanosilica with adsorbed poly(dimethylsiloxane). Colloids Surf. A: Physicochem. Eng. Aspects. 2013. 426: 47. https://doi.org/10.1016/j.colsurfa.2013.02.063

Stewart J.J.P. MOPAC 2016, Stewart Computational Chemistry, Colorado Springs, CO, USA, http://openmopac.net/, 2019.

Stewart J.J.P. Optimization of parameters for semiempirical methods VI: more modifications to the NDDO approximations and re-optimization of parameters. J. Mol. Mod. 2013. 19: 1. https://doi.org/10.1007/s00894-012-1667-x

Maia J.D.C., Carvalho G.A.U., Mangueira C.P. Jr., Santana S.R., Cabral L.A.F., Rocha G.B. GPU linear algebra libraries and GPGPU programming for accelerating MOPAC semiempirical quantum chemistry calculations. J. Chem. Theory Comput. 2012. 8: 3072. https://doi.org/10.1021/ct3004645

Cheeseright T., Mackey M., Rose S., Vinter J.G. Molecular field technology applied to virtual screening and finding the bioactive conformation. Expert. Opin. Drug. Discov. 2007. 2: 131. https://doi.org/10.1517/17460441.2.1.131

Cheeseright T., Mackey M., Rose S., Vinter J.G. Molecular field extrema as descriptors of biological activity: definition and validation. J. Chem. Inf. Model. 2006. 46: 665. https://doi.org/10.1021/ci050357s

Dennington R., Keith T., Millam J. GaussView, Version 5.0.9, Semichem Inc., Shawnee Mission KS; 2009.

Zhurko G.A, Zhurko D.A. Chemcraft (version 1.8), 2019, http://www.chemcraftprog.com.

Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem. 2004. 25: 1605. https://doi.org/10.1002/jcc.20084

Turov V.V., Gun'ko V.M., Zarko V.I., Goncharuk O.V., Krupska T.V., Turov A.V., Leboda R., Skubiszewska-Zięba J. Interfacial behavior of n-decane bound to weakly hydrated silica gel and nanosilica over a broad temperature range. Langmuir. 2013. 29: 4303. https://doi.org/10.1021/la400392h

Takei T., Mukasa K., Kofuji M., Fuji M., Watanabe T., Chikazawa M., Kanazawa T. Changes in density and surface tension of water in silica pores. Colloid Polym. Sci. 2000. 278: 475. https://doi.org/10.1007/s003960050542

Petch H.E. The hydrogen positions in portlandite, Ca(OH)2, as indicated by the electron distribution. Acta Crystallogr. 1961. 14: 950. https://doi.org/10.1107/S0365110X61002771

Desgranges L., Grebille D., Calvarin G., Chevrier G., Floquet N., Niepce J.C. Hydrogen thermal motion in calcium hydroxide: Ca(OH)2. Acta Crystallogr. Sect. B: Struct. Sci. 1993. 49: 812. https://doi.org/10.1107/S0108768193003556

Jennings H. Refinements to colloidal model of C-S-H in cement: CM-II. Cem. Concr. Res. 2008. 38: 275. https://doi.org/10.1016/j.cemconres.2007.10.006

Famy C., Scrivener K.L., Atkinson A. Effects of an early or a late heat treatment on the microstructure and composition of inner C-S-H products of Portland cement mortars. Cem. Concr. Res. 2002. 32: 269. https://doi.org/10.1016/S0008-8846(01)00670-6

Nonat A. The structure and stoichiometry of C-S-H. Cem. Concr. Res. 2004. 34: 1521. https://doi.org/10.1016/j.cemconres.2004.04.035

Gallucci E., Zhang X., Scrivener K.L. Effect of temperature on the microstructure of calcium silicate hydrate (C-S-H). Cem. Concr. Res. 2013. 53: 185. https://doi.org/10.1016/j.cemconres.2013.06.008

Muller A.C.A., Scrivener K.L., J. Skibsted J., Gajewicz A.M., McDonald P.J. Influence of silica fume on the microstructure of cement pastes: New insights from 1H NMR relaxometry. Cement and Concrete Research. 2015. 74: 116. https://doi.org/10.1016/j.cemconres.2015.04.005

Zhu W., Zhou Y., Ma W., Li M., Yu J., Xie K. Using silica fume as silica source for synthesizing spherical ordered mesoporous silica. Materials Letters. 2013. 92129. https://doi.org/10.1016/j.matlet.2012.10.044

Gun'ko V.M., Zarko V.I., Mironyuk I.F., Goncharuk E.V., Guzenko N.V., Borysenko M.V., Gorbik P.P., Mishchuk O.A., Janusz W., Leboda R., Skubiszewska-Zięba J., Grzegorczyk W., Matysek M., Chibowski S. Surface electric and titration behaviour of fumed oxides. Colloids Surf. A: Physicochem. Eng. Aspects. 2004. 240: 9. https://doi.org/10.1016/j.colsurfa.2004.03.014

Gun'ko V.M., Zarko V.I., Turov V.V., Goncharuk E.V., Nychiporuk Yu.M., Turova A.A., Gorbik P.P., Leboda R., Skubiszewska-Zięba J., Pissis P., Blitz J.P. Regularities in the behaviour of nanooxides in different media affected by surface structure and morphology of particles. In: Shpak A.P., Gorbyk P.P. (editors). Nanomaterials and Supramolecular Structures. (Dordrecht: Springer, 2010, pp. 93-118). https://doi.org/10.1007/978-90-481-2309-4_8

Gun'ko V.M., Andriyko L.S., Zarko V.I., Marynin A.I., Olishevskiy V.V., Janusz W. Effects of chlorides of alkaline metals on the behavior of nanosilica in aqueous media. Central Eur. J. Chem. 2014. 12(4): 480. https://doi.org/10.2478/s11532-013-0386-1

Andriyko L.S., Zarko V.I., Gun'ko V.M., Marynin A.I., Olishevskiy V.V., Skwarek E., Janusz W. Electrical and physical characteristics of silica nanoparticles in aqueous media affected by cations Na+, Ba2+ and Al3+. Adsorption Science & Technology. 2015. 33: 601. https://doi.org/10.1260/0263-6174.33.6-8.601

Janusz W., Skwarek E., Zarko V.I., Gun'ko VM. Structure of electrical double layer at the Al2O3-SiO2/electrolyte solution interface. Physicochemical Problems of Mineral Processing. 2007. 41: 215.

Skwarek E., Matysek-Nawrocka M., Janusz W., Zarko V.I., Gun'ko V.M. Adsorption of heavy metal ions at the Al2O3-SiO2/NaClO4 electrolyte interface. Physicochemical Problems of Mineral Processing.2008. 42: 153.

Wiśniewska M., Terpiłowski K., Chibowski S., Chibowski E., Urban T., Zarko V.I., Gun'ko V.M. Effect of polyacrylic acid (PAA) adsorption on stability of mixed alumina‐silica oxide suspension. Powder Technology. 2013. 233: 190. https://doi.org/10.1016/j.powtec.2012.08.037

Wiśniewska M., Terpiłowski K., Chibowski S., Urban T., Zarko V.I., Gun'ko V.M. Effect of solution pH on the stability of mixed silica -alumina suspension in the presence of polyacrylic acid (PAA) with different molecular weights. Central Eur. J. Chem. 2013. 11: 101. https://doi.org/10.2478/s11532-012-0136-9

Wiśniewska M., Terpiłowski K., Chibowski S., Chibowski E., Urban T., Zarko V.I., Gun'ko V.M. Stability of colloidal silica modified by macromolecular polyacrylic acid (PAA) - application of turbidymetry method. J. Macromol. Sci. Part A: Pure Appl. Chem. 2013. 50: 639. https://doi.org/10.1080/10601325.2013.784562

Wiśniewska M., Urban T., Grządka E., Zarko V.I., Gun'ko V.M. Comparison of adsorption affinity of polyacrylic acid for surfaces of mixed silica-alumina. Colloid Polym. Sci. 2014. 292: 699. https://doi.org/10.1007/s00396-013-3103-x

Wiśniewska M., Urban T., Nosal-Wiercińska A., Zarko V.I., Gun'ko V.M. Comparison of stability properties of poly(acrylic acid) adsorbed on the surface of silica, alumina and mixed silica-alumina nanoparticles - Application of turbidimetry method. Central Eur. J. Chem. 2014. 12: 476. https://doi.org/10.2478/s11532-013-0401-6

Wiśniewska M., Terpiłowski K., Chibowski S., Urban T., Zarko V.I., Gun'ko V.M. Investigation of stabilization and destabilization possibilities of water alumina suspension in polyelectrolyte presence. International Journal of Mineral Processing. 2014. 132: 34. https://doi.org/10.1016/j.minpro.2014.08.007

Wiśniewska M., Ostolska I., Szewczuk-Karpisz K., Chibowski S., Terpiłowski K., Gun'ko V.M., Zarko V.I. Investigation of the polyvinyl alcohol stabilization mechanism and adsorption properties on the surface of ternary mixed nanooxide AST 50 (Al2O3-SiO2-TiO2). Journal of Nanoparticle Research. 2015. 17: 14. https://doi.org/10.1007/s11051-014-2831-2

Wiśniewska M., Szewczuk-Karpisz K., Ostolska I., Urban T., Terpiłowski K., Zarko V.I., Gun'ko V.M. Effect of polyvinyl alcohol adsorption on the mixed alumina-silica-titania suspension stability. Journal of Industrial and Engineering Chemistry. 2015. 23: 265. https://doi.org/10.1016/j.jiec.2014.08.027

Wawrzkiewicz M., Wiśniewska M., Gun'ko V., Zarko V. Adsorptive removal of acid, reactive and direct dyes from aqueous solutions and wastewater using mixed silica-alumina oxide. Powder Technology. 2015. 278: 306. https://doi.org/10.1016/j.powtec.2015.03.035

Grządka E., Wiśniewska M., Gun'ko V.M., Zarko V.I. Adsorption, electrokinetic and stabilizing properties of the system: guar gum/surfactant/alumina. Journal of Sufractants and Detergents. 2015. 18: 445. https://doi.org/10.1007/s11743-015-1673-y

Blitz I.P., Blitz J.P., Gun'ko V.M., Sheeran D.J. Functionalized silicas: structural characteristics and adsorption of Cu(II) and Pb(II). Colloids Surf. A: Physicochem Eng Aspects. 2007. 307: 83. https://doi.org/10.1016/j.colsurfa.2007.05.016

Kothalawala N., Blitz J.P., Gun'ko V.M., Jaroniec M., Grabicka B., Semeniuc R.F. Post-synthesis surface modified silicas as adsorbents for heavy metal ion contaminants Cd(II), Cu(II), Cr(III), and Sr(II) in aqueous solutions. J. Colloid Interface Sci. 2013. 392: 57. https://doi.org/10.1016/j.jcis.2012.10.037

Gun'ko V.M., Blitz J.P., Bandaranayake B., Pakhlov E.M., Zarko V.I., Sulym I.Ya., Kulyk K.S., Galaburda M.V., Bogatyrev V.M., Oranska O.I., Borysenko M.V., Leboda R., Skubiszewska-Zięba J., Janusz W. Structural characteristics of mixed oxides MOx/SiO2 affecting photocatalytic decomposition of methylene blue. Appl. Surf. Sci. 2012. 258: 6288. https://doi.org/10.1016/j.apsusc.2012.03.025

Rahni M.T., Karbaschi M., Miller R. (editors). Computational Methods for Complex Liquid-Fluid Interfaces. (CRC Press, Boca Raton; 2015).

Zhan C., Chen F., Yang J., Dai D., Cao X., Zhong M. Visible light responsive sulfated rare earth doped TiO2/fumed SiO2 composites with mesoporosity: Enhanced photocatalytic activity for methyl orange degradation. J. Hazard Mater. 2014. 267: 88-97. https://doi.org/10.1016/j.jhazmat.2013.12.038

Yu Y., Wang J., Parr J.F. Preparation and properties of TiO2/fumed silica composite photocatalytic materials. Procedia Eng. 2012. 27: 448. https://doi.org/10.1016/j.proeng.2011.12.473

Diamanti M.V., Ormellese M., Marin E., Lanzutti A., Mele A., Pedeferri M.P. Anodic titanium oxide as immobilized photocatalyst in UV or visible light devices. J. Hazard Mater. 2011. 186: 2103. https://doi.org/10.1016/j.jhazmat.2010.12.128

Bokare A., Pai M., Athawale A.A. Surface modified Nd doped TiO2 nanoparticles as photocatalysts in UV and solar light irradiation. Solar Energy. 2013. 91: 111.

https://doi.org/10.1016/j.solener.2013.02.005

Zhan C.C., Chen F., Dai H.H., Yang J.T., Zhong M.Q. Photocatalytic activity of sulfated Mo-doped TiO2/fumed SiO2 composite: a mesoporous structure for methyl orange degradation. Chem. Eng. J. 2013. 225: 695. https://doi.org/10.1016/j.cej.2013.03.110

Goncharuk E.V., Mishchenko V.N., Zarko V.I., Gun'ko V.M. Effect of the composition and structure of titanosilicas on their photocatalytic activity in the decomposition of methylene blue. Theor. Experim. Chem. 2006. 42: 26. https://doi.org/10.1007/s11237-006-0013-8

Jaroenworaluck A., Pijarn N., Kosachan N., Stevens R. Nanocomposite TiO2-SiO2 gel for UV absorption. Chem. Eng. J. 2012. 181-182: 45. https://doi.org/10.1016/j.cej.2011.08.028

Provencher SW. A constrained regularization method for inverting data represented by linear algebraic or integral equations. Comp. Phys. Comm. 1982. 27: 213. https://doi.org/10.1016/0010-4655(82)90173-4

Laidler K.J., Meiser J.H. Physical Chemistry. (Menlo Park CA: Benjamin/Cummings, 1982).

Fujishima A., Hashimoto K., Wanable H. TiO2 Photocatalysis: Fundamentals and Applications. (Tokyo, Japan: BKC Inc., 1997).

Thompson T.L., Yates J.T. Jr. Surface Science studies of the photoactivation of TiO2 - new photochemical processes. Chem. Rev. 2006. 106: 4428. https://doi.org/10.1021/cr050172k

Glushko V.P. (editor). Handbook of thermodynamic properties of individual substances. (Moscow: Nauka, 1978). [in Russian].

Mitchell J., Webber J.B.W., Strange J.H. Nuclear magnetic resonance cryoporometry. Phys. Rep. 2008. 461(1): 1. https://doi.org/10.1016/j.physrep.2008.02.001

Petrov O.V., Furó I. NMR cryoporometry: Principles, application and potential. Progr. NMR Spectroscopy. 2009. 54: 97. https://doi.org/10.1016/j.pnmrs.2008.06.001

Aksnes D.W., Forl K., Kimtys L. Pore size distribution in mesoporous materials as studied by 1H NMR. Phys. Chem. Chem. Phys. 2001. 3: 3203. https://doi.org/10.1039/b103228n

Webber J.B.W., Anderson R., Strange J.H., Tohidi B. Clathrate formation and dissociation in vapor/water/ice/hydrate systems in SBA-15, sol-gel and CPG porous media, as probed by NMR relaxation, novel protocol NMR cryoporometry, neutron scattering and ab initio quantum-mechanical molecular dynamics simulation. Magnet Reson. Imag. 2007. 25: 533. https://doi.org/10.1016/j.mri.2006.11.022

Gun'ko V.M., Savina I.N., Mikhalovsky S.V. Cryogels: Morphological, structural and adsorption characterization. Adv. Colloid Interface Sci. 2013. 187-188: 1. https://doi.org/10.1016/j.cis.2012.11.001

Petrov O.V., Furó I. A joint use of melting and freezing data in NMR cryoporometry. Micropor. Mesopor. Mater. 2010. 136(1-3): 83. https://doi.org/10.1016/j.micromeso.2010.08.001

Schulz P.S. Ionic liquids as solvent probes for NMR cryoporometry. Chem.Phys.Chem. 2010. 11: 87. doi:10.1002/cphc.200900804. https://doi.org/10.1002/cphc.200900804

Shiko E., Edler K.J., Lowe J.P., Rigby S.P. Probing hysteresis during sorption of cyclohexane within mesoporous silica using NMR cryoporometry and relaxometry. J. Colloid Interface Sci. 2013. 398: 168. https://doi.org/10.1016/j.jcis.2013.02.002

Mitchell J., Gladden L.F., Chandrasekera T.C., Fordham E.J. Low-field permanent magnets for industrial process and quality control. Prog. Nucl. Magn. Reson. Spectrosc. 2014. 76: 1. https://doi.org/10.1016/j.pnmrs.2013.09.001

Gun'ko V.M. Interfacial phenomena: effects of confined space and structure of adsorbents on the behavior of polar and nonpolar adsorbates at low temperatures. Current Physical Chemistry. 2015. 5: 137. https://doi.org/10.2174/187794680502160111093413

Gun'ko V.M. Modeling of interfacial behavior of water and organics. J. Theor. Comp. Chem. 2013. 12(7):1350059. https://doi.org/10.1142/S0219633613500594

Mallamace F., Corsaro C., Broccio M., Branca C., González-Segredo N., Spooren J., Chen S.-H., Stanley H.E. NMR evidence of a sharp change in a measure of local order in deeply supercooled confined water. Proc. Natl. Acad. Sci. USA. 2008. 105(35): 12725. https://doi.org/10.1073/pnas.0805032105

Landry M.R. Thermoporometry by differential scanning calorimetry: experimental considerations and applications. Thermochim. Acta 2005. 433(1-2): 27. https://doi.org/10.1016/j.tca.2005.02.015

Gun'ko V.M., Turov V.V., Bogatyrev V.M., Zarko V.I., Leboda R., Goncharuk E.V., Novza A.A., Turov A.V., Chuiko A.A. Unusual properties of water at hydrophilic/hydrophobic interfaces. Adv. Colloid Interface Sci. 2005. 118(1-3): 125. https://doi.org/10.1016/j.cis.2005.07.003

Gun'ko V.M., Zarko V.I., Goncharuk E.V., Andriyko L.S., Turov V.V., Nychiporuk Y.M, Leboda R., Skubiszewska-Zieba J., Gabchak A.L., Osovskii V.D., Ptushinskii Y.G., Yurchenko G.R., Mishchuk O.A., Gorbik P.P., Pissis P., Blitz J.P. TSDC spectroscopy of relaxational and interfacial phenomena. Adv. Colloid Interface Sci. 2007. 131(1-2): 1. https://doi.org/10.1016/j.cis.2006.11.001

Turov V.V., Gun'ko V.M., Turova A.A., Morozova L.P., Voronin E.F. Interfacial behavior of concentrated HCl solution and water clustered at a surface of nanosilica in weakly polar solvents media. Colloids Surf. A: Physicochem. Eng. Aspects 2011. 390(1-3): 48. https://doi.org/10.1016/j.colsurfa.2011.08.053

Gun'ko V.M., Turov V.V., Skubiszewska-Zięba J., Leboda R., Tsapko M.D., Palijczuk D. Structural characteristics of a carbon adsorbent and influence of organic solvents on interfacial water. Appl. Surf. Sci. 2003. 214(1-4): 178. https://doi.org/10.1016/S0169-4332(03)00345-3

Turov V.V., Gun'ko V.M., Zarko V.I., Leboda R., Jabłoński M., Gorzelak M., Jagiello-Wojtowicz E. Weakly and strongly associated nonfreezable water bound in bones. Colloids Surf. B: Biointerfaces 2006. 48(2): 167. https://doi.org/10.1016/j.colsurfb.2006.02.001

Kinney D.R., Chuang I.-S., Maciel G.E. Water and the silica surface as studied by variable temperature high resolution 1H NMR. J. Am. Chem. Soc. 1993. 115(15): 6786. https://doi.org/10.1021/ja00068a041

Chuang I.-S., Maciel G.E. Probing hydrogen bonding and the local environment of silanols on silica surfaces via nuclear spin cross polarization dynamics. J. Am. Chem. Soc. 1996. 118(2): 401. https://doi.org/10.1021/ja951550d

Liu C.C., Maciel G.E. The fumed silica surface: a study by NMR. J. Am. Chem. Soc. 1996. 118(21): 5103. https://doi.org/10.1021/ja954120w

Humbert H. Estimation of hydroxyl density at the surface of pyrogenic silicas by complementary NMR and Raman experiments. J. Non-Crystal Solid 1995. 191(1-2): 29. https://doi.org/10.1016/0022-3093(95)00311-8

Hu J.Z., Kwak J.H., Herrera J.E., Wang Y., Peden Ch.H.F. Line narrowing in 1H MAS spectrum of mesoporous silica by removing adsorbed H2O using N2. Solid State Nuclear Magnetic Resonance 2005. 27(3): 200. https://doi.org/10.1016/j.ssnmr.2004.11.004

Fonseca I., Matos J., Gonçalves M.C., Carvalho A., Sebasti P.J. Silica and silica organically modified nanoparticles: Water dynamics in complex systems. Microporous and Mesoporous Materials 2015. 217: 102. https://doi.org/10.1016/j.micromeso.2015.06.015

Jimura K., Hayashi S. Proton diffusion in hybrid materials of CsHSO4 and silica nanoparticles as studied by 1H solid-state NMR. Solid State Sci. 2012. 14(1): 171. https://doi.org/10.1016/j.solidstatesciences.2011.11.020

Walia J., Crone J., Liang J., Niknam M., Lemaire C., Thompson R.T., Peemoeller H. Temperature and hydration dependence of proton MAS NMR spectra in MCM-41: Model based on motion induced chemical shift averaging. Solid State Nucl. Magn. Reson. 2013. 49-50: 26. https://doi.org/10.1016/j.ssnmr.2012.11.003

Brinker C.J., Scherer G.W. Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing. (NY: Academic Press, 1990).

Pierre A.C. Introduction to Sol-Gel Processing. (Boston: Kluwer, 1998). https://doi.org/10.1007/978-1-4615-5659-6

Vansant E.F., Van Der Voort P., Vrancken K.C. Characterization and Chemical Modification of the Silica Surface. Studies in Surface Science and Catalysis. Vol. 93 (Amsterdam: Elsevier, 1995). https://doi.org/10.1016/S0167-2991(06)81508-9

Gun'ko V.M., Zarko V.I., Voronin E.F., Turov V.V., Mironyuk I.F., Gerashchenko I.I., Goncharuk E.V., Pakhlov E.M., Guzenko N.V., Leboda R., Skubiszewska-Ziȩba J., Janusz W., Chibowski S., Levchuk Yu.N., Klyueva A.V. Impact of some organics on structural and adsorptive characteristics of fumed silica in different media. Langmuir. 2002. 18(3): 581. https://doi.org/10.1021/la0103867

Mironyuk I.F., Gun'ko V.M., Turov V.V., Zarko V.I., Leboda R., Skubiszewska-Zięba J. Characterization of fumed silicas and their interaction with water and dissolved proteins. Colloids Surf. A: Physicochem. Eng. Aspects 2001. 180(1-2): 87. https://doi.org/10.1016/S0927-7757(00)00764-0

Gun'ko V.M., Voronin E.F., Mironyuk I.F., Leboda R., Skubiszewska-Zięba J., Pakhlov E.M., Guzenko N.V., Chuiko A.A. The effect of heat, adsorption and mechanochemical treatments on stuck structure and adsorption properties of fumed silicas. Colloids Surf. A: Physicochem. Eng. Aspects 2003. 218(1-3): 125. https://doi.org/10.1016/S0927-7757(02)00598-8

Turov V.V., Voronin E.F., Morozova L.P., Gun'ko V.M., Nosach L.V. The effect of mechanical activation on the hydration properties of nanodispersed silica. Russian Journal of Applied Chemistry 2011. 84: 1304. https://doi.org/10.1134/S1070427211080027

Gupta S., Pel L., Kopinga K. Crystallization behavior of NaCl droplet during repeated crystallization and dissolution cycles: An NMR study. Journal of Crystal Growth 2014. 391: 64. https://doi.org/10.1016/j.jcrysgro.2014.01.016

Xu J.-A., Huang E., Lin J.-F., Xu L.Y. Raman study at high pressure and the thermodynamic properties of corundum: Application of Kieffer's model. Am. Mineral. 1995. 80(11-12): 1157. https://doi.org/10.2138/am-1995-11-1206

Hair M.L. Infrared Spectroscopy in Surface Chemistry. (NY: Dekker, 1967).

Gun'ko V.M., Turov V.V., Bogatyrev V.M., Charmas B., Skubiszewska-Zięba J., Leboda R., Pakhovchishin S.V., Zarko V.I., Petrus L.V., Stebelska O.V., Tsapko M.D. Influence of partial hydrophobization of fumed silica by hexamethyldisilazane on interaction with water. Langmuir 2003. 19(26): 10816. https://doi.org/10.1021/la0301238

Gun'ko V.M., Sheeran D.J., Augustine S.M., Blitz J.P. Structural and energetic characteristics of silicas modified by organosilicon compounds. J. Colloid Interface Sci. 2002. 249(1): 123. https://doi.org/10.1006/jcis.2002.8259

Gun'ko V.M., Zarko V.I., Leboda R., Chibowski E. Aqueous suspensions of fumed oxides: particle size distribution and zeta potential. Adv. Colloid Interface Sci. 2001. 91: 1. https://doi.org/10.1016/S0001-8686(99)00026-3

Karraker K.A., Radke C.J. Disjoining pressures, zeta potentials and surface tensions of aqueous non-ionic surfactant/electrolyte solutions: theory and comparison to experiment. Adv. Colloid Interface Sci. 2002. 96: 231. https://doi.org/10.1016/S0001-8686(01)00083-5

Bourikas K., Kordulis C., Lycourghiotis A. The mechanism of the protonation of metal (hydr)oxides in aqueous solutions studied for various interfacial/surface ionization models and physicochemical parameters: A critical review and a novel approach. Adv. Colloid Interface Sci. 2006. 121: 111. doi: 10.1016/j.cis.2006.06.002. https://doi.org/10.1016/j.cis.2006.06.002

Kovalchuk N.M., Starov V.M. Aggregation in colloidal suspensions: Effect of colloidal forces and hydrodynamic interactions. Adv. Colloid Interface Sci. 2012. 179-182: 99. https://doi.org/10.1016/j.cis.2011.05.009

Chaplin M. Water Structure and Science. http://www.lsbu.ac.uk/water/, 23 October, 2015.

Pople J.A., Schneider W.G., Bernstein H.J. High-Resolution Nuclear Magnetic Resonance. (NY: McGraw-Hill Book Company, 1959).

Gun'ko V.M., Morozova L.P., Turova A.A., Turov A.V., Gaishun V.E., Bogatyrev V.M., Turov V.V. Hydrated phosphorus oxyacids alone and adsorbed on nanosilica. J. Colloid Interface Sci. 2012. 368(1): 263. https://doi.org/10.1016/j.jcis.2011.11.018

Gun'ko V.M., Turov V.V., Zarko V.I., Goncharuk E.V., Turova A.A. Regularities in the behaviour of water confined in adsorbents and bioobjects studied by 1H NMR spectroscopy and TSDC methods at low temperatures. Colloids Surf. A: Physicochem. Eng. Aspects. 2009. 336(1-3): 147. https://doi.org/10.1016/j.colsurfa.2008.11.043

Petin A.Yu., Gun'ko V.M., Turov A.V., Turov V.V., Leboda R. Clusterization of water at a surface of nanosilica A-380. Annales Universitatis Marie Curie-Sklodowska Sectio Chemia 2009. 64(1): 184. https://doi.org/10.2478/v10063-008-0014-7

Gun'ko V.M., Turov V.V., Turov A.V. Hydrogen peroxide - water mixture bound to nanostructured silica. Chem. Phys. Lett. 2012. 531: 132. https://doi.org/10.1016/j.cplett.2012.01.090

Turov V.V., Krupska T.V., Tsapko M.D., Gun'ko V.M. Temperature behavior of water and n-decane bound to nanosilica or poly(methylsiloxane). Chemistry, Physics and Technology of Surface 2015. 6(2): 244. https://doi.org/10.15407/hftp06.02.244

Murakhtina T., Heuft J., Meijer E.J, Sebastiani D. First principles and experimental 1H NMR signatures of solvated ions: the case of HCl(aq). Chem. Phys. Chem. 2006. 7(12): 2578. https://doi.org/10.1002/cphc.200600385

Wypych G. (editor), Handbook of Solvents. (Toronto: ChemTec Publishing, 2001).

Gun'ko V.M. Modelling of evaporation of clusters and nanodroplets of organic molecules using quantum chemical and the kinetic gas theory methods. Chemistry, Physics and Technology of Surface 2015. 6(1): 5. https://doi.org/10.15407/hftp06.01.005

Liboff R.L. Kinetic Theory. (NY: Prentice-Hall, Englewood Cliffs, 1990).

Laurendeau N.M. Statistical Thermodynamics: Fundamentals and Applications. (Cambridge: Cambridge University Press, 2005). https://doi.org/10.1017/CBO9780511815928

Sefiane K. Patterns from drying drops. Adv. Colloid Interface Sci. 2014. 206: 372. https://doi.org/10.1016/j.cis.2013.05.002

Peng C.-C., Cerretani C., Braun R.J., Radke C.J. Evaporation-driven instability of the precorneal tear film. Adv. Colloid Interface Sci. 2014. 206: 250. https://doi.org/10.1016/j.cis.2013.06.001

Askounis A., Sefiane K., Koutsos V., Shanahan M.E.R. Effect of particle geometry on triple line motion of nanofluid drops and deposit nano-structuring. Adv. Colloid Interface Sci. 2015. 222: 44. https://doi.org/10.1016/j.cis.2014.05.003

Thomas S., Shanks R., Chandrasekharakurup S. (editors), Design and Applications of Nanostructured Polymer Blends and Nanocomposite Systems. (Amsterdam: Elsevier, 2016).

Ahmed W., Jackson M.J. (editors) Emerging Nanotechnologies for Manufacturing. Second Edition, (Amsterdam: Elsevier, 2015).

Piemonte V., De Falco M., Basile A. (editors), Sustainable Development in Chemical Engineering - Innovative Technologies. First Edition. (Hoboken, NJ: John Wiley & Sons, 2013). https://doi.org/10.1002/9781118629703

Demir M.M., Wegner G. Challenges in the preparation of optical polymer composites with nanosized pigment particles: a review on recent efforts. Macromol. Mater. Eng. 2012. 297(9): 838. https://doi.org/10.1002/mame.201200089

Kim D.J., Jo M.J., Nam S.Y. A review of polymer-nanocomposite electrolyte membranes for fuel cell application. J. Ind. Eng. Chem. 2015. 21: 36. https://doi.org/10.1016/j.jiec.2014.04.030

Wang Y., He J., Liu C., Chong W.H., Chen H. Thermodynamics versus kinetics in nanosynthesis. Angew. Chem. Int. Ed. 2015. 54(7): 2022. https://doi.org/10.1002/anie.201402986

Martinez L.J., Sanchez M.L., Kikot P., Candal R., Grasselli M. Preparation of functional currant-bun-like fumed silica/polymethacrylate nanoparticles by radiation-induced polymerization. Colloids Surf. A: Physicochem. Eng. Asp. 2014. 463: 110. https://doi.org/10.1016/j.colsurfa.2014.09.015

Shadjou N., Hasanzadeh M. Bone tissue engineering using silica-based mesoporous nanobiomaterials: Recent progress. Mater. Sci. Eng. C 2015. 55: 401. https://doi.org/10.1016/j.msec.2015.05.027

Yoosuk B., Wongsanga T., Prasassarakich P. CO2 and H2S binary sorption on polyamine modified fumed silica. Fuel. 2016. 168: 47. https://doi.org/10.1016/j.fuel.2015.11.080

Ramesh S., Liew C.-W. Exploration on nano-composite fumed silica-based composite polymer electrolytes with doping of ionic liquid. J. Non-Crystal Solid 2012. 358(2): 931. https://doi.org/10.1016/j.jnoncrysol.2012.01.005

Damouny C.W., Silverstein M.S. Hydrogel-filled, semi-crystalline, nanoparticle crosslinked, porous polymers from emulsion templating: Structure, properties, and shape memory. Polymer. 2016. 82:262. https://doi.org/10.1016/j.polymer.2015.11.040

Gun'ko V.M., Turov V.V., Krupska T.V., Ruban AN, Kazanets A.I., Leboda R., Skubiszewska-Zięba J. Interfacial behavior of silicone oils interacting with nanosilica and silica gels. J. Colloid Interface Sci. 2013. 394: 467. https://doi.org/10.1016/j.jcis.2012.12.026

Kawaguchi M. Silicone oil emulsions stabilized by polymers and solid particles. Adv. Colloid Interface Sci. 2016. 233: 186. https://doi.org/10.1016/j.cis.2015.06.005

Klonos P., Kyritsis A., Pissis P. Interfacial dynamics of polydimethylsiloxane adsorbed on fumed metal oxide particles of a wide range of specific surface area. Polymer. 2015. 77: 10. https://doi.org/10.1016/j.polymer.2015.09.021

Gun'ko V.M., Turov V.V., Turova A.A., Krupska T.V., Pissis P., Leboda R., Skubiszewska-Zięba J. Interactions of poly(dimethylsiloxane) with nanosilica and silica gel upon cooling-heating. J. Colloid Interface Sci. 2014. 426: 48. https://doi.org/10.1016/j.jcis.2014.03.055

Dollase T., Wilhelm M., Spiess H.W., Yagen Y., Yerushalmi-Rozen R., Gottlieb M. Effect of interfaces on the crystallization behavior of PDMS. Interface Sci. 2003. 11(2): 199. https://doi.org/10.1023/A:1022174712707

Lehn J.-M., Supramolecular Chemistry. (Weinheim: VCH Verlagsgessellschaft mbH, 1995).

Bershtein V.A., Egorov V.M. Differential Scanning Calorimetry of Polymers. Physics, Chemistry, Analysis, Technology. (NY: Ellis Horwood, 1994).

Bershtein V., Gun'ko V., Egorova L., Guzenko N., Pakhlov E., Ryzhov V., Zarko V. I. Well-defined silica core - poly(vinyl pyrrolidone) shell nanoparticles: interactions and multi-modal glass transition dynamics at interfaces. Polymer. 2009. 50(3): 860. https://doi.org/10.1016/j.polymer.2008.12.024

Bershtein V.A., Gun'ko V.M., Karabanova L.V., Sukhanova T.E., Yakushev P.N., Egorova L.M., Glievyy O.B., Lutsyk E.D., Pakhlov E.M., Turova A.A., Zarko V.I., Vylegzhanina M.E. Hybrid polyurethane-poly(2-hydroxyethyl methacrylate) semi-ipn-silica nanocomposites: interfacial interactions and glass transition dynamics. J. Macromol. Sc.i Part B: Phys. 2010. 49(1): 18. https://doi.org/10.1080/00222340903343830

Bershtein V.A., Gun'ko V.M., Egorova L.M., Guzenko N.V., Pakhlov E.M., Ryzhov V.A., Zarko V. I. Well-defined oxide core-polymer shell nanoparticles: interfacial interactions, peculiar dynamics and transitions in polymer nanolayers. Langmuir 2010. 26(13): 10968. https://doi.org/10.1021/la101038z

Bershtein V.A., Gun'ko V.M., Egorova L.M., Wang Z., Illsley M., Voronin E.F., Prikhod'ko G.P., Yakushev P.N., Leboda R., Skubiszewska-Zięba J., Mikhalovsky S.V. Dynamics, thermal behaviour and elastic properties of thin films of poly(vinyl alcohol) nanocomposites. RSC Advances 2012. 2(4): 1424. https://doi.org/10.1039/C1RA00535A

Bershtein V.A., Gun'ko V.M., Karabanova L.V., Sukhanova T.E., Yakushev P.N., Egorova L.M., Turova A., Zarko V.I., Pakhlov E.M., Vylegzhanina M.E., Mikhalovsky S.V. Polyurethane-poly(2-hydroxyethyl methacrylate) semi-IPN-nanooxide composites. RSC Advances 2013. 3(34): 14560. https://doi.org/10.1039/c3ra40295a

Gun'ko V.M., Turov V.V., Barvinchenko V.N., Turova A.A., Rugal A.A., Zarko V.I., Leboda R. Nonuniformity of starch/nanosilica composites and interfacial behaviour of water and organic compounds. Appl. Surf. Sci. 2010. 256(17): 5275. https://doi.org/10.1016/j.apsusc.2009.12.117

Ma Y., Hu W., Reiter G. Lamellar crystal orientations biased by crystallization kinetics in polymer thin films. Macromolecules 2006. 39(15): 5159. https://doi.org/10.1021/ma060798s

Hoffman, C. L. Rabolt, J. F. Self-assembled thin-film blends by polymer codeposition - poly(ethylene oxide) and poly(methyl methacrylate). Macromolecules 1996. 29(7): 2543. https://doi.org/10.1021/ma950076t

Zhu J., Wang M. Phase ordering and crystallization kinetics in ultrathin poly(ethylene oxide)/poly(methyl methacrylate) blend films. J. Macromol. Sci. Part B: Phys. 2008. 47(5): 1008. https://doi.org/10.1080/00222340802219420

Wang H., Keum J.K., Hiltner A., Baer E. Confined crystallization of PEO in nanolayered films impacting structure and oxygen permeability. Macromolecules 2009. 42(18): 7055. https://doi.org/10.1021/ma901379f

Wang H., Keum J.K., Hiltner A., Baer E., Freeman B., Rozanski A., Galeski A. Confined crystallization of polyethylene oxide in nanolayer assemblies. Science 2009. 323(5915): 757. https://doi.org/10.1126/science.1164601

Martin J., Mijangos C.,Sanz A., Ezquerra T.A., Nogales A. Segmental dynamics of semicrystalline poly(vinylidene fluoride) nanorods. Macromolecules 2009. 42: 5395. https://doi.org/10.1021/ma900754v

Klonos P., Pissis P., Gun'ko V.M., Kyritsis A., Guzenko N.V., Pakhlov E.M., Zarko V.I., Janusz W., Skubiszewska-Zięba J., Leboda R. Interaction of poly(ethylene glycol) with fumed silica and alumina/silica/titania. Colloids Surf. A: Physicochem. Eng. Aspects 2010. 360(1-3): 220. https://doi.org/10.1016/j.colsurfa.2010.03.002

Gun'ko V.M., Pissis P., Spanoudaki A., Turova A., Turov V.V., Zarko V.I., Goncharuk E.V. Interfacial phenomena in starch/fumed silicaat varied hydration levels. Colloids Surf. A: Physicochem. Eng. Aspects 2008. 320(1-3): 247. https://doi.org/10.1016/j.colsurfa.2008.02.004

Hunter R.J. Zeta Potential in Colloid Sciences (London: Academic Press, 1981).

Gun'ko V.M., Turov V.V., Zarko V.I., Dudnik V.V., Tischenko V.A., Voronin E.F., Siltchenko S.S., Barvinchenko V.N., Chuiko A.A. Aqueous suspensions of fumed silica and adsorption of proteins. J. Colloid Interface Sci. 1997. 192(1): 166. https://doi.org/10.1006/jcis.1997.4985

Sorai M (editor), Comprehensive Handbook of Calorimetry and Thermal Analysis (West Sussex, England: Wiley, 2004).

Beaumont R.H., Clegg B., Gee G., Herbert J.B.M., Marks D.J., Roberts R.C., et al. Heat capacities of propylene oxide and of some polymers of ethylene and propylene oxides. Polymer. 1966. 7(8): 401. https://doi.org/10.1016/0032-3861(66)90055-3

Donth E. (editor), The Glass Transition: Relaxation Dynamics in Liquids and Disordered Materials. Springer Series in Materials Science. vol 48 (Berlin: Springer, 2001). https://doi.org/10.1007/978-3-662-04365-3

Fontanella J.J., Wintersgill M.C., Calame J.P., Andeen C.G. Electrical relaxation in pure and alkali metal thiocyanate complexed poly(ethylene oxide). Solid State Ionics 1983. 8(4): 333. https://doi.org/10.1016/0167-2738(83)90009-7

Kyritsis A., Pissis P., Tsonos C., Laudat J., Ren J. Dielectric and conductivity relaxation in dry and humid solid PEO electrolytes. J. Non-Crystal Solid 1994. 172-174(2): 1431. https://doi.org/10.1016/0022-3093(94)90673-4

Kripotou S., Pissis P., Sysel P., Sindelar V., Bershtein V.A. Structure-property relationships in novel poly(imide-amide)-poly(ethylene glycol)hybrid networks. Polymer. 2006. 47(1): 357. https://doi.org/10.1016/j.polymer.2005.11.012

Jia Z., Zhang K., Tan J., Han C., Dong L., Yang Y. Crystallization behavior and mechanical properties of crosslinked plasticized poly(L-lactic acid). J. Appl. Polymer. Sci. 2009. 111(3): 1530. https://doi.org/10.1002/app.29171

Dobbertin J., Hensel A., Schick C. Dielectric spectroscopy and calorimetry in the glass transition region of semi-crystalline poly(ethylene terephthalate). J. Thermal Analys Calorimetry 1996. 47(4): 1027. https://doi.org/10.1007/BF01979446

Fragiadakis D., Pissis P. Glass transition and segmental dynamics in poly (dimethylsiloxane)/silica nanocomposites studied by various techniques. J. Non-Crystal Solid 2007. 353(47-51): 4344. https://doi.org/10.1016/j.jnoncrysol.2007.05.183

Bershtein V.A., Egorova L.M., Yakushev P.N., Pissis P., Sysel P., Brozova L. Molecular dynamics in nanostructured polyimide-silica hybrid materials and their thermal stability. J. Polymer. Sci. B: Polymer. Phys. 2002. 40(10): 1056. https://doi.org/10.1002/polb.10162

Gómez Tejedor J.A., Rodriguez Hernández J.C., Gómez Ribelles J.L., Monleón Pradas M. Dynamic mechanical relaxation of poly(2- hydroxyethyl acrylate)-silica nanocomposites obtained by the sol- gel method. J. Macromol. Sci. B: Phys. 2007. 46(1): 43. https://doi.org/10.1080/00222340601036751

Sargsyan A., Tonoyan A., Davtyan S., Schick Ch. The amount of immobilized polymer in PMMA SiO2 nanocomposites determined from calorimetric data. Europ. Polymer. J. 2007. 43(8): 3113. https://doi.org/10.1016/j.eurpolymj.2007.05.011

Aranguren M.I. Crystallization of polydimethylsiloxane: effect of silica filler and curing. Polymer. 1998. 39(20): 4897. https://doi.org/10.1016/S0032-3861(97)10252-X

Fragiadakis D., Pissis P., Bokobza L. Glass transition and molecular dynamics in poly (dimethylsiloxane)/silica nanocomposites. Polymer. 2005. 46(16): 6001. https://doi.org/10.1016/j.polymer.2005.05.080

Kalogeras I.M., Roussos M., Christakis I., Spanoudaki A., Pietkiewicz D., Brostow W., Vassilikou-Dova A. Dielectric properties of cured epoxy resin + poly(ethylene oxide) blends. J. Non-Crystal Solid 2005. 351: 2728. https://doi.org/10.1016/j.jnoncrysol.2005.03.066

Hedvig P. Dielectric Spectroscopy of polymers. (Bristol: Adam Hilger, 1977). https://doi.org/10.1109/DLD.1977.7731995

Brauenlich P. (editor), Thermally stimulated currents in solids. Topics in applied physics. vol. 37 (Berlin: Springer, 1979).

Kremer F., Schönhals A. (eds), Broadband Dielectric Spectroscopy. (Berlin: Springer-Verlag, 2003). https://doi.org/10.1007/978-3-642-56120-7

Donth E. (editor), The Glass Transition: Relaxation Dynamics in Liquids and Disordered Materials. Springer Series in Materials Science. Vol 48 (Berlin: Springer, 2001). https://doi.org/10.1007/978-3-662-04365-3

Capaccioli S., Ngai K.L., Shinyashiki N. The Johari-Goldstein-relaxation of water. J. Phys. Chem. B 2007. 111(28): 8197. https://doi.org/10.1021/jp071857m

Shinyashiki N., Sudo S., Yagihara S., Spanoudaki A., Kyritsis A., Pissis P. Relaxation processes of water in the liquid to glassy states of water mixtures studied by broadband dielectric spectroscopy. J. Phys.: Condens. Matter. 2007. 19(20): 205113. https://doi.org/10.1088/0953-8984/19/20/205113

Osti N.C., Coté A., Mamontov E., Ramirez-cuesta A., Wesolowski D.J., Diallo S.O. Characteristic features of water dynamics in restricted geometries investigated with quasi-elastic neutron scattering. Chem. Phys. 2016. 465-466: 1. https://doi.org/10.1016/j.chemphys.2015.11.008

Tan S.P., Piri M. Equation-of-state modeling of confined fluid phase equilibria in nanopores. Fluid Phase Equilibria. 2015. 393: 48. https://doi.org/10.1016/j.fluid.2015.02.028

Nouri-Khorasani A., Malek K., Malek A., Mashio T., Wilkinson D.P., Eikerling M.H. Molecular modeling of the proton density distribution in a water-filled slab-like nanopore bounded by Pt oxide and ionomer. Catalysis Today 2016. 262: 133. https://doi.org/10.1016/j.cattod.2015.10.020

Weiland E., Springuel-Huet M., Nossov A., Gédéon A. Xenon NMR: Review of recent insights into porous materials. Micropor. Mesopor. Mater. 2016. 225: 41. https://doi.org/10.1016/j.micromeso.2015.11.025

Klonos P., Kaprinis S., Zarko V.I., Peoglos V., Pakhlov E.M., Pissis P., Gun'ko V.M. Thermal and dielectric studies of PEG/C/AST nanocomposites. J. Appl. Polymer. Sci. 2013. 128(3): 1601. https://doi.org/10.1002/app.37956

Stamatopoulou C., Klonos P., Bondaruk O., Koutsoumpis S., Gun'ko V., Pissis P., Karabanova L. Hydrophilic nanocomposites based on polyurethane/poly(2-hydroxyethyl methacrylate) semi-IPNs and modified/unmodified nanosilica for biomedical applications. J. Polymer Sci. Part B: Polymer Phys. 2014. 52(5): 397. https://doi.org/10.1002/polb.23427

Galaburda M.V., Klonos P., Gun'ko V.M., Bogatyrov V.M., Borysenko M.V., Pissis P. Dielectric properties and thermal destruction of poly(dimethylsiloxane)/Fe2O3/SiO2 nanocomposites. Appl. Surf. Sci. 2014. 305: 67. https://doi.org/10.1016/j.apsusc.2014.02.162

Sulym I.Ya., Klonos P., Borysenko M.V., Pissis P., Gun'ko V.M. Dielectric and thermal studies of segmental dynamic in silica/PDMS and silica/titania/PDMS nanocomposites. J. Appl. Polymer. Sci. 2014. 131(23): 41154. https://doi.org/10.1002/app.41154

Klonos P., Sulym I.Ya., Borysenko M.V., Gun'ko V.M., Kripotou S., Kyritsis A., Pissis P. Interfacial interactions and complex segmental dynamics in systems based on silica-polydimethylsiloxane core-shell nanoparticles: Dielectric and thermal study. Polymer. 2015. 58: 9. https://doi.org/10.1016/j.polymer.2014.12.037

Klonos P., Sulym I.Ya., Kyriakos K., Vangelidis I., Zidropoulos S., Sternik D., Borysenko M.V., Kyritsis A., Deryło-Marczewska A., Gun'ko V.M., Pissis P. Interfacial phenomena in core-shell nanocomposites of PDMS adsorbed onto low specific surface area fumed silica nanooxides: Effects of surface modifications. Polymer. 2015. 68: 158. https://doi.org/10.1016/j.polymer.2015.05.017

Klonos P., Dapei G., Sulym I.Ya., Zidropoulos S., Sternik D., Deryło-Marczewska A., Borysenko M.V., Gun'ko V.M., Kyritsis A., Pissis P. Morphology and molecular dynamics investigation of PDMS adsorbed on titania nanoparticles: effects of polymer molecular weight. Eur. Polymer. J. 2016. 74: 64. https://doi.org/10.1016/j.eurpolymj.2015.11.010

Leboda R., Turov V.V., Charmas B., Skubiszewska-Zięba J., Gun'ko V.M. Surface properties of mesoporous carbon-silica gel adsorbents. J. Colloid Interface Sci. 2000. 223(1): 112. https://doi.org/10.1006/jcis.1999.6629

Gun'ko V.M., Leboda R., Skubiszewska-Zięba J., Turov V.V., Kowalczyk P. Structure of silica gel Si-60 and pyrocarbon/silica gel adsorbents thermally and hydrothermally treated. Langmuir. 2001. 17(11): 3148. https://doi.org/10.1021/la001094t

Melillo M., Gun'ko V.M., Mikhalovska L.I, Phillips G.J., Davies J.D., Lloyd A.W., Kozynchenko O.P., Malik D.J., Streat M., Mikhalovsky S.V. Structural characteristics of activated carbons and ibuprofen adsorption affected by bovine serum albumin. Langmuir. 2004. 20(7): 2837. https://doi.org/10.1021/la0360557

Tomaszewski W., Gun'ko V.M., Leboda R., Skubiszewska-Zięba J. Structural characteristics of modified activated carbons and adsorption of explosives. J. Colloid Interface Sci. 2003. 266: 388. https://doi.org/10.1016/S0021-9797(03)00633-7

Ahmed W., Jackson M.J. (eds) Emerging Nanotechnologies for Manufacturing. Second Edition (Amsterdam: Elsevier, 2015).

Thomas S., Shanks R., Chandrasekharakurup S. (eds) Design and Applications of Nanostructured Polymer Blends and Nanocomposite Systems. (Amsterdam: Elsevier, 2016).

Zaleska A. Doped-TiO2: a review. Recent Patents on Engineering. 2008. 2(3): 157. https://doi.org/10.2174/187221208786306289

Bagheri S., Shameli K., Hamid S.B.A. Synthesis and characterization of anatase titanium dioxide nanoparticles using egg white solution via sol-gel method. J. Chem. 2013. 2013: 848205. https://doi.org/10.1155/2013/848205

Safaei-Naeini Y., Aminzare M., Golestani-Fard F., Khorasanizadeh F., Salahi E. Suspension stability of titania nanoparticles studied by UV-vis spectroscopy method. Iranian Journal of Materials Science & Engineering. 2012. 9(1): 62.

Buzea C., Blandino I.I.P., Robbie K. Nanomaterials and nanoparticles: sources and toxicity. J. Biointerphases. 2007. 2(4): 17. https://doi.org/10.1116/1.2815690

Gun'ko V.M., Turov V.V., Gorbik P.P. Water at the Interfaces. (Kiev: Naukova Dumka, 2009). [in Russian].

Turov V.V., Gun'ko V.M. Clustered Water and Ways of Its Applications. (Kiev: Naukova Dumka, 2011). [in Russian].

Gun'ko V.M., Turov V.V., Zarko V.I., Goncharuk O.V., Pakhlov E.M., Skubiszewska-Zięba J., Blitz J.P. Interfacial phenomena at a surface of individual and complex fumed nanooxides. Adv. Colloid Interface Sci. 2016. 235: 108. https://doi.org/10.1016/j.cis.2016.06.003

Gun'ko V.M., Turov V.V., Zarko V.I., Pakhlov E.M., Charmas B., Skubiszewska-Zięba J. Influence of structural organization of silicas on interfacial phenomena. Colloids and Surfaces A: Physicochem. Eng. Aspects. 2016. 492: 230. https://doi.org/10.1016/j.colsurfa.2015.12.030

Gun'ko V.M., Zarko V.I., Goncharuk O.V., Matkovsky A.K., Remez O.S., Skubiszewska-Zięba J., Wojcik G., Walusiak B., Blitz J.P. Nature and morphology of fumed oxides and features of interfacial phenomena. Appl. Surf. Sci. 2016. 366: 410. https://doi.org/10.1016/j.apsusc.2016.01.062

Gun'ko V.M., Turov V.V., Zarko V.I., Goncharuk O.V., Matkovsky A.K., Prykhod'ko G.P., Nychiporuk Yu.M., Pakhlov E.M., Krupska T.V., Balakin D.Yu., Charmas B., Andriyko L.S., Skubiszewska-Zięba J., Marynin A.I., Ukrainets A.I., Kartel M.T. Multi-layer graphene oxide alone and in a composite with nanosilica: preparation and interactions with polar and nonpolar adsorbates. Appl. Surf. Sci. 2016. 387: 736. https://doi.org/10.1016/j.apsusc.2016.06.196

Gun'ko V.M., Turov V.V., Pakhlov E.M., Matkovsky A.K., Krupska T.V., Kartel M.T., Charmas B. Blends of amorphous/crystalline nanoalumina and hydrophobic amorphous nanosilica. Journal of Non-Crystalline Solids. 2018. 500: 351. https://doi.org/10.1016/j.jnoncrysol.2018.08.020

Gun'ko V.M., Pakhlov E.M., Skubiszewska-Zięba J., Blitz J.P. Infrared spectroscopy as a tool for textural and structural characterization of individual and complex fumed oxides. Vibrational Spectroscopy. 2017. 88: 56. https://doi.org/10.1016/j.vibspec.2016.11.003

Zaulychnyy Ya.V., Gun'ko V.M., Yavorskyi Y.V., Gasyuk I.M., Wanderka N., Dudka O.I. Effect of mechanical treatment on the distribution of valence electrons and characteristics of nanocomposite (SiO2)x(Al2O3)1-x (x = 0.8, x= 0.7) electrodes in lithium power sources. Applied Surface Sci. 2019. 494: 1013. https://doi.org/10.1016/j.apsusc.2019.07.206

Gun'ko V.M., Pakhlov E.M., Goncharuk O.V., Andriyko L.S., Marynin A.I., Ukrainets A.I., Charmas B., Skubiszewska-Zięba J., Blitz J.P. Influence of hydrophobization of fumed oxides on interactions with polar and nonpolar adsorbates. Appl. Surf. Sci. 2017. 423: 855. https://doi.org/10.1016/j.apsusc.2017.06.207

Mironyuk I.F., Gun'ko V.M., Vasylyeva H.V., Goncharuk O.V., Tatarchuk H.V., Mandzyuk V.I., Bezruka N.A., Dmytrotsa T.V. Effects of enhanced clusterization of water at a surface of partially silylated nanosilica on adsorption of cations and anions from aqueous media. Microporous and Mesoporous Materials. 2019. 277: 95. https://doi.org/10.1016/j.micromeso.2018.10.016

Gun'ko V.M., Turov V.V., Krupska T.V., Protsak I.S., Borysenko M.V., Pakhlov E.M. Polymethylsiloxane alone and in composition with nanosilica under various conditions, J. Colloid Interface Sci. 2019. 541: 213. https://doi.org/10.1016/j.jcis.2019.01.102

Protsak I., Gun'ko V.M., Henderson I.M., Pakhlov E.M., Sternik D., Le Z. Nanostructured amorphous silicas hydrophobized by various pathways. ACS Omega. 2019. 4(9): 13863. https://doi.org/10.1021/acsomega.9b01508

Skwarek E., Janusz W., Gun'ko V.M., Pakhlov E.M., Zarko V.I., Gdula K. Characteristics of surface and electrochemical properties of composites with fumed metal oxides and hydroxyapatite. Adsorption. 2016. 22(4-6): 725. https://doi.org/10.1007/s10450-016-9770-4

Skwarek E., Goncharuk O.V., Janusz W., Pakhlov E.M., Gun'ko V.M. Heats of immersion of hydroxyapatite and hydroxyapatite/fumed oxides composites in water and n-decane. Materials Chemistry and Physics 2018. 215: 99. https://doi.org/10.1016/j.matchemphys.2018.05.035

Wawrzkiewicz M., Wiśniewska M., Gun'ko V.M. Application of silica-alumina oxides of different compositions for removal of C.I. Reactive Black 5 dye from wastewaters. Adsorption Science & Technology. 2017. 35(5-6): 448. https://doi.org/10.1177/0263617417695271

Wawrzkiewicz M., Wiśniewska M., WołowiczA., Gun'ko V.M., Zarko V.I. Mixed silica-alumina oxide as sorbent for dyes and metal ions removal from aqueous solutions and wastewaters. Microporous and Mesoporous Materials. 2017. 250: 128. https://doi.org/10.1016/j.micromeso.2017.05.016

Klonos P., Dapei G., Sulym I.Ya., Zidropoulos S., Sternik D., Deryło-Marczewska A., Borysenko M.V., Gun'ko V.M., Kyritsis A., Pissis P. Morphology and molecular dynamics investigation of PDMS adsorbed on titania nanoparticles: effects of polymer molecular weight. European Polymer Journal. 2016. 74: 64. https://doi.org/10.1016/j.eurpolymj.2015.11.010

Klonos P., Kulyk K., Borysenko M., Gun'ko V., Kyritsis A., Pissis P. Effects of molecular weight below the entanglement threshold on interfacial nanoparticles/polymer dynamics. Macromolecules. 2016. 49(24): 9457. https://doi.org/10.1021/acs.macromol.6b01931

Klonos P., KyritsisA., BokobzaL., Gun'ko V.M., Pissis P. Interfacial effects in PDMS/titania nanocomposites studied by thermal and dielectric techniques. Colloids and Surfaces A: Physicochem. Eng. Aspects. 2017. 519: 212. https://doi.org/10.1016/j.colsurfa.2016.04.020

Klonos P., Goncharuk O., PakhlovE., Sternik D., Derylo-Marczewska A., Kyritsis A., Gun'ko V., Pissis P. Morphology, Molecular Dynamics, and Interfacial Phenomena in Systems Based on Silica Modified by Grafting Polydimethylsiloxane Chains and Physically Adsorbed Polydimethylsiloxane. Macromolecules. 2019. 52(7): 2863. https://doi.org/10.1021/acs.macromol.9b00155

Gun'ko V.M., Lupascu T., Krupska T.V., Golovan A.P., Pakhlov E.M., Turov V.V. Influence of tannin on aqueous layers at a surface of hydrophilic and hydrophobic nanosilicas. Colloids and Surfaces A: Physicochem. Eng. Aspects. 2017. 531: 9. https://doi.org/10.1016/j.colsurfa.2017.07.084

Nosach L.V., Voronin E.F., Pakhlov E.M., Charmas B., Skubiszewska-Zięba J., Skwarek E., Janusz W., Gun'ko V.M. Nano-particulate structures with glucose-derived char and compacted fumed silica in gaseous and aqueous media. 2017. 195: 729. In: Nanophysics, Nanomaterials, Interface Studies, and Applications. NANO 2016. Springer Proceedings in Physics. Fesenko O., Yatsenko L. (eds) (Springer, Cham). https://doi.org/10.1007/978-3-319-56422-7_56

Gun'ko V.M., Turov V.V., Krupska T.V., Pakhlov E.M. Behavior of water and methane bound to hydrophilic and hydrophobic nanosilicas and their mixture. Chem. Phys. Lett. 2017. 690: 25. https://doi.org/10.1016/j.cplett.2017.10.039

Goncharuk O.V., Andriyko L.S., Malysheva M.L., Korotych O.I., Marynin A.I., Zarko V.I., Ukrainets A.I., Gun'ko V.M. Influence of indifferent electrolytes on the coagulative structure formation in aqueous silica dispersions. French-Ukrainian Journal of Chemistry. 2017. 5(2): 40. https://doi.org/10.17721/fujcV5I2P40-48

Goncharuk O.V., Gun'ko V.M., Ugnivenko A.P., Terpilowski K., Skwarek E., Janusz W. Effect of ethonium adsorption on structure formation in nanosilica dispersions. Nano Research & Applications. 2017. 29(3): 1. https://doi.org/10.21767/2471-9838.100029

Voronina O.E., Malysheva M.L., Nosach L.V., Voronin E.F., Gun'ko V.M., Charmas B., Skubiszewska-Zięba J. A role of free silanol groups of nanosilica surface in interaction with poly(vinyl pyrrolidone). Annales Universitatis Mariae Curie-Sklodowska, Sectio AA Chemia 2017. LXXII(2): 51. https://doi.org/10.17951/aa.2017.72.2.51-66

Gun'ko V.M., Krupska T.V., Andriyko L.S., Klymenko N.Yu., Siora I.V., Novikova O.A., Marynin A.I., Ukrainets A.I., Charmas B., Shekhunova S.B., Turov V.V. Bonding of doxorubicin to nanosilica and human serum albumin in various media. J. Colloid Interface Sci. 2018. 513: 809. https://doi.org/10.1016/j.jcis.2017.12.001

Gun'ko V.M., Turov V.V., Krupska T.V. Interfacial behavior of methane and organic solvents with low freezing points upon interaction with hydrophilic and hydrophobic nanosilicas. Chemistry, Physics and Technology of Surface 2018. 9(2): 107. https://doi.org/10.15407/hftp09.02.107

Turov V.V., Gun'ko V.M., Pakhlov E.M., Krupska T.V., Tsapko M.D., Charmas B., Kartel M.T. Influence of hydrophobic nanosilica and hydrophobic medium on water bound in hydrophilic components of complex systems. Colloids and Surfaces A: Physicochem. Eng. Aspects. 2018. 552: 39. https://doi.org/10.1016/j.colsurfa.2018.05.017

Gun'ko V.M., Pakhlov E.M., Goncharuk O.V., Andriyko L.S., Nychiporuk Yu.M., Balakin D.Yu., Sternik D., Derylo-Marczewska A. Nanosilica modified by polydimethylsiloxane depolymerized and chemically bound to nanoparticles or physically bound to unmodified or modified surfaces: Structure and interfacial phenomena. J. Colloid Interface Sci. 2018. 529: 273. https://doi.org/10.1016/j.jcis.2018.06.019

Goncharuk O., Bogatyrov V., Kazakova O., Galaburda M., Oranska O., Skwarek E., Waniak-Nowicka H., Janusz W., Gun'ko V. Silica-supported NixOy, ZnxOy and MnxOy nanocomposites: physicochemical characteristics and interactions with water and n-decane. Bulletin of Materials Science. 2019. 42: 243. https://doi.org/10.1007/s12034-019-1935-9

Nosach L.V., Voronin E.F., Pakhlov E.M., Guzenko N.V., Gun'ko V.M. Polymer modified nanosilica as a sorbent for medical applications, chapter 7. In: Biocompatible Hybrid Oxide Nanoparticles for Human Health, From Synthesis to Applications, Micro and Nano Technologies. Melnyk I.V., Vaclavikova M., Seisenbaeva G.A., Kessler V.G. (Eds.) (Amsterdam: Elsevier, 2019) https://doi.org/10.1016/B978-0-12-815875-3.00007-2

Gun'ko V.M., Polymer composites with functionalized silica. In: Polymer Composites with Functionalized Nanoparticles. Synthesis, Interactions, Properties and Applications. Majka T., Pielichowski K. (Eds.) (Amsterdam: Elsevier, 2019).

Protsak I., Gun'ko V.M., Turov V.V., Krupska T.V., Pakhlov E.M., Zhang D., Dong W., Le Z. Nanostructured polymethylsilosane/fumed silica blends. Materials 2019. 2409(12): 1. https://doi.org/10.3390/ma12152409

Turov V.V., Gun'ko V.M., Krupska T.V., Protsak I.S., Pakhlov E.M., Structural and adsorption features of amorphous nanosilica modified by various addition of polymethylsiloxane. Chemistry, Physics and Technology of Surface. 2019. 10(3): 203. https://doi.org/10.15407/hftp10.03.203

Gun'ko V.M., Turov V.V., Pakhlov E.M., Krupska T.V., Charmas B. Effect of water content on the characteristics of hydro-compacted nanosilica. Appl. Surf. Sci. 2018. 459: 171. https://doi.org/10.1016/j.apsusc.2018.07.213

Gun'ko V.M., Turov V.V., Pakhlov E.M., Krupska T.V., Borysenko M.V., Kartel M.T., Charmas B. Water interactions with hydrophobic versus hydrophilic nanosilica. Langmuir. 2018. 34(40): 12145. https://doi.org/10.1021/acs.langmuir.8b03110

Turov V.V., Gun'ko V.M., Krupska T.V., Kartel M.T. Influence of solid and liquid hydrophobic compounds on characteristics of water located in an adsorption layer of a hydrophilic component of the system. Chemistry, Physics and Technology of Surface. 2018. 9(4): 341. https://doi.org/10.15407/hftp09.04.341

Gun'ko V.M., Turov V.V., Protsak I.S., Krupska T.V., Pakhlov E.M., Tsapko M.D. Effects of pre-adsorbed water on methane adsorption onto blends with hydrophobic and hydrophilic nanosilicas. Colloids and Surfaces A: Physicochem. Eng. Aspects. 2019. 570: 471. https://doi.org/10.1016/j.colsurfa.2019.03.056

Pujari, P.K., Sen, D., Amarendra, G., Abhaya S., Pandey A.K., Dutta D., Mazumder S. Study of pore structure in grafted polymer membranes using slow positron beam and small-angle X-ray scattering techniques. Nuclear. Instr. Method Phys. Res. B. 2007. 254: 278. https://doi.org/10.1016/j.nimb.2006.11.052

Sakurai S., SAXS evaluation of size distribution for nanoparticles. Chapter 5. In: A.E. Ares (ed.), X-ray Scattering, InTech, Croatia, 2017, pp. 107-134. https://doi.org/10.5772/65049

Brumberger H. (Ed.) Small Angle X-ray Scattering. Gordon & Breach, New York, Syracuse, 1965.

Dieudonné Ph., Hafidi A.A., Delord P., Phalippou J. Transformation of nanostructure of silica gels during drying. J. Non-Crystal. Solid. 2000. 262: 155. https://doi.org/10.1016/S0022-3093(99)00687-0

Fairén-Jiménez D., Carrasco-Marín F., Djurado D., Bley F., Ehrburger-Dolle F., Moreno-Castilla C. Surface area and microporosity of carbon aerogels from gas adsorption and small- and wide-angle X-ray scattering measurements. J. Phys. Chem. B 2006. 110: 8681. https://doi.org/10.1021/jp055992f

Published
2019-10-30
How to Cite
Gun’ko, V. M., Turov, V. V., Goncharuk, O. V., Pakhlov, E. M., & Matkovsky, O. K. (2019). Interfacial phenomena at a surface of individual and complex fumed nanooxides. Surface, (11(26), 3-269. https://doi.org/10.15407/Surface.2019.11.003
Section
Theory of surface chemical structure and reactivity.