Absorption and relaxation of the laser pulse energy in substance (review)

  • O. Yu. Semchuk Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine
  • O. O. Havryliuk Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine http://orcid.org/0000-0003-4487-0537


Each stage of interaction of laser radiation with the surface of the absorbing medium is considered in detail. First, processes occurring inside the electron and phonon subsystems are considered, then pulsed laser excitation and relaxation of the electronic subsystem.  It is believed that intraband energy relaxation in the electron subsystem in the high-excitation regime occurs over a time on the order of the electron-electron relaxation time τе-е. Due to this, the entire energy of the laser pulse absorbed in a time of the order of τе-е remains inside the plasma subsystem of the semiconductor and is thermalized. The energy distribution of electrons and holes remains thermal and is characterized by identical electron (Te) and hole (Th) temperatures. Wherein Te=Th=Tc. The latter value of Tc depends on the concentration of nc and at nc = 1021 cm-3 can reach values of the order of 104 K.


1. Wenger E.F., Semchuk O.Yu., Havryliuk O.O. Lazer-indukovani nanostruktury v tverdykh tilakh. (Kyiv: Akademperiodyka, 2016). [in Ukrainian].

2. Koroteev N.I., Shumay I.L. Fizika moshchnogo lazernogo izlucheniya. (Moscow: Nauka, 1991). [in Russian].

3. Akhmanov S.A., Emel'yanov V.I., Koroteev N.I., Seminogov V.N. Interaction of powerful laser radiation with the surfaces of semiconductors and metals: nonlinear optical effects and nonlinear optical diagnostics. Sov. Phys. Usp. 1985. 28: 1084. https://doi.org/10.1070/PU1985v028n12ABEH003986

4. Libeson M.N., Yakovlev E.B., Shandybina G.D. Vzaimodeystviye lazernogo izlucheniye s veshchestvom (silovaya optika). Part II. Lazernyy nagrev i razrusheniye materialov. (St. Petersburg: NIU ITMO, 2014). [in Russian].

5. Samokhin A.A. Fazovyye perekhody pervogo roda pri deystvii lazernogo izlucheniya na pogloshchayushchiye kondensirovannyye sredy. Trudy IOFAN. 1988. 13: 3. [in Russian].

6. Makarov S.V. Ph.D. (Phys.-Math.) Thesis. (Moscow, 2014). [in Russian].

7. Yoffa E.J. Dynamics of dense laser-induced plasmas. Phys. Rev. B. 1980. 21: 2415. https://doi.org/10.1103/PhysRevB.21.2415

8. Kaganov M.I., Lifshitz I.M., Tanatarov L.V. Relaxation between Electrons and the Crystalline Lattice. J. Exp. Theor. Phys. 1957. 4(2): 173.

9. Eesley G.L. Observation of nonequilibrium electron heating in copper. Phys. Rev. Lett. 1983. 51: 2140. https://doi.org/10.1103/PhysRevLett.51.2140

10. Jacobini G., Canali G., Ottaviani G., Alberidi A. A review of some charge transport properties of silicon. Sol. State Electron. 1977. 20(2): 77. https://doi.org/10.1016/0038-1101(77)90054-5

11. Conwell E., Vassell M. High-field distribution function in GaAs. IEEE Trans. Electron Devices. 1966. 13(1): 22. https://doi.org/10.1109/T-ED.1966.15630

12. Tang C.L., Erskine D.J. Femtosecond relaxation of photoexcited nonequilibrium carriers in AlxGa1−xAs. Phys. Rev. Lett. 1983. 51(9): 840. https://doi.org/10.1103/PhysRevLett.51.840

13. Keldysh L.V. Electron-hole Drops in Semiconductors. Sov. Phys. Usp. 1970. 13: 292. https://doi.org/10.1070/PU1970v013n02ABEH004239

14. Rice T., Hensel J., Philips T., Thomas G. The Electron-Hole Liquid in Semiconductors. (Moscow: Mir, 1980). [in Russian].

15. Ulbrich R.G., Narayanamurts V., Chin M.A. Propagation of large-wave-vector acoustic phonons in semiconductors. Phys. Rev. Lett. 1980. 45(17): 1432. https://doi.org/10.1103/PhysRevLett.45.1432

16. Challis L. Phonon Scattering in Solids. (N.Y.: Plenum Press, 1976). https://doi.org/10.1007/978-1-4613-4271-7

17. Von der Linde D., Kuhl J., Klingerberg H. Raman Scattering from Nonequilibrium LO Phonons with Picosecond Resolution. Phys. Rev. Lett. 1980. 44(23): 1505. https://doi.org/10.1103/PhysRevLett.44.1505

18. Greenstein M., Tamor M.A., Walfe J.P. Time-resolved images of electron-hole droplets produced by intense pulsed-laser excitation of germanium. Sol. State Commun. 1983. 45(4): 355. https://doi.org/10.1016/0038-1098(83)90895-5

19. Gibbon J.F., Hess L.D., Sigmon T.W. Laser and electron beam solid interactions and materials processing. (N.Y.: North-Holland, 1981).

20. Anderson C.L., Cellar G.K., Rozgonyi G.A. Laser and electron beam processing of electronic materials. (Princeton: ECS Inc., 1980).

21. Wood R.F., Gi1es G.E. Macroscopic theory of pulsed-laser annealing. I. Thermal transport and melting. Phys. Rev. B. 1981. 23(6): 2923. https://doi.org/10.1103/PhysRevB.23.2923

22. Wood R.F., Kikpatrick J.R., Gi1es G.E. Macroscopic theory of pulsed-laser annealing. II. Dopant diffusion and segregation. Phys. Rev. B. 1981. 23(10): 5555. https://doi.org/10.1103/PhysRevB.23.5555

23. Orbach R. Phonon breakdown. IEEE Transactions on Sonics and Ultrasonics. 1967. 14(3): 140. https://doi.org/10.1109/T-SU.1967.29425

24. Ziman J. Printsipy teorii tverdogo tela. (Moscow: Mir, 1974). [in Russian].

25. Compaan A., Lo H.W., Lee M.C, Aydinli A. Time-reversal invariance and raman measurements of phonon populations under nonequilibrium conditions. Phys. Rev. B. 1982. 26(2): 1079. https://doi.org/10.1103/PhysRevB.26.1079

26. Van Vechten I.A. Laser and electron beam interaction with solids. (Amsterdam: North-Holland, 1982).

27. Akhmanova S.A., Khaibullina I.B., Galyautdinova M.F., Koroteeva N.I., Paytyana G.A., Shtyrkova E.I., Shumai I.L. Second harmonic generation during laser annealing of the surface of gallium arsenide. Sov. J. Quantum Electron. 1983. 13(6): 687. https://doi.org/10.1070/QE1983v013n06ABEH004269

28. Shank C.V., Yen R., Hir1imann C. Time-resolved reflectivity measurements of femtosecond-optical-pulse-induced phase transitions in silicon. Phys. Rev. Lett. 1983. 50(6): 454. https://doi.org/10.1103/PhysRevLett.50.454

29. Shank C.V., Yen R., Hir1imann C. Femtosecond-time-resolved surface structural dynamics of optically excited silicon. Phys. Rev. Lett. 1983. 51(10): 900. https://doi.org/10.1103/PhysRevLett.51.900

30. Suslov I.M. Possible mechanism for laser annealing. JETP Letters. 1984. 39(12): 670.

31. Yemelyanov V.I. Nelineyno-opticheskaya deformatsiya akusticheskoy podsistemy i sverkhbystroye plavleniye poverkhnosti poluprovodnikov moshchnymi korotkimi lazernymi impul'sami. (Moscow: Preprint fizicheskogo fakul'teta MGU N 5, 1985). [in Russian].

How to Cite
Semchuk, O. Y., & Havryliuk, O. O. (2017). Absorption and relaxation of the laser pulse energy in substance (review). Surface, (9(24), 118-135. https://doi.org/10.15407/Surface.2017.09.118
Nanomaterials and nanotechnologies