Synthesis and properties of metal-carbon nanocomposites Ni/C, Co/C AND Cu/C with high metal content

  • V. M. Bogatyrov Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine
  • M. V. Borysenko Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine
  • O. I. Oranska Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine
  • M. V. Galaburda Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine
  • S. M. Makhno Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine
  • P. P. Gorbyk Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine

Abstract

Cu/C, Ni/C and Co/C nanocomposites with average size of crystallites of 50, 18, and 20 nm, respectively, have been synthesized, using two-step method, which includes mechanochemical treatment of polyethylene glycol and acetates of copper, nickel and cobalt, followed by pyrolysis of the mixture in an argon flow at 700 ° C. The carbon content in the composites was 5.2 - 17.2 wt.%. The specific surface area of the powders varies between 28-41 m2/g. The resistance to hydrothermal processing of nanocomposites was established and the electrophysical characteristics of nanopowders were investigated.

References

1. Katz G.S., Milevski D.V. Fillers for polymer composites. (Moscow: Khimiya, 1981).

2. Sattler K.D. Handbook of Nanophysics. V. 7: Nanomedicine and Nanorobotics. (CRC Press, Taylor & Francis Group, Boca Raton, London, New York, 2011).

3. Fedlheim D.L., Foss C.A. Metal Nanoparticles: Synthesis, Characterization, and Applications. (New York-Basel: Marcel Dekker, Inc., 2002).

4. Din M.I., Rehan R. Synthesis, Characterization, and Applications of Copper Nanoparticles. Anal. Lett. 2017. 50(1): 50. https://doi.org/10.1080/00032719.2016.1172081

5. Chang H., Su H.-T. Synthesis and magnetic properties of Ni nanoparticles. Rev. Adv. Mater. Sci. 2008. 18: 667.

6. Magdassi Sh., Grouchko M., Kamyshny A. Copper nanoparticles for printed electronics: routes towards achieving oxidation stability. Materials. 2010. 3: 4626. https://doi.org/10.3390/ma3094626

7. Chaturvedi S., Dave P.N. A review on the use of nanometals as catalysts for the thermal decomposition of ammonium perchlorate. J. Saudi Chem. Soc. 2013. 17(2): 135. https://doi.org/10.1016/j.jscs.2011.05.009

8. Jain Sh., Nagar N., Devra V. Synthesis and characterization of highly efficient copper nanoparticles and their catalytic application in oxidative kinetic study. Adv. Appl. Sci. Res. 2015. 6(6): 171.

9. Zin V., Agresti F., Barison S., Colla L., Gondolini A., Fabrizio M. The synthesis and effect of copper nanoparticles on the tribological properties of lubricant oils. IEEE Trans. Nanotechnol. 2013. 12(5): 751. https://doi.org/10.1109/TNANO.2013.2273566

10. Gupta N.K., Khurana N.S., Adivarekar R.V. Synthesis and application of nano copper oxide for antimicrobial property. international. J. Eng. Res. Technol. 2013. 2(4): 2583.

12. Chang H., Yeh Y.-M., Huang K.-D. Electromagnetic Shielding by composite films prepared with carbon fiber, Ni nanoparticles, and multi-walled carbon nanotubes. Mater. Trans. 2010. 51(6): 1145. https://doi.org/10.2320/matertrans.M2009408

13. Bobrowska M., Typek J., Zolnierkiewicz G., Wardal K., Guskos N., Pelech I., Podsiadly M., Narkiewicz U. Magnetic resonance study of carbon encapsulated Ni nanoparticles. Cent. Eur. J. Chem. 2012. 10(6): 1963.

14. Typek J., Krupska A., Guskos N. Magnetic nanocomposite under pressure: a case study of Ni/C nanoparticles in polymer matrix. Rev. Adv. Mater. Sci. 2013. 35(1): 67.

15. Yan J.-M., Zhang X.-B., Han S., Shioyama H., Xu Q. Synthesis of longtime water/air-stable Ni nanoparticles and their high catalytic activity for hydrolysis of ammonia-borane for hydrogen generation. Inorg. Chem. 2009. 48(15): 7389. https://doi.org/10.1021/ic900921m

16. Grass R.N., Athanassiou E.K., Stark W.J. Covalently functionalized cobalt nanoparticles as a platform for magnetic separations in organic synthesis. Angew. Chem. Int. Ed. 2007. 46(26): 4909. https://doi.org/10.1002/anie.200700613

17. Bogatyrov V.M., Galaburda M.V., Oranska O.I., Borysenko M.V., Vasilyeva O.O., Voitko I.I. Synthesis and adsorption properties of magneto-sensitive nanocomposites based on Ni/C. Surface. 2015. 7(22): 196. [in Russian].

18. Gorelik S.S., Skakov Yu.A., Rastorguev L.N. Rentgenograficheskiy i elektronno-opticheskiy analiz. (Moscow: Izdatel'stvo Natsional'nogo issledovatel'skogo tekhnologicheskogo universiteta "MISiS", 2002). [in Russian].

19. Galaburda M., Bogatyrov V., Oranska O., Gun'ko V., Skubiszewska-Zięba J., Urubkov I. Synthesis and characterization of carbon composites containing Fe, Co, Ni nanoparticles. J. Therm. Anal. Calorim. 2015. 122(2): 553. https://doi.org/10.1007/s10973-015-4819-2

20. Khimicheskaya entsiklopediya. V. 2. (Moscow: Sovetskaya entsiklopediya, 1990). [in Russian].

21. Galaburda M.V., Bogatyrov V.M., Tomaszewski W., Oranska O.I., Borysenko M.V., Skubiszewska-Zięba J., Gun'ko V.M. Adsorption/desorption of explosives on Ni-, Co-, and NiCo-carbon composites: Application in solid phase extraction. Colloids Surf. A. 2017. 529: 950. https://doi.org/10.1016/j.colsurfa.2017.06.087

22. Makhno S.N., Bogatyrev V.M., Oranskaya EI, Gunya G.M., Chernyavskaya T.V., Borisenko N.V., Gorbik P.P. Sintez i elektrofizicheskiye svoystva kompozitov na osnove poristogo ugleroda i nanochastits nikelya. Nanostrukturnoye materialovedeniye. 2013. 2: 79. [in Russian].

Published
2017-10-08
How to Cite
Bogatyrov, V. M., Borysenko, M. V., Oranska, O. I., Galaburda, M. V., Makhno, S. M., & Gorbyk, P. P. (2017). Synthesis and properties of metal-carbon nanocomposites Ni/C, Co/C AND Cu/C with high metal content. Surface, (9(24), 136-144. https://doi.org/10.15407/Surface.2017.09.136
Section
Nanomaterials and nanotechnologies