Кріожелювання і отримання кріогелів та кріонаноксидів – огляд останніх досягнень та перспективи

  • O. S. Remez Інститут хімії поверхні ім. О.О. Чуйка Національної академії наук України

Анотація

Проаналізовано проблеми синтезу та властивості кріогелів і нанокомпозитів на їх основі. Показано основні закономірності формування кріогелів, впливу на їх властивості природи вихідних матеріалів, температури та швидкості заморожування, а також кількості циклів заморожування−відтаювання. Наведено приклади синтезу кріогелів та можливих шляхів їх застосування. Висвітлено деякі особливості формування кріонанооксидів та вплив високого тиску на їх текстурні характеристики.

Посилання

1. Lozinsky V.I., Galaev I.Y., Plieva F.M., Savina I.N., Jungvid H., Mattiasson B. Polymeric cryogels as promising materials of biotechnological interest. Trends Biotechnol. 2003. 21(10): 445. https://doi.org/10.1016/j.tibtech.2003.08.002

2. Gun'ko V.M., Savina I.N., Mikhalovsky S.V. Cryogels: Morphological, structural and adsorption characterization. Adv. Colloid Interface Sci. 2013. 187–188: 1. https://doi.org/10.1016/j.cis.2012.11.001

3. Mikhalovsky S.V., Savina I.N., Dainiak M., Ivanov A.E., Galaev I.Y. Biomaterials/cryogels enabling technologies. (Amsterdam: Elsevier, 2011).

4. Nosé Y., Horiuchi T., Malchesky P.S. Therapeutic cryogel removal in autoimmune disease: What is cryogel? Therapeutic Apheresis and Dialysis. 2002. 4(1): 38. https://doi.org/10.1046/j.1526-0968.2000.00239.x

5. Mattiasson B., Kumar A., Galaev I.Yu. Macroporous polymers. Production, properties and biotechnological/biomedical application. (FL: CRC Press, 2009). https://doi.org/10.1201/9781420084627

6. Kirsebom H., Rata G., Topgaard D. Mechanism of cryopolymerization: diffusion-controlled polymerization in a non-frozen microphase. An NMR study. Macromolecules. 2009. 42(14): 5208. https://doi.org/10.1021/ma900566d

7. Kirsebom H., Topgaard D., Galaev I.Yu., Mattiasson B. Modulating the porosity of cryogels by influencing the non-frozen liquid phase through addition of inert solutes. Langmuir. 2010. 26(20): 16129. https://doi.org/10.1021/la102917c

8. Plieva F.M., Galaev I.Yu., Mattiasson B. Macroporous gels prepared at subzero temperatures as novel materials for chromatography of particulate-containing fluids and cell culture applications. J. Sep. Sci. 2007. 30(11): 1657. https://doi.org/10.1002/jssc.200700127

9. Dainiak M.B., Allan I.U., Savina I.N. Gelatin–fibrinogen cryogel dermal matrices for wound repair: preparation, optimisation and in vitro study. Biomaterials. 2010. 31(1): 67. https://doi.org/10.1016/j.biomaterials.2009.09.029

10. Plieva F.M., Galaev I.Yu., Noppe W., Mattiasson B. Cryogel applications in microbiology. Trends in Microbiology. 2008. 16(11): 543. https://doi.org/10.1016/j.tim.2008.08.005

11. Feaver A., Sepehri S., Shamberger P. Coherent carbon cryogel–ammonia borane nanocomposites for H2 storage. J. Phys. Chem. B. 2007. 111(26): 7469. https://doi.org/10.1021/jp072448t

12. Kirsebom H., Mattiasson B., Galaev I.Yu. Building macroporous materials from microgels and microbes via a one-step cryogelation. Langmuir. 2009. 25(15): 8462. https://doi.org/10.1021/la9006857

13. Plieva F.M., Ekström P., Galaev I.Yu., Mattiasson B. Monolithic cryogels with open porous structure and unique double-continuous macroporous networks. Soft Matter. 2008. 4(12): 2418. https://doi.org/10.1039/b804105a

14. Kumar A., Mishra R., Reinwald Y., Bhat S. Cryogels: Freezing unveiled by thawing. Mater Today. 2010. 13(11): 42. https://doi.org/10.1016/S1369-7021(10)70202-9

15. Le Noir M., Plieva F., Hey T. Macroporous molecularly imprinted polymer/cryogel composite systems, for the removal of endocrine disrupting trace contaminants. J. Chromatogr. A. 2007. 1154(1–2): 158. https://doi.org/10.1016/j.chroma.2007.03.064

16. Wee K.H., Ting Y.P., Chen J.P. Biosorption of copper by immobilized marine algal biomass. Chem. Eng. J. 2008. 136(2–3): 156.

17. Savina I.N., Hanora A., Plieva F.M. Cryostructuration of polymer systems. XXIV. Poly(vinyl alcohol) cryogels filled with particles of a strong anion exchanger: Properties of the composite materials and potential applications. J. Appl. Polymer Sci. 2005. 95(3): 529. https://doi.org/10.1002/app.21227

18. Lozinsky V.I., Zubov A.L., Titova E.F. Poly(vinyl alcohol) cryogels employed as matrices for cell immobilization. 2. Entrapped cells resemble porous fillers in their effects on the properties of PVA-cryogel carrier. Enzyme and Microbial Technology. 1997. 20(3): 182. https://doi.org/10.1016/S0141-0229(96)00110-X

19. Paţachia S., Florea C., Friedrich C., Thomann Y. Tailoring of poly(vinyl alcohol) cryogels properties by salts addition. eXPRESS Polym. Lett. 2009. 3(5): 320. https://doi.org/10.3144/expresspolymlett.2009.40

20. Pazos V., Mongrain R., Tardif J.C. Polyvinyl alcohol cryogel: Optimizing the parameters of cryogenic treatment using hyperelastic models. J. Mech. Behav. Biomed. Mater. 2009. 2(5): 542. https://doi.org/10.1016/j.jmbbm.2009.01.003

21. Goharian M., Moran G.R., Wilson K., Seymour C., Jegatheesan A., Hill M., Campbell G. Modifying the MRI, elastic stiffness and electrical properties of polyvinyl alcohol cryogel using irradiation. Nuclear Instruments and Methods in Physics Research Section B Beam Interactions with Materials and Atoms. 2007. 263(1): 239. https://doi.org/10.1016/j.nimb.2007.04.111

22. Tecnologia C.D., Luiz R.W. Poly(vinyl alcohol)/sulfonated polyester hydrogels produced by freezing and thawing technique: preparation and characterization. Mat. Res. 2007. 10(1): 43. https://doi.org/10.1590/S1516-14392007000100010

23. Dinu M.V., Cocarta A.I., Dragan E.S. Synthesis, characterization and drug release properties of 3D chitosan/clinoptilolite biocomposite cryogels. Carbohydr. Polym. 2016. 153: 203. https://doi.org/10.1016/j.carbpol.2016.07.111

24. Chaturvedi A., Bajpai A.K., Bajpai J., Singh S.K. Evaluation of poly (vinyl alcohol) based cryogel-zinc oxide nanocomposites for possible applications as wound dressing materials. Mater. Sci. Eng. C Mater. Biol. Appl. 2016. 65: 408. https://doi.org/10.1016/j.msec.2016.04.054

25. Su L., Miao L., Miao J., Zheng Z., Yang B., Xia R., Chen P., Qian J. Synthesis and optical property of zinc aluminate spinel cryogels. J. Asian Ceram. Soc. 2016. 4(2): 185. https://doi.org/10.1016/j.jascer.2016.03.001

26. Bharti B., Kukobat R., Minami D., Kaneko K. Modulating SWCNT-silica interactions for enhanced dispersibility and hybrid cryogel formation. Colloid. Interface Sci. Commun. 2014. 3: 13. https://doi.org/10.1016/j.colcom.2015.03.001

27. Huseynli S., Baydemir G., Sari E., Elkak A., Denizli A. Affinity composite cryogel discs functionalized with Reactive Red 120 and Green HE 4BD dye ligands: Application on the separation of human immunoglobulin G subclasses. Mater. Sci. Eng. C Mater. Biol. Appl. 2015. 46: 77. https://doi.org/10.1016/j.msec.2014.10.007

28. Uyar G., Kaygusuz H., Erim F.B. Methylene blue removal by alginate–clay quasi-cryogel beads. React. Funct. Polym. 2016. 10: 61. https://doi.org/10.1016/j.reactfunctpolym.2016.07.001

29. Jalilzadeh M., Şenel S. Removal of Cu(II) ions from water by ion-imprinted magnetic and non-magnetic cryogels: A comparison of their selective Cu(II) removal performances. J. Water Process Eng. 2016. 13: 143. https://doi.org/10.1016/j.jwpe.2016.08.010

30. Sahiner N., Demirci S. Conducting semi-interpenetrating polymeric composites via the preparation of poly(aniline), poly(thiophene) and poly(pyrrole) polymers within superporous poly(acrylic acid) cryogels. React. Funct. Polym. 2016. 105: 60. https://doi.org/10.1016/j.reactfunctpolym.2016.05.017

31. Kraiwattanawong K., Sano N., Tamon H. Investigation on porous properties of carbon/carbon composite cryogels by using weighted arithmetic mean. Microporous Mesoporous Mater. 2016. 231: 57. https://doi.org/10.1016/j.micromeso.2016.05.005

32. Busquets R., Ivanov A.E., Mbundi L., Hörberg S., Kozynchenko O.P., Cragg P.J., Savina I.N., Whitby R.L.D., Mikhalovsky S.V., Tennison S.R., Jungvid H., Cundy A.B. Carbon-cryogel hierarchical composites as effective and scalable filters for removal of trace organic pollutants from water. J. Environ. Manage. 2016. 182: 141. https://doi.org/10.1016/j.jenvman.2016.07.061

33. Sahiner N., Yildiz S., Sahiner M., Issa Z.A., Al-Lohedan H. Macroporous cryogel metal nanoparticle composites for H2 generation from NaBH4 hydrolysis in seawater. Appl. Surf. Sci. 2015. 354(Part B): 388.

34. Plieva F.M., Karlsson M., Aguilar M.-R. Pore structure in supermacroporous polyacrylamide based cryogels. Soft. Matter. 2006. 1(4): 303. https://doi.org/10.1039/b510010k

35. Gun'ko V.M., Mikhalovska L.I., Savina I.N., Shevchenko R.V., James S.L., Tomlins P.E., Mikhalovsky S.V. Characterisation and performance of hydrogel tissue scaffolds. Soft Matter. 2010. 6(21): 5351. https://doi.org/10.1039/c0sm00617c

36. Dainiak M.B., Galaev I.Yu., Kumar A. Chromatography of living cells using supermacroporous hydrogels, cryogels. Adv. Biochem. Eng. Biotechnol. 2007. 106: 1.

37. Hanora A., Savina I.N., Plieva F.M. Direct capture of bacterial plasmid DNA from unclarified cell lysate using supermacroporous cryogel monolith columns grafted with polycations. J. Biotechnol. 2006. 123: 343. https://doi.org/10.1016/j.jbiotec.2005.11.017

38. Savina I.N., Cnudde V., D'Hollander S. Cryogels from poly(2-hydroxyethyl methacrylate): Macroporous, interconnected materials with potential as cell scaffolds. Soft Matter. 2007. 3(9): 1176. https://doi.org/10.1039/b706654f

39. Nakagawa K., Nishimoto N. Cryotropic gel formation for food nutrients encapsulation - a controllable processing of hydrogel by freezing. Procedia Food Sci. 2011. 119: 68. https://doi.org/10.1016/j.profoo.2011.09.289

40. Dainiak M.B., Kumar A., Galaev I.Yu., Mattiasson B. Cryogels as matrices for cell separation and cell cultivation. In: Macroporous polymers: Production properties and biotechnological/biomedical applications. (Boca Raton, FL: CRC Press, 2009). https://doi.org/10.1201/9781420084627-c14

41. Dainiak M.B., Savina I., Musolino I. Biomimetic macroporous hydrogel scaffolds in a high throughput screening format for cell-based assays. Biotechnol. Prog. 2008. 24(6): 1373. https://doi.org/10.1002/btpr.30

42. Iler R.K. The chemistry of silica: solubility, polymerization, colloid and surface properties and biochemistry of silica. (Chichester: Wiley, 1979).

43. Legrand A.P. The surface properties of silicas. (New York: Wiley, 1998).

44. Basic Characteristics of Aerosil. Technical Bulletin Pigments. N 11. (Hanau: Degussa AG, 1997).

45. Gun'ko V.M., Turov V.V. Nuclear magnetic resonance studies of interfacial phenomena. (Boca Raton: CRC Press, 2013). https://doi.org/10.1201/b14202

46. Gun'ko V.M., Zarko V.I., Leboda R., Chibowski E. Aqueous suspensions of fumed oxides: particle size distribution and zeta potential. Adv. Colloid Interface Sci. 2001. 91(1): 1. https://doi.org/10.1016/S0001-8686(99)00026-3

47. Chuiko O.O. Meditsinskaya khimiya i primeneniye kremnezema. (Kyiv: Naukova dumka, 2003). [in Russian].

48. Auner N., Weis J. Organosilicon chemistry II. From molecules to materials. (Weinheim: VCH, 1996).

49. Bergna H.E. Colloidal silica: fundamentals and applications. (Salisbury: Taylor & Francis LLC, 2005).

50. Mironyuk I.F., Gun'ko V.M., Turov V.V., Zarko V.I., Leboda R., Skubiszewska- Zieba J. Characterization of fumed silicas and their interaction with water and dissolved proteins. Colloids Surf. A. 2001. 180(1–2): 87. https://doi.org/10.1016/S0927-7757(00)00764-0

51. Gun'ko V.M., Mironyuk I.F., Zarko V.I., Turov V.V., Voronin E.F., Pakhlov E.M., Goncharuk E.V., Leboda R., Skubiszewska-Zieba J., Janusz W., Chibowski S., Levchuk Yu.N., Klyueva A.V. Fumed silicas possessing different morphology and hydrophilicity. J. Colloid Interface Sci. 2001. 242(1): 90. https://doi.org/10.1006/jcis.2001.7736

52. Gun'ko V.M., Savina I.N., Mikhalovsky S.V. Cryogels: morphological, structural and adsorption characterisation. Adv. Colloid Interface Sci. 2013. 187–188: 1. https://doi.org/10.1016/j.cis.2012.11.001

53. Mills A. The freezing bomb. Phys. Educ. 2010. 45(2): 153. https://doi.org/10.1088/0031-9120/45/2/004

54. Nishihara H., Mukai S.R., Fujii Y., Tago T., Masuda T., Tamon H. Preparation of monolithic SiO2-Al2O3 cryogels with interconnected macropores through ice templating. J. Mater. Chem. 2006. 16(31): 3231. https://doi.org/10.1039/B604780G

55. Nishihara H., Iwamura S., Kyotani T. Synthesis of silica-based porous monoliths with straight nanochannels using an ice-rod nanoarray as a template. J. Mater. Chem. 2008. 18(31): 3662. https://doi.org/10.1039/b806005c

56. Mukai S.R., Nishihara H., Tamon H. Porous microfibers and microhoneycombs synthesized by ice templating. Catal. Surv. Asia. 2006. 10(3–4): 161. https://doi.org/10.1007/s10563-006-9015-8

57. Nishihara H., Mukai S.R., Shichi S., Tamon H. Preparation of titania–silica cryogels with controlled shapes and photocatalysis through unidirectional freezing. Mater. Lett. 2010. 64(8): 959. https://doi.org/10.1016/j.matlet.2010.01.073

58. Qian L., Zhang H. Controlled freezing and freeze drying: a versatile route for porous and micro-/nanostructured materials. J. Chem. Technol. Biotechnol. 2011. 86(2): 172. https://doi.org/10.1002/jctb.249

59. Klotz M., Amirouche I., Guizard C., Viazzi C., Deville S. Ice templating-an alter-native technology to produce micromonoliths. Adv. Eng. Mater. 2012. 14(12): 1123. https://doi.org/10.1002/adem.201100347

60. Deville S. Freeze-casting of porous ceramics: a review of current achievements and issues. Adv. Eng. Mater. 2008. 10(3): 155. https://doi.org/10.1002/adem.200700270

61. Niu T., Shen L.M., Liu Y. Preparation of meso-macroporous α-alumina using carbon nanotube as the template for the mesopore and their application to the preferential oxidation of CO in H2-rich gases. J. Porous Mater. 2013. 20(4): 789. https://doi.org/10.1007/s10934-012-9654-2

62. Ruzimuradov O., Nurmanov S., Kodani Y., Takahashi R., Yamada I. Morphology and dispersion control of titania–silica monolith with macro–mesopore system. J. Sol-Gel Sci. Technol. 2012. 64(3): 684. https://doi.org/10.1007/s10971-012-2903-7

63. Zhang M., Li Y., Uchaker E., Candelaria S., Shen L., Wang T., Cao G. Homogenous incorporation of SnO2 nanoparticles in carbon cryogels via the thermal decomposition of stannous sulfate and their enhanced lithium-ion intercalation properties. Nano Energy. 2013. 2(5): 769. https://doi.org/10.1016/j.nanoen.2013.01.009

64. Shlyakhtin O.A., Oh Y.-J. Inorganic cryogels for energy saving and conversion. J. Electroceram. 2009. 23: 452. https://doi.org/10.1007/s10832-008-9488-0

65. Mukai S.R., Nishihara H., Shichi S., Tamon H. Preparation of porous TiO2 cryogel fibers through unidirectional freezing of hydrogel followed by freeze-drying. Chem. Mater. 2004. 16(24): 4987. https://doi.org/10.1021/cm0491328

66. Pons A., Casas Ll., Estop E., Molins E., Harris K.D.M., Xu M. A new route to aerogels: monolithic silica cryogels. J. Non-Cryst. Solids. 2012. 358(3): 461. https://doi.org/10.1016/j.jnoncrysol.2011.10.031

67. Tamon H., Akatsuka T., Mori H., Sano N. Synthesis of zeolite monolith with hierarchical micro/macropores by ice-templating and steam-assisted crystallization. Chem. Eng. Trans. 2013. 32: 2059.

68. Babi’c B., Kokuneˇsoski M., Miljkovi’c M., Prekajski M., Matovi’c B., Gulicovski J., Buˇcevac D. Synthesis and characterization of the SBA-15/carbon cryogel nanocomposites. Ceram. Int. 2012. 38(6): 4875. https://doi.org/10.1016/j.ceramint.2012.02.078

69. Zhang H., Long J., Cooper A.I. Aligned porous materials by directional freezing of solutions in liquid CO2. J. Am. Chem. Soc. 2005. 127(39): 13482. https://doi.org/10.1021/ja054353f

70. Kim J.W., Tazumi K., Okaji R., Ohshima M. Honeycomb monolith structured silica with highly ordered, three-dimensional interconnected macroporous walls. Chem. Mater. 2009. 21(15): 3476. https://doi.org/10.1021/cm901265y

71. Hong C., Zhang X., Han J., Du J., Zhang W. Camphene-based freeze cast ZrO2 foam with high compressive strength. Mater. Chem. Phys. 2010. 119(3): 359. https://doi.org/10.1016/j.matchemphys.2009.10.031

72. Yoon B.-H., Lee E.-J., Kim H.-E. Highly aligned porous silicon carbide ceramics by freezing polycarbosilane/camphene solution. J. Am. Ceram. Soc. 2009. 90(6): 1753. https://doi.org/10.1111/j.1551-2916.2007.01703.x

73. Sinkó K. Gel-derived porous alumina systems. Mater. Lett. 2013. 107: 344. https://doi.org/10.1016/j.matlet.2013.06.048

74. Gun'ko V.M., Turov V.V., Zarko V.I., Pakhlov E.M., Matkovsky A.K., Oranska O.I., Palyanytsya B.B., Remez O.S., Nychiporuk Y.M., Ptushinskii Y.G., Leboda R., Skubiszewska-Zieba J. Cryogelation of individual and complex nanooxides under different conditions. Colloids Surf. A. 2014. 456: 261. https://doi.org/10.1016/j.colsurfa.2014.05.045

75. Gun'ko V.M., Turov V.V., Zarko V.I., Pakhlov E.M., Prykhod'ko G.P., Remez O.S., Leboda R., Skubiszewska-Zieba J., Blitz J.P. High-pressure cryogelation of nanosilica and surface properties of cryosilicas. Colloids Surf. A. 2013. 436: 618. https://doi.org/10.1016/j.colsurfa.2013.07.036

Опубліковано
2016-10-06
Як цитувати
Remez, O. S. (2016). Кріожелювання і отримання кріогелів та кріонаноксидів – огляд останніх досягнень та перспективи. Поверхня, (8(23), 158-178. https://doi.org/10.15407/Surface.2016.08.158
Розділ
Наноматеріали і нанотехнології