Symmetry properties of brownian motors with fluctuating periodic potential energy
Abstract
We consider the inertialess motion of a Brownian particle in a potential field described by an arbitrary periodic function of coordinate and time. The first terms of an expansion of the average particle velocity over the small parameter, which is the ratio of changes of the potential energy amplitude to the thermal energy, have been represented, that is, the expression for the high-temperature Brownian motor average velocity. The analysis of those expressions revealed the vector and shift symmetry as well as the hidden space-time symmetry of Cubero- Renzoni (D.Cubero, F.Renzoni). These symmetry types have been used to analyze space-time dependences of potential energy which prevent appearance of ratchet effect. We also study the additional types of symmetry, which are inherent in adiabatically slow and fast Brownian motors, as well as the conditions for the potential energy at which the average motor velocity becomes zero.
References
1. Reimann P. Brownian Motors: noisy transport far from equilibrium. Phys. Rep. 2002. 361(2–4): 57. https://doi.org/10.1016/S0370-1573(01)00081-3
2. Hänggi P., Marchesoni F. Artificial Brownian motors: Controlling transport on the nanoscale. Rev. Mod. Phys. 2009. 81(1): 387. https://doi.org/10.1103/RevModPhys.81.387
3. Schadschneider A., Chowdhury D., Nishinari K. Stochastic Transport in Complex Systems: From Molecules to Vehicles. (Amsterdam: Elsevier, 2010).
4. Goychuk I. Molecular machines operating on the nanoscale: from classical to quantum. Beilstein. J. Nanotechnol. 2016. 7: 328. https://doi.org/10.3762/bjnano.7.31
5. Cubero D., Renzoni F. Brownian Ratchets: From Statistical Physics to Bio and Nano-motors. (Cambridge, UK: Cambridge University Press, 2016). https://doi.org/10.1017/CBO9781107478206
6. Rousselet J., Salome L., Ajdari A., Prost J. Directional motion of Brownian particles induced by a periodic asymmetric potential. Nature. 1994. 370: 446. https://doi.org/10.1038/370446a0
7. de Souza S.C.C., Van de Vondel J., Morelle M., Moshchalkov V.V. Controlled multiple reversals of a ratchet effect. Nature. 2006. 440: 651. https://doi.org/10.1038/nature04595
8. Gommers R., Bergamini S., Renzoni F. Dissipation-induced symmetry breaking in a driven optical lattice. Phys. Rev. Lett. 2005. 95: 0073003. https://doi.org/10.1103/PhysRevLett.95.073003
9. Kedem O., Lau B., Weiss E.A. How to drive a flashing electron ratchet to maximize current. Nano Lett. 2017. 17(9): 5848. https://doi.org/10.1021/acs.nanolett.7b03118
10. Dekhtyar M.L., Ishchenko A.A., Rozenbaum V.M. Photoinduced molecular transport in biological environments based on dipole moment fluctuations. J. Phys. Chem. B. 2006. 110(41): 20111. https://doi.org/10.1021/jp063795q
11. Rozenbaum V.M., Chernova A.A. Near-surface Brownian motor with synchronously fluctuating symmetric potential and applied force. Surface Science. 2009. 603: 3297. https://doi.org/10.1016/j.susc.2009.09.019
12. Rozenbaum V.M., Dekhtyar M.L., Lin S.H., Trakhtenberg L.I. Photoinduced diffusion molecular transport. J. Chem. Phys. 2016. 145: 064110. https://doi.org/10.1063/1.4960622
13. Kanada R., Sasaki K. Thermal ratchets with symmetric potentials. J. Phys. Soc. Jpn. 1999. 68: 3759. https://doi.org/10.1143/JPSJ.68.3759
14. Reimann P. Supersymmetric ratchets. Phys. Rev. Lett. 2001. 86(22): 4992. https://doi.org/10.1103/PhysRevLett.86.4992
15. Denisov S., Flach S., Hänggi P. Tunable transport with broken spacetime symmetries. Phys. Rep. 2014. 538: 77. https://doi.org/10.1016/j.physrep.2014.01.003
16. Cubero D., Renzoni F. Hidden symmetries, instabilities, and current suppression in Brownian ratchets. Phys. Rev. Lett. 2016. 116: 010602. https://doi.org/10.1103/PhysRevLett.116.010602
17. Rozenbaum V.M. Brownian motors in the low-energy approximation: Classification and properties. J. Exp. Theor. Phys. 2010. 110(4): 653. https://doi.org/10.1134/S1063776110040126
18. Rozenbaum V.M., Korochkova T.Ye., Chernova A.A., Dekhtyar M.L. Brownian motor with competing spatial and temporal asymmetry of potential energy. Phys. Rev. E. 2011. 83(5): 051120. https://doi.org/10.1103/PhysRevE.83.051120
19. Rozenbaum V.M., Makhnovskii Y.A., Shapochkina I.V., Sheu S.Y., Yang D.Y., Lin S.H. Adiabatically slow and adiabatically fast driven ratchets. Phys. Rev. E. 2012. 85(4): 041116. https://doi.org/10.1103/PhysRevE.85.041116
20. Riskin H. The Fokker-Plank Equation. Methods of Solution and Applications. (Berlin: Springer-Verlag, 1989). https://doi.org/10.1007/978-3-642-61544-3
21. Thomson W. The kinetic theory of the dissipation of energy. Proceedings of the Royal Society of Edinburgh. 1874. 8: 325. https://doi.org/10.1017/S0370164600029680
22. Parrondo J.M.R. Reversible ratchets as Brownian particles in an adiabatically changing periodic potential. Phys. Rev. E. 1998. 57(6): 7297. https://doi.org/10.1103/PhysRevE.57.7297