Irreversible capacity losses upon lithium insertion/extraction in graphite – silicon electrodes

  • S. P. Kuksenko Інститут хімії поверхні ім. О.О. Чуйка Національної академії наук України

Анотація

Сomposites were prepared by mechanical milling containing graphite and fine silicon particles. The microstructure, morphology, nature of the surface compounds, and electrochemical performance of these materials were analyzed by SEM, XPS, and electrochemical methods. Hybride electrode on the base of mixture of artificial graphite MAG D-20 and silicon ballmilled in the presence of graphite have shown on irreversible loss of capacity as a result of reductive reactions in the natural surface layer of silicon oxide involving silanol groups; it has given as a possibility to increase reversible specific capacity up to 445 mAh/g with the first cycle efficiency of 92.6 %.

Посилання

Inoue H. High capacity negative electrode materials next to carbon: Nexelion // IMLB2006: International Meeting on Lithium Batteries. – 2006, June 18 -23. – Biarritz, France. – Abstr. № 228.

Obrovac M.N., Krause L.J. Reversible cycling of crystalline silicon powder // J. Electrochem. Soc. – 2007. – V. 154, № 2. – P. A103 – A108.

High performance lithium battery anodes using silicon nanowires / C.K. Chan, H. Peng, G. Liu, K. McIlwrath, X.F. Zhang, R.A. Huggins, Y. Cui // Nature Nanotech. – 2008. – V. 3, № 1. – P. 31 – 35.

Lithium insertion in carbon-silicon composite materials produced by mechanical milling / C.S. Wang, G.T. Wu, X.B. Zhang, Z.F. Qi, W.Z. Li // J. Electrochem. Soc. – 1998. – V. 145, № 8. – P. 2751 – 2758.

Li-ion battery anode properties of Si-carbon nanocomposites fabricated by high energy multiring-type mill / B.-C. Kim, H. Uono, T. Sato, T. Fuse, T. Ishihara, M. Senna // Solid State Ionics. – 2004. – V. 172, № 1 – 4. – P. 33 – 37.

Wang G.X., Yao J., Liu H.K. Characterization of nanocrystalline Si-MCMB composite anode materials // Electrochem. Solid-State Lett. – 2004. – V. 7, № 8. – P. A250 – A253.

Datta M.K., Kumta P.N. Silicon, graphite and resin based hard carbon nanocomposite anodes for lithium ion batteries // J. Power Sources. – 2007. – V. 165, № 1. – P. 368 – 378.

Carbon-coated Si as a lithium-ion battery anode material / M. Yoshio, H. Wang, K. Fukuda, T. Umeno, N. Dimov, Z. Ogumi // J. Electrochem. Soc. – 2002. – V. 149, № 12. – P. A1598 – A1603.

Kim I.-S., Kumta P.N. High capacity Si/C nanocomposite anodes for Li-ion batteries //

J. Power Sources. – 2004. – V. 136, № 1. – P. 145 – 149.

Highly reversible lithium storage in nanostructured silicon / J. Graetz, C.C. Ahn, R. Yaza­mi, B.Fultz // Electrochem. Solid-State Lett. – 2003. – V. 6, № 9. – P. A194 – A197.

Коррозия анода в литиевых источниках тока / И.А. Кедринский, Л.К. Герасимова, В.И. Шилкин, И.И. Шмыдько // Электрохимия. – 1995. – Т. 31, № 4. – С. 365 – 372.

Опубліковано
2008-07-30
Як цитувати
Kuksenko, S. P. (2008). Irreversible capacity losses upon lithium insertion/extraction in graphite – silicon electrodes. Поверхня, (14), 123-128. вилучено із http://surfacezbir.com.ua/index.php/surface/article/view/262
Розділ
Фізико-хімія поверхневих явищ